Removal of Toxic Metal Ions Using Poly(BuMA–co–EDMA) Modified with C-Tetra(nonyl)calix[4]resorcinarene
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Information
2.2. Synthesis of C-Tetra(nonyl)calix[4]resorcinarene (1)
2.3. Preparation of Poly(BuMA–co–EDMA) (2)
2.4. Polymeric Impregnation with (1)
2.5. Heavy Metals Removal Tests
2.6. Quantitative UV-Vis Determinations
2.7. RP-HPLC Analysis
3. Results and Discussion
3.1. Synthesis of C-Tetra(nonyl)calix[4]resorcinarene (1)
3.2. Obtention of Poly(BuMA–co–EDMA) (2)
3.3. Impregnation Process of Poly(BuMA–co–EDMA) with C-Tetra(nonyl)calix[4]resorcinarene
3.4. Characterization of the Sorbents
3.5. Heavy Metals Removal Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Kocaoba, S. Comparison of Amberlite IR 120 and dolomite’s performances for removal of heavy metals. J. Hazard. Mater. 2007, 147, 488–496. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, C.; Luo, Y.; Liu, C.; Kyzas, G.Z.; Luo, Y.; Zhao, D.; An, S.; Zhu, H. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. J. Hazard. Mater. 2014, 270, 102–109. [Google Scholar] [CrossRef]
- Rahman, M.L.; Rohani, N.N.M.; Yusoff, M.M. Synthesis of polyamidoxime chelating ligand from polymer-grafted corn-cob cellulose for metal extraction. J. Appl. Polym. Sci. 2014, 131, 40833. [Google Scholar] [CrossRef]
- Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Membr. Sci. 2012, 415–416, 9–23. [Google Scholar] [CrossRef]
- Sabarudin, A.; Shu, S.; Yamamoto, K.; Umemura, T. Preparation of metal-immobilized methacrylate-based monolithic columns for flow-through cross-coupling reactions. Molecules 2021, 26, 7346. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Bai, W.; Liang, Y.P. (GMA-HEMA)/SiO2 Nanofilm Constructed Macroporous Monolith for Immobilization of Pseudomonas Fluorescens Lipase. Chem. Sel. 2020, 5, 4885–4892. [Google Scholar]
- Beloti, L.G.M.; Miranda, L.F.C.; Queiroz, M.E.C. Butyl methacrylate-co-ethylene glycol dimethacrylate monolith for online in-tube SPME-UHPLC-MS/MS to determine chlopromazine, clozapine, quetiapine, olanzapine, and their metabolites in plasma samples. Molecules 2019, 24, 310. [Google Scholar] [CrossRef] [Green Version]
- Mansour, F.R.; Desire, C.T.; Hilder, E.F.; Arrua, R.D. Effect of ethoxylated sorbitan ester surfactants on the chromatographic efficiency of poly(ethylene glycol)-based monoliths. J. Chromatogr. A 2021, 1654, 462464. [Google Scholar] [CrossRef]
- Mansour, F.R.; Waheed, S.; Paull, B.; Maya, F. Porogens and porogen selection in the preparation of porous polymer monoliths. J. Sep. Sci. 2020, 43, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, L.; Coyle, T.; Stubbs, K.A.; Raston, C.L. Stereospecific synthesis of resorcin[4]arenes and pyrogallol[4]arenes in dynamic thin films. Chem. Commun. 2013, 49, 10932–10934. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, C.R.; Feaster, K.A.; Dalgarno, S.J.; Atwood, J.L. Syntheses and characterization of aryl-substituted pyrogallol[4]arenes and resorcin[4]arenes. CrystEngComm 2016, 18, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Puttreddy, R.; Beyeh, N.K.; Taimoory, S.M.; Meister, D.; Trant, J.F.; Rissanen, K. Host–guest complexes of conformationally flexible C -hexyl-2-bromoresorcinarene and aromatic N -oxides: Solid-state, solution and computational studies. Beilstein J. Org. Chem. 2018, 14, 1723–1733. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Aguirre, A.; Esteso, M.A.; Maldonado Villamil, M. Resorcin[4]arenes: Generalities and their role in the modification and detection of amino acids. Curr. Org. Chem. 2020, 24, 2412–2425. [Google Scholar] [CrossRef]
