Sequential Application of Column Leaching and Plant Uptake Tests to Assess the Effect of Various Commercial Amendments on Cu Immobilization in Ultra-High Cu-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Soil and Amendments
2.2. Sequential Application of Column Leaching and Plant Uptake Tests
2.3. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soil and Amendments
3.2. Effects of Amendments on Cu Removal Rate in the First Stage: Column Leaching Test
3.3. Effects of Amendments on Cu Removal Rate in the Second Stage: Plant Uptake Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fajardo, C.; Ortiz, L.T.; Rodriguez-Membibre, M.L.; Nande, M.; Lobo, M.C.; Martin, M. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere 2012, 86, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, Q.; Yang, J.; Zhou, S.; Wang, L.; Bolan, N. Evaluation of hydroxyapatite derived from flue gas desulphurization gypsum on simultaneous immobilization of lead and cadmium in contaminated soil. J. Hazard. Mater. 2020, 400, 123038. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.-J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Boudebbouz, A.; Boudalia, S.; Bousbia, A.; Habila, S.; Boussadia, M.I.; Gueroui, Y. Heavy metals levels in raw cow milk and health risk assessment across the globe: A systematic review. Sci. Total Environ. 2021, 751, 141830. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Bao, B.; Cao, Y.; Zhang, S.; Shi, J.; Zhou, J.; Zhou, J. Combined application of ferrihydrite and hydroxyapatite to immobilize soil copper, cadmium, and phosphate under flooding-drainage alternations. Environ. Pollut. 2022, 292, 118323. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.S.; Imtiaz, M.; Zhu, J.; Yousaf, B.; Hussain, M.; Ali, L.; Ditta, A.; Zahid Ihsan, M.; Huang, G.; Ashraf, M.; et al. Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma 2021, 385, 114803. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Xie, H.; Yu, C. Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environ. Sci. 2012, 16, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Mahar, A.; Wang, P.; Li, R.; Zhang, Z. Immobilization of Lead and Cadmium in Contaminated Soil Using Amendments: A Review. Pedosphere 2015, 25, 555–568. [Google Scholar] [CrossRef]
- Nguyen Quoc, T.; Kim, J.W.; Nejad, Z.D.; Le Thanh, T.; Jung, M.C. Influence of commercial amendments on Cu and Zn mobility, phytoavailability, and microbial activities on two contaminated soils. J. Environ. Chem. Eng. 2022, 10, 107098. [Google Scholar] [CrossRef]
- Zaitan, H.; Bianchi, D.; Achak, O.; Chafik, T. A comparative study of the adsorption and desorption of o-xylene onto bentonite clay and alumina. J. Hazard. Mater. 2008, 153, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, C.C.; Riedel, G.S.; Riedel, G.; Kwon, S.; Landis, R.; Brown, S.S.; Menzie, C.A.; Ghosh, U. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments. Environ. Sci. Technol. 2013, 47, 13001–13010. [Google Scholar] [CrossRef] [PubMed]
- Meynet, P.; Hale, S.E.; Davenport, R.J.; Cornelissen, G.; Breedveld, G.D.; Werner, D. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ. Sci. Technol. 2012, 46, 5057–5066. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xiao, K.; Sun, Y.; Gao, Y.; Yang, H.; Xu, H. Effects of amendments on heavy metal immobilization and uptake by Rhizoma chuanxiong on copper and cadmium contaminated soil. R. Soc. Open Sci. 2018, 5, 181138. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Eyles, J.L.; Yupanqui, C.; Beckingham, B.; Riedel, G.; Gilmour, C.; Ghosh, U. Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Environ. Sci. Technol. 2013, 47, 13721–13729. [Google Scholar] [CrossRef]
- Wu, B.; Cheng, G.; Jiao, K.; Shi, W.; Wang, C.; Xu, H. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil. Sci. Total Environ. 2016, 562, 732–739. [Google Scholar] [CrossRef]
