Photocatalytic Degradation of Dielectric Mineral Oil with PCBs Content Coupled with Algae Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bodin, N.; Tapie, N.; Le Ménach, K.; Chassot, E.; Elie, P.; Rochard, E.; Budzinski, H. PCB contamination in fish community from the Gironde Estuary (France): Blast from the past. Chemosphere 2014, 98, 66–72. [Google Scholar] [CrossRef]
- Mikolajczyk, S.; Warenik-Bany, M.; Maszewski, S.; Pajurek, M. Dioxins and PCBs—Environment impact on freshwater fish contamination and risk to consumers. Environ. Pollut. 2020, 263, 114611. [Google Scholar] [CrossRef]
- Provencher, J.F.; Avery-Gomm, S.; Liboiron, M.; Braune, B.M.; Macaulay, J.B.; Mallory, M.L.; Letcher, R.J. Are ingested plastics a vector of PCB contamination in northern fulmars from coastal Newfoundland and Labrador? Environ. Res. 2018, 167, 184–190. [Google Scholar] [CrossRef]
- Audy, O.; Melymuk, L.; Venier, M.; Vojta, S.; Becanova, J.; Romanak, K.; Vykoukalova, M.; Prokes, R.; Kukucka, P.; Diamond, M.L.; et al. PCBs and organochlorine pesticides in indoor environments—A comparison of indoor contamination in Canada and Czech Republic. Chemosphere 2018, 206, 622–631. [Google Scholar] [CrossRef]
- Šrédlová, K.; Cajthaml, T. Recent advances in PCB removal from historically contaminated environmental matrices. Chemosphere 2022, 287, 132096. [Google Scholar] [CrossRef]
- Hombrecher, K.; Quass, U.; Leisner, J.; Wichert, M. Significant release of unintentionally produced non-Aroclor polychlorinated biphenyl (PCB) congeners PCB 47, PCB 51 and PCB 68 from a silicone rubber production site in North Rhine-Westphalia, Germany. Chemosphere 2021, 285, 131449. [Google Scholar] [CrossRef]
- Fromme, H.; Fuchs, V.; Albrecht, M.; Aschenbrenner, B.; Röhl, C.; Janitzki, N.; Herber-Jonat, S.; Wöckner, M.; Völkel, W.; Flemmer, A.W.; et al. Polychlorinated dioxins and dibenzofurans (PCDD/F), polybrominated dioxins and dibenzofurans (PBDD/F), polychlorinated biphenyls (PCB), polybrominated diphenyl ethers (PBDE), and per- and polyfluoroalkyl substances (PFAS) in German breast milk samples (LUPE 8). Sci. Total Environ. 2022, 825, 154066. [Google Scholar]
- Xu, C.; Niu, L.; Zou, D.; Zhu, S.; Liu, W. Congener-specific composition of polychlorinated biphenyls (PCBs) in soil-air partitioning and the associated health risks. Sci. Total Environ. 2019, 684, 486–495. [Google Scholar] [CrossRef]
- Valizadeh, S.; Lee, S.S.; Baek, K.; Choi, Y.J.; Jeon, B.-H.; Rhee, G.H.; Lin, K.-Y.A.; Park, Y.-K. Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review. Environ. Res. 2021, 200, 111757. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Wang, J.; Lu, Y.; Xu, Z. Emission of PAHs, PCBs, PBDEs and heavy metals in air, water and soil around a waste plastic recycling factory in an industrial park, Eastern China. Chemosphere 2022, 294, 133734. [Google Scholar] [CrossRef]