- Velásquez-Silva, A.; Forero, R.S.; Sanabria, E.; Pérez-Redondo, A.; Maldonado, M. Host-guest inclusion systems of tetra(alkyl)resorcin[4]arenes with choline in DMSO: Dynamic NMR studies and X-ray structural characterization of the 1:1 inclusion complex. J. Mol. Struct. 2019, 1198, 126846. [Google Scholar] [CrossRef]
- Kumar, S.; Chawla, S.; Zou, M.C. Calixarenes based materials for gas sensing applications: A review. J. Incl. Phenom. Macrocycl. Chem. 2017, 88, 129–158. [Google Scholar] [CrossRef]
- Eddaif, L.; Shaban, A.; Telegdi, J.; Szendro, I. A piezogravimetric sensor platform for sensitive detection of lead (II) ions in water based on calix[4]resorcinarene macrocycles: Synthesis, characterization and detection. Arab. J. Chem. 2020, 13, 4448–4461. [Google Scholar] [CrossRef]
- Catti, L.; Pöthig, A.; Tiefenbacher, K. Host-Catalyzed Cyclodehydration-Rearrangement Cascade Reaction of Unsaturated Tertiary Alcohols. Adv. Synth. Catal. 2017, 359, 1331–1338. [Google Scholar] [CrossRef]
- Cortez-Maya, S.; Hernández-Ortega, S.; Ramírez-Apan, T.; Lijanova, I.V.; Martínez-García, M. Synthesis of 5-aryl-1,4-benzodiazepine derivatives attached in resorcinaren-PAMAM dendrimers and their anti-cancer activity. Bioorg. Med. Chem. 2012, 20, 415–421. [Google Scholar] [CrossRef]
- Lijanova, I.V.; Moggio, I.; Arias, E.; Klimova, T.; Martínez-García, M. Resorcinarene-dendrimers with stilbene moieties for optoelectronics. Tetrahedron 2008, 64, 10258–10266. [Google Scholar] [CrossRef]
- Kazakova, E.K.; Morozova, J.E.; Mironova, D.A.; Konovalov, A.I. Sorption of azo dyes from aqueous solutions by tetradodecyloxybenzylcalix[4]resorcinarene derivatives. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 467472. [Google Scholar] [CrossRef]
- Jain, V.K.; Kanaiya, P.H.; Bhojak, N. Synthesis, spectral characterization of azo dyes derived from calix[4]resorcinarene and their application in dyeing of fibers. Fibers Polym. 2008, 9, 720–726. [Google Scholar] [CrossRef]
- O’Farrell, C.M.; Chudomel, J.M.; Collins, J.M.; Dignam, C.F.; Wenzel, T.J. Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents. J. Org. Chem. 2008, 73, 2843–2851. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, T.J. Calixarenes and calix[4]resorcinarenes as chiral NMR solvating agents. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 1–14. [Google Scholar] [CrossRef]
- Ngurah, B.I.G.M.; Jumina, A.C. Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of Cr(III) and Pb(II). J. Appl. Chem. Sci. 2016, 3, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Al-Trawneh, S.A. Studies on Adsorptive Removal of Some Heavy Metal Ions by Calix[4]Resorcine. Jordan J. Earth Environ. Sci. 2015, 7, 1–9. [Google Scholar]
- Pietraszkiewicz, O.; Pietraszkiewicz, M. Separation of Pyrimidine Bases on a HPLC Stationary RP-18 Phase Coated with Calix[4]resorcinarene. J. Incl. Phenom. Macrocycl. Chem. 1999, 35, 261–270. [Google Scholar] [CrossRef]
- Li, N.; Harrison, R.G.; Lamb, J.D. Application of resorcinarene derivatives in chemical separations. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 39–60. [Google Scholar] [CrossRef]
- Maldonado, M.; Sanabria, E.; Velasquez-Silva, A.; Casas-Hinestroza, J.L.; Esteso, M.A. Comparative study of the volumetric properties of three regioisomers of diazoted C-tetra(propyl)resorcin[4]arene in DMSO at various temperatures. J. Mol. Liq. 2021, 325, 115252. [Google Scholar] [CrossRef]
- Casas-Hinestroza, J.L.; Suazo, M.Á.V.; Villamil, M.M. Experimental comparative study of dynamic behavior in solution phase of C-Tetra(phenyl)resorcin[4]arene and C-Tetra(phenyl)pyrogallol[4]arene. Molecules 2020, 25, 2275. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Aguirre, A.A.; Maldonado, M. Preparation of Methacrylate-Based Polymers Modified with Chiral Resorcinarenes and Their Evaluation as Sorbents in Norepinephrine Microextraction. Polymers 2019, 11, 1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Aguirre, A.A.; Velásquez-Silva, B.A.; Rivera-Monroy, Z.J.; Maldonado, M. Aminomethylated Calix[4]resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. Polymers 2019, 11, 1147. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Aguirre, A.A.; Velásquez-Silva, B.A.; Palacio, C.; Baez, F.; Rivera-Monroy, Z.J.; Maldonado, M. Surface modification of poly(GMA-co-EDMA-co-MMA) with resorcarenes. J. Braz. Chem. Soc. 2018, 29, 1965–1972. [Google Scholar] [CrossRef]
