Combined Process of Biogenic Manganese Oxide and Manganese-Oxidizing Microalgae for Improved Diclofenac Removal Performance: Two Different Kinds of Synergistic Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manganese-Oxidizing Microalgae and Media
2.2. Experimental Setup
2.2.1. Mn2+ Tolerance and Oxidation Ability of MnOMs
2.2.2. Removal of DCF by MnOMs and/or Bio-MnOx
2.3. Analysis Methods
2.3.1. Measurements of MnOMs Growth, Total Chlorophyll, and Photosynthetic Activity
2.3.2. Measurement of Mn2+ and Bio-MnOx
2.3.3. Characterizations of Bio-MnOx
2.3.4. Measurement of the DCF Concentration and Intermediates Identification
2.4. Statistical Analysis
3. Results and Discussion
3.1. Mn2+ Tolerance and Mn2+ Oxidation Ability of MnOMs
3.1.1. Effect of Mn2+ on MnOMs Growth and Chlorophyll Content
3.1.2. Effect of Mn2+ on the Photosynthetic Activity of MnOMs
3.1.3. Mn2+ Oxidation Ability of MnOMs
3.2. DCF Removal Efficiency and Pathways
3.2.1. DCF Removal Efficiency
3.2.2. DCF Removal Pathway
3.3. Synergistic Effects of MnOMs and Bio-MnOx
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Sandoval, D.S.; González-Ortega, O.; Navarro-Martínez, M.F.; Castro-Tapia, J.M.; Soria-Guerra, R.E. Photodegradation and Removal of Diclofenac by the Green Alga Nannochloropsis oculata. Phyton 2021, 90, 1519–1533. [Google Scholar] [CrossRef]
- Ben Ouada, S.; Ben Ali, R.; Cimetiere, N.; Leboulanger, C.; Ben Ouada, H.; Sayadi, S. Biodegradation of diclofenac by two green microalgae: Picocystis sp. and Graesiella sp. Ecotoxicol. Environ. Saf. 2019, 186, 109769. [Google Scholar] [CrossRef] [PubMed]
- Escapa, C.; Coimbra, R.N.; Paniagua, S.; García, A.I.; Otero, M. Comparative assessment of diclofenac removal from water by different microalgae strains. Algal Res. 2016, 18, 127–134. [Google Scholar] [CrossRef]
- Sun, Y.K.; Zhang, Y.G.; Li, W.Z.; Zhang, W.C.; Xu, Z.L.; Dai, M.X.; Zhao, G.Y. Combination of the endophytic manganese-oxidizing bacterium Pantoea eucrina SS01 and biogenic Mn oxides: An efficient and sustainable complex in degradation and detoxification of malachite green. Chemosphere 2021, 280, 130785. [Google Scholar] [CrossRef]
- Zhai, J.; Wang, Q.F.; Li, Q.; Shang, B.; Rahaman, M.H.; Liang, J.L.; Ji, J.C.; Liu, W.B. Degradation mechanisms of carbamazepine by delta-MnO2: Role of protonation of degradation intermediates. Sci. Total Environ. 2018, 640, 981–988. [Google Scholar] [CrossRef]
- Wang, Q.F.; Wei, H.X.; Liu, W.B.; Zhai, J. Carbamazepine removal by the synergistic effect of manganese-oxidizing microalgae and biogenic manganese oxides. J. Hazard. Mater. 2021, 419, 126530. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.N.; He, J.; Li, J.C.; Zhang, J.K.; Luo, Y.H. Release of manganese and in situ regeneration of manganese dioxide during the degradation of ciprofloxacin. Biochem. Eng. J. 2020, 159, 107600. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.K.; Qin, Z.Y.; Luo, P.H.; Ma, Z.; Tan, M.Y.; Kang, H.Y.; Huang, Z.N. A novel manganese oxidizing bacterium-Aeromonas hydrophila strain DS02: Mn(II) oxidization and biogenic Mn oxides generation. J. Hazard. Mater. 2019, 367, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.Q.; Liu, D.F.; Min, D.; Cheng, L.; Huang, X.N.; Tian, L.J.; Li, D.B.; Yu, H.Q. Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1. Chemosphere 2018, 211, 345–351. [Google Scholar] [CrossRef]
- Tepe, O.; Comert, S. Enhanced Removal of Paracetamol Using Biogenic Manganese Oxides Produced by Pseudomonas putida B-14878 and Process Optimization by RSM. Water Air Soil Pollut. 2019, 230, 309. [Google Scholar] [CrossRef]
