Health Risk Assessment of Ortho-Toluidine Utilising Human Biomonitoring Data of Workers and the General Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Urinary Mass-Balance Approach
2.2. PBPK Modelling
2.3. Risk Assessment
3. Results
3.1. Summary of Exposure Biomonitoring Data
3.2. Reverse Calculation of External Exposure Based on Urinary Mass-Balance Approach and Generic PBPK Model
3.3. Comparison of the Results
4. Discussion
4.1. Uncertainties in the Risk Assessment
4.2. Recommendations for the Regulatory Risk Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Recommendation from the Scientific Committee on Occupational Exposure Limits. o-Toluidine, 2-methylaniline. SCOEL/REC/301. 2017. Available online: https://op.europa.eu/s/v5bh (accessed on 30 March 2022).
- SIDS Initial Assessment Report (SIAR) on O-Toluidine; OECD: Paris, France; UN Environmental Programme Publications: Geneva, Switzerland, 2004.
- A review of human carcinogens: Chemical agents and related occupations. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 93–100.
- ECHA—Candidate List of substances of Very High Concern for Authorisation. Available online: https://echa.europa.eu/candidate-list-table (accessed on 30 March 2022).
- Report on Carcinogens, Monograph on Ortho-Toluidine; National Toxicology Program; U.S. Department of Health and Human Services: Washington, DC, USA, 2014. Available online: https://ntp.niehs.nih.gov/ntp/roc/thirteenth/monographs_final/otoluidine_508.pdf (accessed on 30 March 2022).
- European Commission, Directive (EU) 2019/130 of the European Parliament and of the Council of 16 January 2019 Amending Directive 2004/37/EC on the Protection of Workers from the Risks Related to Exposure to Carcinogens or Mutagens at Work. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.030.01.0112.01.ENG (accessed on 30 March 2022).
- Kütting, B.; Göen, T.; Schwegler, U.; Fromme, H.; Uter, W.; Angerer, J.; Drexler, H. Monoarylamines in the general population—A cross-sectional population-based study including 1004 Bavarian subjects. Int. J. Hyg. Environ. Health 2009, 212, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.; Angerer, J. Belastung der Bevölkerung der Bundesrepublik Deutschland durch nitroaromatischen Verbindungen—Der Einfluss von Ernährung und Bekleidung; Institut für Arbeits-, Sozial- und Umweltmedizin der Friedrich-Alexander-Universität Erlangen-Nürnberg: Erlangen, Germany, 2005. [Google Scholar]
- MAK- und BAT-Werte-Liste. Grenzwerte in Biologischem Material zu o-Toluidin. Addendum zu o-Toluidin; BAT Value Documentation in German language; Deutsche Forschungsgemeinschaft: Bonn, Germany, 2012.
- ECHA—Guidance on Information Requirements and Chemical Safety Assessment Chapter R.8: Characterisation of Dose [Concentration]-Response for Human Health. ECHA-2010-G-19-EN. 2012. Available online: https://echa.europa.eu/documents/10162/13632/information_requirements_r8_en.pdf/e153243a-03f0-44c5-8808-88af66223258 (accessed on 30 March 2022).
- Angerer, J.; Aylward, L.L.; Hays, S.M.; Heinzow, B.; Wilhelm, M. Human biomonitoring assessment values: Approaches and data requirements. Int. J. Hyg. Environ. Health 2011, 214, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Sarigiannis, D.; Karakitsios, S.; Gotti, A.; Loizou, G.; Cherrie, J.; Smolders, R.; De Brouwere, K.; Galea, K.; Jones, K.; Handakas, E.; et al. Integra: From global scale contamination to tissue dose. In Proceedings of the 7th International Congress on Environmental Modelling and Software: Bold Visions for Environmental Modeling, iEMSs, San Diego, CA, USA, 15–19 June 2014; pp. 1001–1008. [Google Scholar]
- Sarigiannis, D.; Karakitsios, S.P.; Handakas, E.; Simou, K.; Solomou, E.; Gotti, A. INTEGRAted exposure and risk characterization of bisphenol-A in Europe. Food Chem. Toxicol. 2016, 98, 134–147. [Google Scholar] [CrossRef]
- Papadaki, K.C.; Karakitsios, S.P.; Sarigiannis, D.A. Modeling of adipose/blood partition coefficient for environmental chemicals. Food Chem. Toxicol. 2017, 110, 274–285. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Papadaki, K.; Kontoroupis, P.; Karakitsios, S.P. Development of QSARs for parameterizing Physiology Based ToxicoKinetic models. Food Chem. Toxicol. 2017, 106, 114–124. [Google Scholar] [CrossRef]
- Sarigiannis, D.A. AD12.3 Exposure Model Testing Results, HBM4EU Project. 2019. Available online: https://www.hbm4eu.eu/work-packages/additional-deliverable-12-3-exposure-model-testing-results/ (accessed on 30 March 2022).