- Castillo-Aguirre, A.; Rivera-Monroy, Z.; Maldonado, M. Selective O-Alkylation of the Crown Conformer of Tetra(4-hydroxyphenyl)calix[4]resorcinarene to the Corresponding Tetraalkyl Ether. Molecules 2017, 22, 1660. [Google Scholar] [CrossRef]
- Wu, T.; Wang, H.-T.; Shen, B.; Du, Y.-P.; Wang, X.; Wang, Z.-P.; Zhang, C.-J.; Miu, W.-B. Determination of primary aromatic amines using immobilized nanoparticles based surface-enhanced Raman spectroscopy. Chin. Chem. Lett. 2016, 27, 745–748. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Yang, X.; Yu, J. Central composite experimental design applied to the catalytic aromatization of isophorone to 3,5-xylenol. Chemom. Intell. Lab. Syst. 2007, 89, 45–50. [Google Scholar] [CrossRef]
- Saracino, M.A.; Santarcangelo, L.; Raggi, M.A.; Mercolini, L. Microextraction by packed sorbent (MEPS) to analyze catecholamines in innovative biological samples. J. Pharm. Biomed. Anal. 2015, 104, 122–129. [Google Scholar] [CrossRef]
- Qin, Q.; Li, H.; Shi, X.; Xu, G. Facile synthesis of Fe3O4@polyethyleneimine modified with 4-formylphenylboronic acid for the highly selective extraction of major catecholamines from human urine. J. Sep. Sci. 2015, 38, 2857–2864. [Google Scholar] [CrossRef]
Exp. | Coded Values | Natural Values | Removal (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | t contact (min) | pH | V sample (mL) | Pb2+ | Hg2+ | Cd2+ | |
1 | −1 | −1 | −1 | 30 | 2 | 10 | 23.1 | 30.2 | 4.6 |
2 | 1 | −1 | −1 | 120 | 2 | 10 | 24.0 | 30.9 | 4.9 |
3 | −1 | 1 | −1 | 30 | 8 | 10 | 49.0 | 19.8 | 9.8 |
4 | 1 | 1 | −1 | 120 | 8 | 10 | 49.5 | 19.0 | 11.2 |
5 | −1 | −1 | 1 | 30 | 2 | 40 | 42.3 | 27.8 | 8.5 |
6 | 1 | −1 | 1 | 120 | 2 | 40 | 43.3 | 27.0 | 10.5 |
7 | −1 | 1 | 1 | 30 | 8 | 40 | 57.7 | 13.8 | 11.5 |
8 | 1 | 1 | 1 | 120 | 8 | 40 | 57.3 | 13.1 | 12.3 |
9 | 0 | 0 | 0 | 75 | 5 | 25 | 73.3 | 21.3 | 10.7 |
10 | 0 | 0 | 0 | 75 | 5 | 25 | 72.1 | 21.8 | 10.9 |
11 | 0 | 0 | 0 | 75 | 5 | 25 | 71.0 | 20.1 | 10.2 |
12 | 0 | 0 | 0 | 75 | 5 | 25 | 72.9 | 21.6 | 10.0 |
Heavy Metal | Removal (%) | Coded Value of pH | Coded Value of Volume | Natural Value | |
---|---|---|---|---|---|
pH | Vsample (mL) | ||||
Pb2+ | 70 | 0.258299 | 1.21421 | 6.00 ± 0.25 | 41 |
Hg2+ | 30 | −0.371974 | 0.40673 | 4.00 ± 0.25 | 31 |
Cd2+ | 18 | 0.362121 | 1.41421 | 6.00 ± 0.25 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Aguirre, A.; Maldonado, M.; Esteso, M.A. Removal of Toxic Metal Ions Using Poly(BuMA–co–EDMA) Modified with C-Tetra(nonyl)calix[4]resorcinarene. Toxics 2022, 10, 204. https://doi.org/10.3390/toxics10050204
Castillo-Aguirre A, Maldonado M, Esteso MA. Removal of Toxic Metal Ions Using Poly(BuMA–co–EDMA) Modified with C-Tetra(nonyl)calix[4]resorcinarene. Toxics. 2022; 10(5):204. https://doi.org/10.3390/toxics10050204
Chicago/Turabian StyleCastillo-Aguirre, Alver, Mauricio Maldonado, and Miguel A. Esteso. 2022. "Removal of Toxic Metal Ions Using Poly(BuMA–co–EDMA) Modified with C-Tetra(nonyl)calix[4]resorcinarene" Toxics 10, no. 5: 204. https://doi.org/10.3390/toxics10050204
APA StyleCastillo-Aguirre, A., Maldonado, M., & Esteso, M. A. (2022). Removal of Toxic Metal Ions Using Poly(BuMA–co–EDMA) Modified with C-Tetra(nonyl)calix[4]resorcinarene. Toxics, 10(5), 204. https://doi.org/10.3390/toxics10050204