- Liang, D.H.; Hu, Y.Y.; Cheng, J.H.; Chen, Y.C. Enhanced performance of sulfamethoxazole degradation using Achromobacter sp. JL9 with in-situ generated biogenic manganese oxides. Bioresour. Technol. 2021, 333, 125089. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Kim, D.G.; Ko, S.O. Encapsulation of biogenic manganese oxide and Pseudomonas putida MnB1 for removing 17 alpha-ethinylestradiol from aquatic environments. J. Water Process Eng. 2020, 37, 101423. [Google Scholar] [CrossRef]
- Li, K.J.; Xu, A.L.; Wu, D.H.; Zhao, S.Y.; Meng, T.; Zhang, Y.J. Degradation of ofloxacin by a manganese-oxidizing bacterium Pseudomonas sp. F2 and its biogenic manganese oxides. Bioresour. Technol. 2021, 328, 124826. [Google Scholar] [CrossRef] [PubMed]
- Meerburg, F.; Hennebel, T.; Vanhaecke, L.; Verstraete, W.; Boon, N. Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver. Microb. Biotechnol. 2012, 5, 388–395. [Google Scholar] [CrossRef]
- Tran, T.N.; Kim, D.G.; Ko, S.O. Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 alpha-ethinylestradiol. J. Hazard. Mater. 2018, 344, 350–359. [Google Scholar] [CrossRef]
- Sousa, H.; Sousa, C.A.; Simoes, L.C.; Simoes, M. Microalgal-based removal of contaminants of emerging concern. J. Hazard. Mater. 2022, 423, 127153. [Google Scholar] [CrossRef]
- Wang, Q.F.; Liu, W.B.; Li, X.T.; Wang, R.; Zhai, J. Carbamazepine toxicity and its co-metabolic removal by the cyanobacteria Spirulina platensis. Sci. Total Environ. 2020, 706, 135686. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Govindwar, S.; Kurade, M.B.; Paeng, K.J.; Roh, H.S.; Khan, M.A.; Jeon, B.H.; Xiong, J.Q.; Govindwar, S.; Kurade, M.B.; et al. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. CHEMOSPHERE. 2019. 218. 551-558., Scenedesmus obliquus. Chemosphere 2019, 218, 551–558. [Google Scholar] [CrossRef]
- Chaput, D.L.; Fowler, A.J.; Seo, O.; Duhn, K.; Hansel, C.M.; Santelli, C.M. Mn oxide formation by phototrophs: Spatial and temporal patterns, with evidence of an enzymatic superoxide-mediated pathway. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Comert, S.; Tepe, O. Production and Characterization of Biogenic Manganese Oxides by Manganese-adaptedPseudomonas putidaNRRL B-14878. Geomicrobiol. J. 2020, 37, 753–763. [Google Scholar] [CrossRef]
- Wang, R.; Wang, S.; Tai, Y.P.; Tao, R.; Dai, Y.N.; Guo, J.J.; Yang, Y.; Duan, S.S. Biogenic manganese oxides generated by green algae Desmodesmus sp WR1 to improve bisphenol A removal. J. Hazard. Mater. 2017, 339, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Escapa, C.; Torres, T.; Neuparth, T.; Coimbra, R.N.; Garcia, A.I.; Santos, M.M.; Otero, M. Zebrafish embryo bioassays for a comprehensive evaluation of microalgae efficiency in the removal of diclofenac from water. Sci. Total Environ. 2018, 640, 1024–1033. [Google Scholar] [CrossRef]
- Forrez, I.; Carballa, M.; Verbeken, K.; Vanhaecke, L.; Schlusener, M.; Ternes, T.; Boon, N.; Verstraete, W. Diclofenac Oxidation by Biogenic Manganese Oxides. Environ. Sci. Technol. 2010, 44, 3449–3454. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Xu, Z.; Ma, H.Q.; Hursthouse, A.S. Removal of Manganese(II) from Acid Mine Wastewater: A Review of the Challenges and Opportunities with Special Emphasis on Mn-Oxidizing Bacteria and Microalgae. Water 2019, 11, 2493. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, R.; Munoz, R.; Taboada, M.E.; Vega, M.; Bolado, S. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour. Technol. 2018, 263, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 2017, 313, 1251–1257. [Google Scholar] [CrossRef]