- Yeo, B.G.; Takada, H.; Yamashita, R.; Okazaki, Y.; Uchida, K.; Tokai, T.; Tanaka, K.; Trenholm, N. PCBs and PBDEs in microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan. Mar. Pollut. Bull. 2020, 151, 110806. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Tsai, C.L.; Hsu, Y.C.; Chen, Y.W.; Weng, Y.M.; Chang, M.B. PCDD/Fs and dl-PCBs concentrations in water samples of Taiwan. Chemosphere 2017, 173, 603–611. [Google Scholar] [CrossRef]
- Mazet, A.; Keck, G.; Berny, P. Concentrations of PCBs, organochlorine pesticides and heavy metals (lead, cadmium, and copper) in fish from the Drôme river: Potential effects on otters (Lutra lutra). Chemosphere 2005, 61, 810–816. [Google Scholar] [CrossRef]
- Dierking, J.; Wafo, E.; Schembri, T.; Lagadec, V.; Nicolas, C.; Letourneur, Y.; Harmelin-Vivien, M. Spatial patterns in PCBs, pesticides, mercury and cadmium in the common sole in the NW Mediterranean Sea, and a novel use of contaminants as biomarkers. Mar. Pollut. Bull. 2009, 58, 1605–1614. [Google Scholar] [CrossRef]
- Pirard, C.; Compere, S.; Firquet, K.; Charlier, C. The current environmental levels of endocrine disruptors (mercury, cadmium, organochlorine pesticides and PCBs) in a Belgian adult population and their predictors of exposure. Int. J. Hyg. Environ. Health 2018, 221, 211–222. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, C.; Wang, X.; Ma, J.; Tang, J.; Chen, Y.; Li, J.; Zhang, G. An improved inventory of polychlorinated biphenyls in China: A case study on PCB-153. Atmos. Environ. 2018, 183, 40–48. [Google Scholar] [CrossRef]
- Vaccher, V.; Marchand, P.; Picherot, M.; Dervilly-Pinel, G.; Lesquin, E.; Brosseaud, A.; Venisseau, A.; Le Bizec, B. Field investigation to determine the environmental source of PCBs in a pig farm. Food Chem. 2018, 245, 394–401. [Google Scholar] [CrossRef]
- González, C.; Bolaños-Guerrón, D. Economic feasibility proposal for treatment and/or disposal technologies of dielectric oils contaminated with PCB. Heliyon 2021, 7, e05838. [Google Scholar] [CrossRef]
- Rusin, M.; Dziubanek, G.; Marchwińska-Wyrwał, E.; Ćwieląg-Drabek, M.; Razzaghi, M.; Piekut, A. PCDDs, PCDFs and PCBs in locally produced foods as health risk factors in Silesia Province, Poland. Ecotoxicol. Environ. Saf. 2019, 172, 128–135. [Google Scholar] [CrossRef]
- An, H.S.; Park, S.S.; Kim, K.H.; Park, S.U.; Ohm, T.I. Treatment of PCB-contaminated pole transformers by vacuum thermal recycling with voltage adjuster. Process Saf. Environ. Prot. 2011, 89, 268–274. [Google Scholar] [CrossRef]
- Sowers, K.R.; May, H.D. In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: Are we there yet? Curr. Opin. Biotechnol. 2013, 24, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, A.; Watanabe, S.; Iwakiri, R.; Honda, K. Removal of dioxins and dioxin-like PCBs from fish oil by countercurrent supercritical CO2 extraction and activated carbon treatment. Chemosphere 2009, 75, 788–794. [Google Scholar] [CrossRef]