- Gelman, A.; Rubin, D.B. Markov chain Monte Carlo methods in biostatistics. Stat. Methods Med. Res. 1996, 5, 339–355. [Google Scholar] [CrossRef]
- Gilks, W.; Spiegelhalter, D.; Richardson, S. Markov Chain Monte Carlo in Practice; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Chen, C.C.; Shih, M.C.; Wu, K.Y. Exposure estimation using repeated blood concentration measurements. Stoch. Environ. Res. Risk Assess. 2010, 24, 445–454. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Sasso, A.F.; Isukapalli, S.S.; Lioy, P.J.; Vallero, D.A.; Okino, M.; Reiter, L. Reconstructing population exposures to environmental chemicals from biomarkers: Challenges and opportunities. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 149–171. [Google Scholar] [CrossRef] [Green Version]
- Lyons, M.A.; Yang, R.S.; Mayeno, A.N.; Reisfeld, B. Computational toxicology of chloroform: Reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. Environ. Health Perspect. 2008, 116, 1040–1046. [Google Scholar] [CrossRef] [Green Version]
- McNally, K.; Cotton, R.; Cocker, J.; Jones, K.; Bartels, M.; Rick, D.; Price, P.; Loizou, G. Reconstruction of exposure to m-xylene from human biomonitoring data using PBPK modelling, bayesian inference, and Markov chain Monte Carlo simulation. J. Toxicol. 2012, 2012, 760281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clewell, R.; Clewell, H. Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Regul. Toxicol. Pharmacol. 2008, 50, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Bioassay of o-Toluidine Hydrochloride for Possible Carcinogenicity (CAS No. 636-21-5); Carcinogenesis Technical Report Series No. 153; NIH Publication No. 79-1709; US Department of Health, Education and Welfare, Public Health Service, National Institutes of Health, National Cancer Institute: Bethesda, MD, USA, 1979.
- Labat, L.; Thomas, J.; Dehon, B.; Humbert, L.; Leleu, B.; Nisse, C.; Lhermitte, M. Evalution d’une exposition professionnelle à l’ortho-toluidine par chromatographie phase gazeuse couplée à la spectrométrie de masse. Acta Clin. Belg. 2006, 61, 61–65. [Google Scholar] [CrossRef]
- Korinth, G.; Weiss, T.; Penkert, S.; Schaller, K.H.; Angerer, J.; Drexler, H. Percutaneous absorption of aromatic amines in rubber industry workers: Impact of impaired skin and skin barrier creams. Occup. Environ. Med. 2007, 64, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Jönsson, B.A.G.; Lindh, C.H.; Albin, M.; Broberg, K. N-nitrosamines are associated with shorter telomere length. Scand. J. Work Environ. Health 2011, 37, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Eitaki, Y.; Nakano, M.; Kawai, T.; Omae, K.; Takebayashi, T. Biological monitoring of o-toluidine in urine pretreated by an enzymatic deconjugation method. J. Occup. Health 2019, 61, 349–357. [Google Scholar] [CrossRef]
- Seidel, A. Ermittlung von Quellen für das Vorkommen von Nitro-/Aminoaromaten im Urin von Nichtrauchern; Umweltbundesamt: Dessau, Germany, 2005.