- Chen, T.F.; Zheng, W.J.; Wong, Y.S.; Yang, F. Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. J. Integr. Plant Biol. 2008, 50, 40–48. [Google Scholar] [CrossRef]
- Li, X.T.; Li, W.; Zhai, J.; Wei, H.X. Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. Bioresour. Technol. 2018, 263, 555–561. [Google Scholar] [CrossRef]
- Li, X.T.; Li, W.; Zhai, J.; Wei, H.X.; Wang, Q.F. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresour. Technol. 2019, 273, 368–376. [Google Scholar] [CrossRef]
- Grandclement, C.; Piram, A.; Petit, M.E.; Seyssiecq, I.; Laffont-Schwob, I.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. Biological Removal and Fate Assessment of Diclofenac Using Bacillus subtilis and Brevibacillus laterosporus Strains and Ecotoxicological Effects of Diclofenac and 4′-Hydroxy-diclofenac. J. Chem. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Pylypchuk, I.V.; Daniel, G.; Kessler, V.G.; Seisenbaeva, G.A. Removal of Diclofenac, Paracetamol, and Carbamazepine from Model Aqueous Solutions by Magnetic Sol-Gel Encapsulated Horseradish Peroxidase and Lignin Peroxidase Composites. Nanomaterials 2020, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuan, W.H.; Liu, Y.J.; Hu, C.Y. Effects of Surfactants on the Degradation of Diclofenac by Manganese Oxide. Int. J. Environ. Res. Public Health 2020, 17, 4513. [Google Scholar] [CrossRef] [PubMed]
- Danesh, A.F.; Ebrahimi, S.; Salehi, A.; Parsa, A. Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Biochem. Eng. J. 2017, 125, 56–64. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Dangre, D.; Rai, M. Biophysical phenomics reveals functional building blocks of plants systems biology: A case study for the evaluation of the impact of mycorrhization with Piriformospora indica. In Soil Biology; Varma, A., Oelmuller, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 11, pp. 319–341. [Google Scholar]
Degradation Products | Reaction Systems | |||||
---|---|---|---|---|---|---|
Name | Retention Time (min) | Structural Formula | m/z [M + H]+ | MnOMs + DCF | BioMnOx + DCF | MnOMs + BioMnOx + DCF |
DCF | 5.212 | 296.0 | √ | √ | √ | |
P311 | 4.322 | 312.0 | √ | nd | nd | |
P311’ | 2.886 | 312.1 | √ | √ | nd | |
P150 | 9.547 | 151.1 | √ | nd | nd | |
P309 | 10.175 | 310.1 | √ | √ | √ | |
P151 | 8.754 | 152.1 | nd | √ | √ | |
P162 | 11.634 | 163.0 | nd | √ | nd | |
P163 | 12.052 | 164.1 | nd | √ | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liao, C.; Zhao, J.; Zeng, G.; Liu, W.; Gao, P.; Sun, D.; Du, J. Combined Process of Biogenic Manganese Oxide and Manganese-Oxidizing Microalgae for Improved Diclofenac Removal Performance: Two Different Kinds of Synergistic Effects. Toxics 2022, 10, 230. https://doi.org/10.3390/toxics10050230
Wang Q, Liao C, Zhao J, Zeng G, Liu W, Gao P, Sun D, Du J. Combined Process of Biogenic Manganese Oxide and Manganese-Oxidizing Microalgae for Improved Diclofenac Removal Performance: Two Different Kinds of Synergistic Effects. Toxics. 2022; 10(5):230. https://doi.org/10.3390/toxics10050230
Chicago/Turabian StyleWang, Quanfeng, Cenhui Liao, Jujiao Zhao, Guoming Zeng, Wenbo Liu, Pei Gao, Da Sun, and Juan Du. 2022. "Combined Process of Biogenic Manganese Oxide and Manganese-Oxidizing Microalgae for Improved Diclofenac Removal Performance: Two Different Kinds of Synergistic Effects" Toxics 10, no. 5: 230. https://doi.org/10.3390/toxics10050230
APA StyleWang, Q., Liao, C., Zhao, J., Zeng, G., Liu, W., Gao, P., Sun, D., & Du, J. (2022). Combined Process of Biogenic Manganese Oxide and Manganese-Oxidizing Microalgae for Improved Diclofenac Removal Performance: Two Different Kinds of Synergistic Effects. Toxics, 10(5), 230. https://doi.org/10.3390/toxics10050230