Improving the Risk Assessment of Pesticides through the Integration of Human Biomonitoring and Food Monitoring Data: A Case Study for Chlorpyrifos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Information Sources
2.2. Estimation of HBM Values
2.3. Estimation of Urinary TCPy Levels from EU Food Monitoring Data
2.4. Risk Characterization
3. Results and Discussion
3.1. Evolution of Chlorpyrifos Hazard Characterisation in the EU
- Overall PoD based on the DNT study on rats, as adverse effects were observed at the lowest tested dose the PoD was the LOAEL of 0.3 mg/kg bw per day
- Relevant long-term NOAEL 0.1 mg/kg bw per day, also applicable to parental toxicity and maternal NOAEL
- Short-term NOAEL for red blood cells AChE inhibition 0.1 mg/kg bw per day, same value as above but related to short-term exposures
- Relevant offspring NOAEL 1 mg/kg bw per day
- Relevant reproductive NOAEL 5 mg/kg bw per day
- Relevant carcinogenicity NOAEL 10 mg/kg bw per day (highest dose tested)
3.2. Proposed HBM-PoDs
3.3. Prospective Exposure Assessment Based on Monitored Levels in Food
3.4. Retrospective Exposure Assessment Based on Human Biomonitoring
3.4.1. HBM4EU Data
3.4.2. Spanish Human Biomonitoring Data
3.5. Estimated MoEs for the Prospective Assessment
3.6. Estimated MoEs for the Retrospective Assessment
3.6.1. HBM4EU Data
3.6.2. Spanish and Portuguese Populations
4. Risk Characterization
- RED: Confirmed concern: the MoE is lower than the requirements for uncertainty factors in standard assessments, i.e., lower than 100 for the NOAELs, lower than 300 for the LOAELs, and lower than 10,000 for the carcinogenicity of genotoxic substances
- ORANGE: Possible concern: the MoE is lower than the requirements for uncertainty factors in standard assessments plus the upper range regarding additional considerations for the extrapolation (factor of 10 for NOAEL to LOAEL, and factor of 3 for subacute to subchronic extrapolation)
- YELLOW: Concerns cannot be excluded. MoEs higher than those above but not offering an additional margin of 10.
- GREEN: Risk cannot be excluded due to the concerns on genotoxicity but it is expected to be very low: MOEs providing an additional margin of at least 10 from those of possible or confirmed concern.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. Report on the OECD WORKSHOP on Sustainable Pest Management in Practice: Anticipating and Adapting to Changes in the Pesticides Regulatory Landscapes; OECD: Paris, France, 2018. [Google Scholar]
- Ganzleben, C.; Antignac, J.-P.; Barouki, R.; Castaño, A.; Fiddicke, U.; Klanova, J.; Lebret, E.; Olea, N.; Sarigiannis, D.; Schoeters, G.; et al. Human biomonitoring as a tool to support chemicals regulation in the European Union. Int. J. Hyg. Environ. Health 2017, 220 Pt 2A, 94–97. [Google Scholar] [CrossRef]
- Gilles, L.; Govarts, E.; Rambaud, L.; Vogel, N.; Castaño, A.; López, M.E.; Martin, L.R.; Koppen, G.; Remy, S.; Vrijheid, M.; et al. HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity—The HBM4EU survey. Int. J. Hyg. Environ. Health 2021, 237, 113809. [Google Scholar] [CrossRef] [PubMed]
- López, M.E.; Göen, T.; Mol, H.; Nübler, S.; Haji-Abbas-Zarrabi, K.; Koch, H.M.; Kasper-Sonnenberg, M.; Dvorakova, D.; Hajslova, J.; Antignac, J.P.; et al. The European human biomonitoring platform-Design and implementación of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals. Int. J. Hyg. Environ. Health 2021, 234, 113740. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide human health risk assessment of the active substance chlorpyrifos. EFSA J. 2014, 12, 3640. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Reasoned opinion on the refined risk assessment regarding certain maximum residue levels (MRLs) of concern for the active substance chlorpyrifos. EFSA J. 2015, 13, 4142. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos. EFSA J. 2019, 17, e05809. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Updated statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos-methyl. EFSA J. 2019, 17, e05908. [Google Scholar] [CrossRef]
- Bouchard, M.; Carrier, G.; Brunet, R.C.; Bonvalot, Y.; Gosselin, N.H. Determination of Biological Reference Values for Chlorpyrifos Metabolites in Human Urine Using a Toxicokinetic Approach. J. Occup. Environ. Hyg. 2005, 2, 155–168. [Google Scholar] [CrossRef]
- Apel, P.; Rousselle, C.; Lange, R.; Sissoko, F.; Kolossa-Gehring, M.; Ougier, E. Human biomonitoring initiative (HBM4EU)—Strategy to derive human biomonitoring guidance values (HBM-GVs) for health risk assessment. Int. J. Hyg. Environ. Health 2020, 230, 113622. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance chlorpyrifos. EFSA J. 2011, 9, 1961. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority); Anastassiadou, M.; Brancato, A.; Cabrera, L.C.; Ferreira, L.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; Magrans, J.O.; et al. Pesticide Residue Intake Model-EFSA PRIMo revision 3.1. EFSA Support. Publ. 2019, 16, 1605E. [Google Scholar] [CrossRef]
- European Food Safety Authority. The 2012 European Union Report on pesticide residues in food. EFSA J. 2014, 12, 3942. [Google Scholar] [CrossRef]
