Quantitative Estimation of Synergistic Toxicity of Cu and Zn on Growth of Arabidopsis thaliana by Isobolographic Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Measurement and Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effects of Heavy Metals on Seedling Growth
3.2. Variations in Pigment Concentration and TRL
3.3. Estimation of EC 50 and Combination Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, F.U.R.; Ahmad, N.; Masood, K.R.; Peralta-Videa, J.R.; Ahmad, F.D. Heavy metal toxicity in plants. In Plant Adaptation and Phytoremediation; Ashraf, M., Ozturk, M., Ahmad, M.S.A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 71–97. [Google Scholar]
- Angulo-Bejarano, P.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and metalloid toxicity in plant: An overview on molecular aspects. Plant 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramteke, P.W.; Gupta, R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 2022, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.B.; Elmegaard, K. Toxicity and bioaccumulation of copper and black bindweed (Fallopia convolvulus) in relation to bioavailability and the age of soil contamination. Arch. Environ. Contam. Toxicol. 2000, 39, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phyochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Khan, M.A.; Yamaguchi, S.; Kamiya, Y. Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul. 2005, 45, 45–50. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhang, J.; Jia, L.; Li, Q.; Zhang, T.; Qiao, K.; Ma, S. Zinc induced phytotoxicity mechanism in root growth of Triticum aestivum L. Ecotoxicol. Environ. Saf. 2012, 86, 198–203. [Google Scholar] [CrossRef]
- Hong, Y.-K.; Kim, J.-W.; Lee, S.-P.; Yang, J.-E.; Kim, S.-C. Effect of combined soil amendment on immobilization of bioavailable As and Pb in paddy soil. Toxics 2020, 10, 90. [Google Scholar] [CrossRef]
- Wong, H.K.T.; Gauthier, A.; Nriagu, J.O. Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Sci. Total Environ. 1999, 228, 35–47. [Google Scholar] [CrossRef]
- Jacob, D.L.; Otte, M.L. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types. Sci. Total Environ. 2004, 333, 9–24. [Google Scholar] [CrossRef]
- Madejón, P.; Murillo, J.M.; Marañón, T.; Cabrera, F.; Soriano, M.A. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. Sci. Total Environ. 2003, 307, 239–257. [Google Scholar] [CrossRef]
- Verner, J.F.; Ramsey, M.H. Heavy metal contamination of soils around a Pb-Zn smelter in Bukowno, Poland. Appl. Geochem. 1996, 11, 11–16. [Google Scholar] [CrossRef]
- Mazur, Z.; Radziemska, M.; Maczuga, O.; Makuch, A. Heavy metal concentrations in soil and moss (Pleurozium schreberi) near railroad lines in Olsztyn (Poland). Fresenius Environ. Bull. 2013, 22, 955–961. [Google Scholar]
- Singh, N.; Gupta, V.K.; Kumar, A.; Sharma, B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 2017, 5, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Mera, R.; Torres, E.; Abalde, J. Isobolographic analysis of the interaction between cadmium (II) and sodium sulphate: Toxicological consequences. Environ. Sci. Pollut. Res. 2016, 23, 2264–2278. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.-A.; Han, T.; Ahn, S.-K.; Kang, H.; Cho, M.R.; Lee, S.-K.; Im, K.-H. Effects of heavy metals on plant growths and pigment contents in Arabidopsis thaliana. Plant Pathol. J. 2012, 28, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Mwamba, T.M.; Ali, S.; Ali, B.; Lwalaba, J.L.; Liu, H.; Farooq, M.A.; Shou, J.; Zhou, W. Interactive effects of cadmium and copper on metal accumulation, oxidative stress, and mineral composition in Brassica nupus. Int. J. Environ. Sci. Technol. 2016, 13, 2163–2174. [Google Scholar] [CrossRef]
- Chou, T.-C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
- Chou, T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Chou, T.-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.-Y.; Pei, L.; Liu, Q.J.; Chen, S.; Dou, H.; Shu, G.; Yuna, Z.-X.; Lin, J.; Peng, G.; Zhang, W.; et al. Isobologram analysis: A comprehensive review of methodology and current review. Front. Pharmacol. 2019, 10, 1222–1233. [Google Scholar] [CrossRef]
- Remy, E.; Duque, P. Assessing tolerance to heavy-metal stress in Arabidopsis thaliana seedlings. Methods Mol. Biol. 2016, 1398, 197–208. [Google Scholar] [PubMed] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Lobet, G.; Pages, L.; Draye, X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 2011, 157, 29–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graphpad Software. Available online: https://www.graphpad.com/quickcalc/Grubbs1.cfm (accessed on 21 February 2022).
- AAT Bioquest, Inc. Quest Graph™ IC50 Calculator. Available online: https://www.aatbio.com/tools/ic50-calculator (accessed on 21 February 2022).