- León, O.; Soto, D.; González, J.; Piña, C.; Muñoz-Bonilla, A.; Fernandez-García, M. Environmentally Friendly Fertilizers Based on Starch Superabsorbents. Materials 2019, 12, 3493. [Google Scholar] [CrossRef] [Green Version]
- Baragaño, D.; Alonso, J.; Gallego, J.R.; Lobo, M.C.; Gil-Díaz, M. Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs. Chem. Eng. J. 2020, 399, 125809. [Google Scholar] [CrossRef]
- Huang, R.; Li, Y.; Li, F.; Yin, X.; Li, R.; Wu, Z.; Liang, X.; Li, Z. Phosphate fertilizers facilitated the Cd contaminated soil remediation by sepiolite: Cd mobilization, plant toxicity, and soil microbial community. Ecotoxicol. Environ. Saf. 2022, 234, 113388. [Google Scholar] [CrossRef]
- Sabir, M.; Hanafi, M.M.; Aziz, T.; Ahmad, H.R.; Zia-Ur-Rehman, M.; Saifullah, U.; Murtaza, G.; Hakeem, K.R. Comparative effect of activated carbon, pressmud and poultry manure on immobilization and concentration of metals in maize (Zea mays) grown on contaminated soil. Int. J. Agric. Biol. 2013, 15, 559–564. [Google Scholar]
- Zhang, W.-H.; Sun, R.-B.; Xu, L.; Liang, J.-N.; Zhou, J. Assessment of bacterial communities in Cu-contaminated soil immobilized by a one-time application of micro-/nano-hydroxyapatite and phytoremediation for 3 years. Chemosphere 2019, 223, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Quoc, T.; Nejad, Z.D.; Jung, M.C. Effect of Commercial Amendments on Immobilization of Arsenic, Copper, and Zinc in Contaminated Soil: Comprehensive Assessing to Plant Uptake Combined with a Microbial Community Approach. Minerals 2021, 11, 1143. [Google Scholar] [CrossRef]
- Bakircioglu, D.; Kurtulus, Y.B.; İbar, H. Comparison of extraction procedures for assessing soil metal bioavailability of to wheat grains. Clean–Soil Air Water 2011, 39, 728–734. [Google Scholar] [CrossRef]
- Sims, J.; Johnson, G. Micronutrient soil tests. Micronutr. Agric. 1991, 4, 427–476. [Google Scholar]
- Gee, G.; Bauder, J. Particle-Size Analysis 1. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Agron. Monogr. 1986, 9. [Google Scholar]
- Chen, G.-C.; Liu, Z.; Zhang, J.; Owens, G. Phytoaccumulation of copper in willow seedlings under different hydrological regimes. Ecol. Eng. 2012, 44, 285–289. [Google Scholar] [CrossRef]
- Derakhshan Nejad, Z.; Rezania, S.; Jung, M.C.; Al-Ghamdi, A.A.; Mustafa, A.E.-Z.M.A.; Elshikh, M.S. Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area. Chemosphere 2021, 271, 129538. [Google Scholar] [CrossRef]
- KMOE. Detailed Survey for Soil and Water Contamination in Abandoned Metal Mines in Korea; Korea Ministry of Environment: Sejong City, Korea, 2013. [Google Scholar]
- del Campo, A.; Sen, T.; Lellouche, J.-P.; Bruce, I.J. Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis, surface activation and applications in life sciences. J. Magn. Magn. Mater. 2005, 293, 33–40. [Google Scholar] [CrossRef]
- Benedetti, V.; Patuzzi, F.; Baratieri, M. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energy 2018, 227, 92–99. [Google Scholar] [CrossRef]
- Ciesielskia, W.; Lii, C.-y.; Yen, M.-T.; Tomasik, P. Interactions of starch with salts of metals from the transition groups. Carbohydr. Polym. 2003, 51, 47–56. [Google Scholar] [CrossRef]
- Xie, Z.; Guan, W.; Ji, F.; Song, Z.; Zhao, Y. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology. J. Chem. 2014, 2014, 491912. [Google Scholar] [CrossRef]
- Arık Kibar, A.; Gönenç, İ.; Us, F. Gelatinization of waxy, normal and high amylose corn starches. GIDA 2010, 35, 237–244. [Google Scholar]