- Wu, T.; Liao, X.; Zou, Y.; Liu, Y.; Yang, K.; White, J.C.; Lin, D. Fe-based nanomaterial transformation to amorphous Fe: Enhanced alfalfa rhizoremediation of PCBs-contaminated soil. J. Hazard. Mat. 2022, 425, 127973. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Zhang, X.; Wang, S.; Xia, Z.; Zeng, G.; Ding, J.; Ren, N. Construction of Fe3O4@β-CD/g-C3N4 nanocomposite catalyst for degradation of PCBs in wastewater through photodegradation and heterogeneous Fenton oxidation. Chem. Eng. J. 2022, 429, 132445. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Kong, L.; Wang, Y.; Zhang, S.; Zhang, X.; Ding, J.; Ren, N. Solar light photocatalytic transformation of heptachlorobiphenyl (PCB 180) using g-C3N4 based magnetic porous photocatalyst. J. Hazard. Mat. 2022, 427, 128105. [Google Scholar] [CrossRef]
- Chuaicham, C.; Inoue, T.; VBalakumar, V.; Tian, Q.; Ohtani, B.; Sasak, K. Visible light-driven ZnCr double layer oxide photocatalyst composites with fly ashes for the degradation of ciprofloxacin. J. Environ. Chem. Eng. 2022, 10, 106970. [Google Scholar] [CrossRef]
- Melchionna, M.; Fornasiero, P. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020, 10, 5493–5501. [Google Scholar] [CrossRef] [Green Version]
- Rueda-Marquez, J.J.; Levchuk, I.; Fernandez, P.; Sillanpaa, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Ikram, M.; Rashid, M.; Haider, A.; Naz, S.; Haider, J.; Raza, A.; Ansar, M.T.; Uddin, M.K.; Ali, N.M.; Ahmed, S.S.; et al. A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustain. Mater. Technol. 2021, 30, e00343. [Google Scholar] [CrossRef]
- Hong, C.S.; Wang, Y.; Bush, B. Kinetics and products of the TiO2 photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere 1998, 36, 1653–1667. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, C.S. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspension. Water Res. 1999, 33, 2031–2036. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, C.S. TiO2-mediated photomineralization of 2-chlorobiphenyl: The role of O2. Water Res. 2000, 34, 2791–2797. [Google Scholar] [CrossRef]
- Huang, Q.; Hong, C.S. TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere 2000, 41, 871–879. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Gosavi, S.; Tabei, R.; Roy, N.; Latthe, S.S.; Hunge, Y.M.; Suzuki, N.; Kondo, T.; Yuasa, M.; Teshima, K.; Fujishima, A.; et al. Low temperature deposition of TiO2 thin films through atmospheric pressure plasma jet processing. Catalysts 2021, 11, 91. [Google Scholar] [CrossRef]
- Wiegel, J.; Wu, Q. Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microb. Ecol. 2000, 32, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.; Nogales, B.; Golyshin, P.; Pieper, D.H.; Timmis, K. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr. Opin. Microbiol. 2002, 5, 246–250. [Google Scholar] [CrossRef]
- Master, E.; Lai, V.; Kuipers, B.; Cullen, W.; Mohn, W. Sequential anaerobic-aerobic treatment of soil contaminated with weathered aroclor 1260. Environ. Sci. Technol. 2002, 36, 100–103. [Google Scholar] [CrossRef]
- Wong, K.; Tao, S.; Dawson, R.; Wong, P. Optimization of photocatalytic oxidation of 2,2’,3,3’-tetraclorobiphenyl. J. Hazard. Mater. 2004, B109, 149–155. [Google Scholar] [CrossRef]
- METHOD 8082A: Polychlorinated Biphenyls (PCBs) by Gas Chromatography. US Environmental Protection Agency, Washington, USA, 2007. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/8082a.pdf (accessed on 23 July 2020).