- Riedel, K.; Scherer, G.; Engl, J.; Hagedorn, H.W.; Tricker, A.R. Determination of three carcinogenic aromatic amines in urine of smokers and nonsmokers. J. Anal. Toxicol. 2006, 30, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Lindner, D.; Smith, S.; Leroy, C.M.; Tricker, A.R. Comparison of exposure to selected cigarette smoke constituents in adult smokers and nonsmokers in a European, multicenter, observational study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1524–1536. [Google Scholar] [CrossRef] [Green Version]
- Richter, E. Biomonitoring of human exposure to arylamines. Front. Biosci. 2015, 7, 193–207. [Google Scholar] [CrossRef]
- Lüersen, L.; Wellner, T.; Koch, H.M.; Angerer, J.; Drexler, H.; Korinth, G. Penetration of b-naphthylamine and o-toluidine through human skin in vitro. Arch Toxicol. 2006, 80, 644–646. [Google Scholar] [CrossRef]
- Golka, K.; Prior, V.; Blaszkewicz, M.; Bolt, H.M. The enhanced bladder cancer susceptibility of NAT2 slow acetylators towards aromatic amines: A review considering ethnic differences. Toxicol. Lett. 2002, 128, 229–241. [Google Scholar] [CrossRef]
- Hanley, K.W.; Viet, S.M.; Hein, M.J.; Carreón, T.; Ruder, A.M. Exposure to o-toluidine, aniline, and nitrobenzene in a rubber chemical manufacturing plant: A retrospective exposure assessment update. J. Occup. Environ. Hyg. 2012, 9, 478–490. [Google Scholar] [CrossRef] [PubMed]
Ortho-Toluidine | OH-o-Toluidine | |
---|---|---|
Tissue: Blood Partition Coefficients | ||
GI: Blood | 3.8 | 0.7 |
Liver: Blood | 1.9 | 0.65 |
Kidney: Blood | 1.8 | 0.68 |
Fat: Blood | 8.3 | 0.18 |
Bone: Blood | 1.7 | 0.42 |
Brain: Blood | 3.6 | 0.75 |
Gonads: Blood | 0.79 | 0.83 |
Heart: Blood | 1.6 | 0.57 |
Muscle: Blood | 2.2 | 0.74 |
Skin: Blood | 5.7 | 0.69 |
Lung: Blood | 2.4 | 0.58 |
Fractions | ||
Fraction bound to plasma proteins | 0.035 | 0.95 |
Fraction bound to red blood cells | 0.005 | |
Fraction of transformation from o-toluidine to OH-o-toluidine | 1 | |
Kinetic parameters | ||
Km (μmol/L) | 27.2 | |
Vmax (μmol/h) | 2835.3 | |
Clearances | ||
Kidney clearance rate (L/min) | 0 | 0.17 |
Absorption GI tract | ||
Absorption fraction from GI tract | 1 | |
Absorption rate in GI tract | 1 |
Tumour Risk | Ortho-Toluidine Concentration, mg/m3 (ppm) | Occupational Intake (mg/kg bw/d) 1 | Steady-State Urinary Level (mg/L) 2 |
---|---|---|---|
1:10 | 210 (48) | 30 | 1000 |
1:1000 | 2.1 (0.48) | 0.3 | 10 |
1:10,000 | 0.21 (0.048) | 0.03 | 1 |
1:100,000 | 0.021 (0.0048) | 0.003 | 0.1 |
1:1,000,000 | 0.0021 (0.00048) | 0.0003 | 0.01 |
Tumour Risk | Ortho-Toluidine Intake (mg/kg bw/d) | Steady-State Urinary Level (mg/L) 1 |
---|---|---|
1:10 | 10.6 | 371 |
1:1000 | 0.106 | 3.71 |
1:10,000 | 0.0106 | 0.371 |
1:100,000 | 0.00106 | 0.0371 |
1:1,000,000 | 0.000106 | 0.00371 |
Study Origin | Urine Sample Type (n) | Urine Ortho-Toluidine (Range) | Reference |
---|---|---|---|
Workers, Liquid SO2 plant, France | Post-shift (13) | Mean: 523 µg/L, P95: 962 µg/L (<LOD-984.1 µg/L) | [25] |
Workers, Rubber industry, Germany | Post-shift (51) | Mean: 38.6 µg/L, P95: 292.4 µg/L (<LOD-292.4 µg/L) | [26] |
Workers, Rubber industry, Sweden | Post-shift (157) | Median: 0.46 µg/L, (0.03–108 µg/L) | [27] |
Workers, Pigment industry, Japan | Post-shift (36) | Mean: 55.5 µg/L, (<LOD-129.12 µg/L) | [28] |