- Bolan, N.S.; Duraisamy, V. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Soil Res. 2003, 41, 533–555. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Zhong, Q.; Xu, X.; Li, T.; Jia, Y.; Zhang, Y.; Peijnenburg, W.J.; Vijver, M.G. Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci. Total Environ. 2018, 625, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Warton, B.; Matthiessen, J.N. The crucial role of calcium interacting with soil pH in enhanced biodegradation of metam-sodium. Pest Manag. Sci. 2005, 61, 856–862. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, W.; Ge, L.; Zhao, W.; Zhang, G.; Niu, Y. Immobilization properties and adsorption mechanism of nickel(II) in soil by biochar combined with humic acid-wood vinegar. Ecotoxicol. Environ. Saf. 2021, 215, 112159. [Google Scholar] [CrossRef]
- Danila, V.; Kumpiene, J.; Kasiuliene, A.; Vasarevičius, S. Immobilisation of metal(loid)s in two contaminated soils using micro and nano zerovalent iron particles: Evaluating the long-term stability. Chemosphere 2020, 248, 126054. [Google Scholar] [CrossRef]
- Fajardo, C.; Costa, G.; Nande, M.; Martín, C.; Martín, M.; Sánchez-Fortún, S. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact. Sci. Total Environ. 2019, 656, 421–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Wang, M.; Zhang, Z.; Marhaba, T.; Sun, C.; Zhang, W. In situ immobilization of heavy metals in contaminated sediments by composite additives of hydroxyapatite and oxides. Environ. Earth Sci. 2019, 78, 94. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Suchismita, D.; Gress, J.; Rathinasabapathi, B.; Chen, Y.; Ma, L.Q. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment. Chemosphere 2017, 176, 249–254. [Google Scholar] [CrossRef]
- Que, W.; Zhou, Y.-h.; Liu, Y.-g.; Wen, J.; Tan, X.-f.; Liu, S.-j.; Jiang, L.-h. Appraising the effect of in-situ remediation of heavy metal contaminated sediment by biochar and activated carbon on Cu immobilization and microbial community. Ecol. Eng. 2019, 127, 519–526. [Google Scholar] [CrossRef]
- Brendova, K.; Zemanova, V.; Pavlikova, D.; Tlustos, P. Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants. J. Environ. Manag. 2016, 181, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Pourbeyram, S. Effective Removal of Heavy Metals from Aqueous Solutions by Graphene Oxide-Zirconium Phosphate (GO-Zr-P) Nanocomposite. Ind. Eng. Chem. Res. 2016, 55, 5608–5617. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, Y.; Yu, H.; Yan, L.; Zhang, J.; Wang, B.; Du, B.; Xing, L. Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: One-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+. Chem. Eng. J. 2018, 341, 1–9. [Google Scholar] [CrossRef]
Properties | Soil | Amendments | |||
---|---|---|---|---|---|
M | T | AC | CS | ||
pH | 2.8 ± 0.05 | 8.4 ± 0.04 | 8.8 ± 0.02 | 7.2 ± 0.04 | 8.2 ± 0.01 |
SSA (m2/g) | - | 27.37 | 1.80 | 1082 | 0.15 |
Texture | Loamy sand | - | - | - | - |
Cu | 9546 ± 5 | 45.2 ± 0.05 | 1.4 ± 0.01 | 4.6 ± 0.03 | 0.01 ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quoc, T.-N.; Jung, M.-C. Sequential Application of Column Leaching and Plant Uptake Tests to Assess the Effect of Various Commercial Amendments on Cu Immobilization in Ultra-High Cu-Contaminated Soil. Toxics 2022, 10, 185. https://doi.org/10.3390/toxics10040185
Quoc T-N, Jung M-C. Sequential Application of Column Leaching and Plant Uptake Tests to Assess the Effect of Various Commercial Amendments on Cu Immobilization in Ultra-High Cu-Contaminated Soil. Toxics. 2022; 10(4):185. https://doi.org/10.3390/toxics10040185
Chicago/Turabian StyleQuoc, Tuan-Nguyen, and Myung-Chae Jung. 2022. "Sequential Application of Column Leaching and Plant Uptake Tests to Assess the Effect of Various Commercial Amendments on Cu Immobilization in Ultra-High Cu-Contaminated Soil" Toxics 10, no. 4: 185. https://doi.org/10.3390/toxics10040185
APA StyleQuoc, T. -N., & Jung, M. -C. (2022). Sequential Application of Column Leaching and Plant Uptake Tests to Assess the Effect of Various Commercial Amendments on Cu Immobilization in Ultra-High Cu-Contaminated Soil. Toxics, 10(4), 185. https://doi.org/10.3390/toxics10040185