- Dhar, S.K. Studies on streptomycin effects in Arabidopsis thaliana (L.) Heynh. JIAS 1967, 74, 26–31. [Google Scholar]
- Fukao, Y.; Ferjani, A.; Fujiwara, M.; Nishimori, Y.; Ohtsu, I. Identificationof zinc-responsive proteins in the roots of Arabidopsis thaliana using a highly improved method of two-dimensional electrophoresis. Plant Cell Physiol. 2009, 50, 2234–2239. [Google Scholar] [CrossRef]
- Fukao, Y.; Ferjani, A.; Tomioka, R.; Nagasaki, N.; Kurata, R.; Nishimori, Y.; Fujiwara, M.; Maeshima, M. iTRAQ Analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol. 2011, 155, 1893–1907. [Google Scholar] [CrossRef] [Green Version]
- Lequeux, H.; Hermans, C.; Lutts, S.; Verbruggen, N. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem. 2010, 48, 673–682. [Google Scholar] [CrossRef]
- Chandrasekhar, C.; Ray, J.G. Plant response to excess of copper in soil: A review. In Metal Toxicity in Higher Plants; Landi, M., Shemet, S.A., Fedenko, V.S., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2020; pp. 137–156. [Google Scholar]
- Marques, D.M.; Júnior, V.V.; da Silva, A.B.; Mantovani, J.R.; Magalhães, P.C.; de Souza, T.C. Copper toxicity of photosynthetic responses and root morphology of Hymenaea courbaril L.(Caesalpinioideae). Water Air Soil Pollut. 2018, 229, 138–153. [Google Scholar] [CrossRef] [Green Version]
- Sofo, A.; Khan, N.A.; D’Ippolito, I.; Reyes, F. Subtoxic levels of some heavy metals cause differential root-shoot structure, morphology and auxins levels in Arabidopsis thaliana. Plant Physiol. Biochem. 2022, 173, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Tukiendorf, A. Response of wild type of Arabidopsis thaliana to copper stress. Biol. Plant. 2003, 46, 79–84. [Google Scholar] [CrossRef]
- Sheldon, A.R.; Menzies, N.W. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 2005, 278, 341–349. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129–157. [Google Scholar] [CrossRef]
- Rout, G.R.; Das, P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 2003, 23, 3–11. [Google Scholar] [CrossRef]
- Wang, J.; Moeen-ud-din, M.; Yang, S. Dose-dependent response of Arabidopsis thaliana to zinc are mediated by auxin homeostasis and transport. Environ. Exp. Bot. 2021, 189, 104554. [Google Scholar] [CrossRef]
- Van Dijk, J.R.; Kranchev, M.; Blust, R.; Cuypers, A.; Vissenberg, K. Arabidopsis root growth and development under metal exposure presented in an adverse outcome pathway framework. Plant Cell Environ. 2021, 45, 737–750. [Google Scholar] [CrossRef]
- Machado, S.; Robinson, G. A direct, general approach based on isobolograms for assessing the joint action of drugs in pre-clinical experiments. Stat. Med. 1994, 13, 2289–2309. [Google Scholar] [CrossRef]
- Fivelman, Q.L.; Adagu, I.S.; Warhurst, D.C. Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrob. Agents Chemother. 2004, 48, 4097–4102. [Google Scholar] [CrossRef] [Green Version]
- Ebbs, S.D.; Kochian, L.V. Toxicity of zinc and copper to Brassica species: Implication for phytoremediation. J. Environ. Qual. 1997, 26, 776–781. [Google Scholar] [CrossRef]