General population, Germany | 24 h urine (81) | Median: 61.8 ng/24 h, Max: 401 ng/24 h | [29] |
General population, Germany | 24 h urine (20) | Mean (non-smokers): 167 ± 199.4 ng/24 h | [30] |
Mean (smokers): 204.2 ± 59.1 ng/24 h. | |||
General population, Germany, Switzerland, United Kingdom | 24 h urine (1631) | Mean (non-smokers): 64 ± 128 ng/24 h | [31] |
Mean (smokers): 179 ± 497 ng/24 h |
Urinary Ortho-Toluidine (μg/L) | External Ortho-Toluidine Exposure (μg/kg bw/d) | Estimated Cancer Risk | |
---|---|---|---|
Urinary mass-balance | |||
Labat et al. [25] | Mean: 523, P95: 962 | Mean: 14.94, P95: 27.49 | 50–92:106 |
Korinth et al. [26] | Mean: 38.6, P95: 292.4 | Mean: 1.10, P95: 8.35 | 4–28:106 |
Li et al. [27] | Median: 0.46, Max: 108 | Median: 0.013, Max: 3.09 | 0.04–10:106 |
Eitaki et al. [28] | Mean: 55.5, Max: 129.1 | Mean: 1.6, Max: 3.69 | 5–12:106 |
PBPK model | |||
Labat et al. [25] | Mean: 523, P95: 962 | Mean: 9.96, P95: 18.74 | 33–62:106 |
Korinth et al. [26] | Mean: 38.6, P95: 292.4 | Mean: 0.70, P95: 5.57 | 2–19:106 |
Li et al. [27] | Median: 0.46, Max: 108 | Median: 0.012, Max: 2.06 | 0.04–7:106 |
Eitaki et al. [28] | Mean: 55.5, Max: 129.1 | Mean: 1.1, Max: 2.5 | 4–8:106 |
Urinary Ortho-Toluidine (ng/24 h) | External Ortho-Toluidine Exposure (μg/kg bw/d) | Estimated Cancer Risk | |
---|---|---|---|
Urinary mass-balance | |||
Seidel [29] | non-smokers: Mean: 61.8, Max: 401 | non-smokers: Mean: 0.0012, Max: 0.008 | 0.0011–0.0072:106 |
Riedel et al. [30] | non-smokers: 167 ± 199.4 | non-smokers: 0.0032 ± 0.004 | 0.001–0.01:106 |
smokers: 204.2 ± 59.1 | smokers: 0.0039 ± 0.001 | 0.004–0.007:106 | |
Lindner et al. [31] | non-smokers: 64 ± 128 | non-smokers: 0.0012 ± 0.0024 | 0.002–0.005:106 |
smokers: 179 ± 497 | smokers: 0.0034 ± 0.0095 | 0.009–0.018:106 | |
PBPK model | |||
Seidel [29] | non-smokers: Mean: 61.8, Max: 401 | non-smokers: Mean: 0.00078, range 0.00012–0.00514 | 0.0001–0.005:106 |
Riedel et al. [30] | non-smokers: 167 ± 199.4 | non-smokers: Mean 0.00133, range 0.0001–0.0031 | 0.0001–0.003:106 |
Lindner et al. [31] | non-smokers: 64 ± 128 | non-smokers: Mean 0.0008, range 0.00006–0.0019 | 0.0001–0.0018:106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huuskonen, P.; Karakitsios, S.; Scholten, B.; Westerhout, J.; Sarigiannis, D.A.; Santonen, T. Health Risk Assessment of Ortho-Toluidine Utilising Human Biomonitoring Data of Workers and the General Population. Toxics 2022, 10, 217. https://doi.org/10.3390/toxics10050217
Huuskonen P, Karakitsios S, Scholten B, Westerhout J, Sarigiannis DA, Santonen T. Health Risk Assessment of Ortho-Toluidine Utilising Human Biomonitoring Data of Workers and the General Population. Toxics. 2022; 10(5):217. https://doi.org/10.3390/toxics10050217
Chicago/Turabian StyleHuuskonen, Pasi, Spyros Karakitsios, Bernice Scholten, Joost Westerhout, Dimosthenis A. Sarigiannis, and Tiina Santonen. 2022. "Health Risk Assessment of Ortho-Toluidine Utilising Human Biomonitoring Data of Workers and the General Population" Toxics 10, no. 5: 217. https://doi.org/10.3390/toxics10050217
APA StyleHuuskonen, P., Karakitsios, S., Scholten, B., Westerhout, J., Sarigiannis, D. A., & Santonen, T. (2022). Health Risk Assessment of Ortho-Toluidine Utilising Human Biomonitoring Data of Workers and the General Population. Toxics, 10(5), 217. https://doi.org/10.3390/toxics10050217