- Strickland, J.H.D.; Parsons, T.R. A practical handbook of seawater analysis. Bull. Fish Res. 1972, 167, 189–190. [Google Scholar]
Peak No. | Retention Time (min) | Area (%) | Compound | ID Factor | Formula |
---|---|---|---|---|---|
1 | 16.67 | 0.33 | 1,1′-Biphenyl, 2-chloro- | 86 | C12H9Cl |
2 | 19.67 | 3.81 | 1,1′-Biphenyl, 2,2′-dichloro- | 86 | C12H8Cl2 |
3 | 21.28 | 0.48 | 1,1′-Biphenyl, 2,6-dichloro- | 80 | C12H8Cl2 |
4 | 21.95 | 1.16 | 2,6-Dichloro-1,1′-Bifenilo 1,1′-Biphenyl, 2,6′-dichloro- | 77 | C12H8Cl2 |
5 | 22.45 | 11.29 | 2,3-Dichlorobiphenyl | 91 | C12H8Cl2 |
7 | 25.64 | 16.45 | 2,4,6-Trichlorobiphenyl | 91 | C12H7Cl3 |
8 | 26.13 | 2.27 | 2,6-Dichlorobiphenyl | 79 | C12H8Cl2 |
10 | 27.12 | 5.37 | 2,2′,5-Trichloro-1,1′-biphenyl | 84 | C12H7Cl3 |
11 | 29.16 | 1.06 | 2′,3,4-Trichloro-1,1′-biphenyl | 80 | C12H7Cl3 |
12 | 30.12 | 24.02 | 3,4,4′-Trichloro-1,1′-biphenyl | 94 | C12H7Cl3 |
13 | 30.88 | 7.58 | 2,4,6-Trichloro-1,1′-biphenyl | 88 | C12H7Cl3 |
14 | 31.67 | 2.48 | 2,4,6-Trichloro-1,1′-biphenyl | 83 | C12H7Cl3 |
15 | 33.01 | 9.73 | Methyl nonanoate | 90 | C10H20O2 |
16 | 33.74 | 2.88 | 2,2′,5,6-Tetrachloro-1,1′-biphenyl | 82 | C12H6Cl4 |
17 | 34.12 | 1.53 | 2,2′,4,5′-Tetrachloro-1,1′-biphenyl | 77 | C12H6Cl4 |
18 | 34.33 | 0.94 | 2,2′,6,6′-Tetrachloro-1,1′-biphenyl | 73 | C12H6Cl4 |
19 | 35.82 | 2.41 | 2,2′,4,5′-Tetrachloro-1,1′-biphenyl | 79 | C12H6Cl4 |
21 | 36.52 | 0.62 | 2,4,6-trichloro-1,1′-biphenyl | 80 | C12H7Cl3 |
23 | 37.28 | 0.73 | 2,2′,6,6′-Tetrachloro-1,1′-biphenyl | 82 | C12H6Cl4 |
Experiment | Initial PCBs (mg/L) | Photoperiod (Light Hours/Dark Hours) | Cellular Density (Cells/mL) | Chlorophyll Content (µg/L) | Growth Inhibition % |
---|---|---|---|---|---|
1 | 0 | 12/12 | 1.25 × 106 | 5.88 | N.A. |
2 | 2.0 | 12/12 | 3.09 × 105 | 1.49 | 74.7 |
3 | 5.0 | 12/12 | N.A. | 0.02 | 99.6 |
4 | 0 | 24/24 | 5.12 × 105 | 2.27 | 87.6 |
5 | 2.0 | 24/24 | 4.02 × 104 | 0.28 | 92.7 |
6 | 5.0 | 24/24 | 1.32 × 104 | 0.16 | 74.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez, A.F.; Camargo, C.E.; Esteso, M.A.; Romero, C.M. Photocatalytic Degradation of Dielectric Mineral Oil with PCBs Content Coupled with Algae Treatment. Toxics 2022, 10, 209. https://doi.org/10.3390/toxics10050209
Suárez AF, Camargo CE, Esteso MA, Romero CM. Photocatalytic Degradation of Dielectric Mineral Oil with PCBs Content Coupled with Algae Treatment. Toxics. 2022; 10(5):209. https://doi.org/10.3390/toxics10050209
Chicago/Turabian StyleSuárez, Andrés F., Carlos E. Camargo, Miguel A. Esteso, and Carmen M. Romero. 2022. "Photocatalytic Degradation of Dielectric Mineral Oil with PCBs Content Coupled with Algae Treatment" Toxics 10, no. 5: 209. https://doi.org/10.3390/toxics10050209
APA StyleSuárez, A. F., Camargo, C. E., Esteso, M. A., & Romero, C. M. (2022). Photocatalytic Degradation of Dielectric Mineral Oil with PCBs Content Coupled with Algae Treatment. Toxics, 10(5), 209. https://doi.org/10.3390/toxics10050209