- Tiecher, T.L.; Ceretta, C.A.; Tiecheer, T.; Ferreira, P.A.A.; Nicoloso, F.T.; Soriani, H.H.; Rossato, L.V.; Mimmo, T.; Cesco, S.; Lourenzi, C.R.; et al. Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicol. Environ. Saf. 2016, 129, 109–119. [Google Scholar] [CrossRef] [PubMed]
Cu (μM) | Zn (μM) | N † | Chl-a (μg/g-F.W.) | Chl-b (μg/g-F.W.) | Carotenoid (μg/g-F.W.) | Total Root Length (cm) |
---|---|---|---|---|---|---|
0 | 0 | 19 | 795.0 ± 411.2 | 263.4 ± 111.3 | 269.7 ± 127.5 | 30.1 ± 11.8 |
5 | 0 | 19 | 727.0 ± 393.2 | 232.0 ± 111.4 | 248.1 ± 124.1 | 25.3 ± 10.3 |
10 | 0 | 30 | 398.1 ± 364.9 | 122.7 ± 110.8 | 146.1 ± 115.6 | 23.9 ± 8.1 |
25 | 0 | 23 | 361.0 ± 379.4 | 115.1 ± 112.5 | 129.1 ± 120.9 | 20.4 ± 6.6 |
50 | 0 | 21 | 248.1 ± 191.4 | 85.2 ± 51.8 | 101.8 ± 70.7 | 11.5 ± 5.0 |
75 | 0 | 20 | 235.7 ± 173.1 | 118.0 ± 118.9 | 94.5 ± 73.0 | 6.2 ± 2.2 |
100 | 0 | 19 | 174.8 ± 106.6 | 75.4 ± 63.1 | 66.0 ± 38.0 | 3.1 ± 1.2 |
200 | 0 | 21 | 98.3 ± 43.5 | 117.5 ± 98.3 | 22.6 ± 13.4 | 1.5 ± 0.5 |
0 | 10 | 20 | 360.5 ± 299.9 | 118.0 ± 72.0 | 134.6 ± 102.3 | 19.9 ± 7.6 |
0 | 20 | 19 | 489.7 ± 316.5 | 150.9 ± 75.3 | 176.5 ± 109.7 | 16.3 ± 5.2 |
0 | 50 | 19 | 481.7 ± 423.6 | 167.4 ± 120.9 | 169.2 ± 146.7 | 14.0 ± 5.0 |
0 | 100 | 20 | 321.5 ± 298.8 | 131.8 ± 63.4 | 113.3 ± 102.7 | 14.4 ± 3.4 |
0 | 150 | 22 | 419.0 ±304.7 | 130.4 ± 66.9 | 154.1 ± 103.6 | 16.1 ± 3.2 |
0 | 200 | 20 | 364.4 ± 286.3 | 115.9 ± 67.6 | 132.5 ± 96.5 | 14.3 ± 2.2 |
0 | 400 | 20 | 316.7 ± 200.4 | 92.5 ± 52.5 | 128.2 ± 66.2 | 10.3 ± 3.7 |
25 | 20 | 22 | 460.5 ± 377.3 | 146.0 ± 103.0 | 160.4 ± 119.5 | 13.2 ± 5.8 |
25 | 50 | 30 | 334.5 ± 352.7 | 109.2 ± 89.5 | 126.0 ± 125.3 | 15.1 ± 6.5 |
25 | 100 | 26 | 427.7 ± 367.9 | 134.2 ± 95.9 | 152.1 ± 116.1 | 14.4 ± 6.2 |
50 | 20 | 27 | 237.7 ± 209.4 | 77.9 ± 57.6 | 98.7 ± 76.2 | 11.5 ± 5.6 |
50 | 50 | 22 | 301.6 ± 290.3 | 100.9 ± 80.3 | 119.4 ± 103.6 | 11.8 ± 4.9 |
50 | 100 | 20 | 254.7 ± 238.4 | 86.4 ± 63.3 | 102.8 ± 86.4 | 8.6 ± 3.2 |
75 | 20 | 21 | 99.8 ± 73.7 | 34.6 ± 22.7 | 45.5 ± 21.5 | 9.0 ± 6.8 |
75 | 50 | 21 | 117.5 ± 63.2 | 48.9 ± 26.6 | 50.8 ± 23.4 | 7.7 ± 6.3 |
75 | 100 | 24 | 140.0 ±128.3 | 66.1 ± 52.9 | 58.4 ± 52.0 | 7.0 ± 5.3 |
CV ‡ | - | - | 78.0 | 69.0 | 71.7 | 41.2 |
EC50Cu | EC50Zn | 1 EC50Cm1 | 2 EC50Cm2 |
---|---|---|---|
40.0 μM | 76.4 μM | 33.5 μM | 25.4 μM |
1 CICm1 | 2 CICm2 |
---|---|
0.60 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, B.; Park, H.; Kang, S. Quantitative Estimation of Synergistic Toxicity of Cu and Zn on Growth of Arabidopsis thaliana by Isobolographic Method. Toxics 2022, 10, 195. https://doi.org/10.3390/toxics10040195
Bae B, Park H, Kang S. Quantitative Estimation of Synergistic Toxicity of Cu and Zn on Growth of Arabidopsis thaliana by Isobolographic Method. Toxics. 2022; 10(4):195. https://doi.org/10.3390/toxics10040195
Chicago/Turabian StyleBae, Bumhan, Hyesun Park, and Sua Kang. 2022. "Quantitative Estimation of Synergistic Toxicity of Cu and Zn on Growth of Arabidopsis thaliana by Isobolographic Method" Toxics 10, no. 4: 195. https://doi.org/10.3390/toxics10040195
APA StyleBae, B., Park, H., & Kang, S. (2022). Quantitative Estimation of Synergistic Toxicity of Cu and Zn on Growth of Arabidopsis thaliana by Isobolographic Method. Toxics, 10(4), 195. https://doi.org/10.3390/toxics10040195