- European Food Safety Authority. The 2013 European Union report on pesticide residues in food. EFSA J. 2015, 13, 4038. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). The 2014 European Union report on pesticide residues in food. EFSA J. 2016, 14, e04611. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). The 2015 European Union report on pesticide residues in food. EFSA J. 2017, 15, e04791. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). The 2016 European Union report on pesticide residues in food. EFSA J. 2018, 16, e05348. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Scientific report on the 2017 European Union report on pesticide residues in food. EFSA J. 2019, 17, e05743. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority); Medina-Pastor, P.; Triacchini, G. The 2018 European Union report on pesticide residues in food. EFSA J. 2020, 18, e06057. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority); Cabrera, L.C.; Pastor, P.M. The 2019 European Union report on pesticide residues in food. EFSA J. 2021, 19, e06491. [Google Scholar] [CrossRef]
- Nolan, R.; Rick, D.; Freshour, N.; Saunders, J. Chlorpyrifos: Pharmacokinetics in human volunteers. Toxicol. Appl. Pharmacol. 1984, 73, 8–15. [Google Scholar] [CrossRef]
- Aylward, L.L.; Irwin, K.; St-Amand, A.; Nong, A.; Hays, S.M. Screening-level Biomonitoring Equivalents for tiered interpretation of urinary 3-phenoxybenzoic acid (3-PBA) in a risk assessment context. Regul. Toxicol. Pharmacol. 2018, 92, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Daroff, R.B.; Autrup, H.; Bridges, J.; Buffler, P.; Costa, L.G.; Coyle, J.; McKhann, G.; Mobley, W.C.; Nadel, L.; et al. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit. Rev. Toxicol. 2008, 38 (Suppl. 2), 1–125. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.M.; Morriss, A.; Velovitch, J.; Juberg, D.; Burns, C.J.; Bartels, M.; Aggarwal, M.; Poet, T.; Hays, S.; Price, P. Derivation of human Biomonitoring Guidance Values for chlorpyrifos using a physiologically based pharmacokinetic and pharmacodynamic model of cholinesterase inhibition. Regul. Toxicol. Pharmacol. 2015, 71, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, P.; Mason, H.; Heywood, K.; Cocker, J. Oral and dermal absorption of chlorpyrifos: A human volunteer study. Occup. Environ. Med. 1999, 56, 10–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, R.; Apel, P.; Rousselle, C.; Charles, S.; Sissoko, F.; Kolossa-Gehring, M.; Ougier, E. The European Human Biomonitoring Initiative (HBM4EU): Human biomonitoring guidance values for selected phthalates and a substitute plasticizer. Int. J. Hyg. Environ. Health 2021, 234, 113722. [Google Scholar] [CrossRef]
- Yusà, V.; Fernández, S.F.; Dualde, P.; López, A.; Lacomba, I.; Coscollà, C. Exposure to non-persistent pesticides in the Spanish population using biomonitoring: A review. Environ. Res. 2022, 205, 112437. [Google Scholar] [CrossRef]
- Roca, M.; Miralles-Marco, A.; Ferré, J.; Pérez, R.; Yusà, V. Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain. Environ. Res. 2014, 131, 77–85. [Google Scholar] [CrossRef]
- Fernández, S.F.; Pardo, O.; Corpas-Burgos, F.; Yusà, V. Exposure and cumulative risk assessment to non-persistent pesticides in Spanish children using biomonitoring. Sci. Total Environ. 2020, 746, 140983. [Google Scholar] [CrossRef]
- Suárez, B.; Vela-Soria, F.; Castiello, F.; Olivas-Martinez, A.; Acuña-Castroviejo, D.; Gómez-Vida, J.; Olea, N.; Fernández, M.F.; Freire, C. Organophosphate pesticide exposure, hormone levels, and interaction with PON1 polymorphisms in male adolescents. Sci. Total Environ. 2021, 769, 144563. [Google Scholar] [CrossRef]
- Llop, S.; Murcia, M.; Iñiguez, C.; Roca, M.; González, L.; Yusà, V.; Rebagliato, M.; Ballester, F. Distributions and determinants of urinary biomarkers of organophosphate pesticide exposure in a prospective Spanish birth cohort study. Environ. Health 2017, 16, 46. [Google Scholar] [CrossRef] [Green Version]
- Fernández, S.F.; Pardo, O.; Adam-Cervera, I.; Montesinos, L.; Corpas-Burgos, F.; Roca, M.; Pastor, A.; Vento, M.; Cernada, M.; Yusà, V. Biomonitoring of non-persistent pesticides in urine from lactating mothers: Exposure and risk assessment. Sci. Total Environ. 2020, 699, 134385. [Google Scholar] [CrossRef] [PubMed]
- Garí, M.; González-Quinteiro, Y.; Bravo, N.; Grimalt, J.O. Analysis of metabolites of organophosphate and pyrethroid pesticides in human urine from urban and agricultural populations (Catalonia and Galicia). Sci. Total Environ. 2018, 622–623, 526–533. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committee. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 2012, 10, 2579. [Google Scholar] [CrossRef]
- EFSA Scientific Committee; More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Bennekou, S.H.; Koutsoumanis, K.; Machera, K.; Naegeli, H.; et al. Statement on the derivation of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients. EFSA J. 2021, 19, e06479. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Guidance on Information Requirements and Chemical Safety Assessment. Chapter, R.8: Characterisation of Dose [Concentration]-Response for Human Health; ECHA: Helsinki, Finland, 2012.
- EFSA Scientific Committee. Scientific Opinion on the applicability of the Margin of Exposure approach for the safety assessment of impurities which are both genotoxic and carcinogenic in substances added to food/feed. EFSA J. 2012, 10, 2578. [Google Scholar] [CrossRef]
- Bravo, N.; Peralta, S.; Grimalt, J.O.; Martínez, M.; Rovira, J.; Schuhmacher, M. Organophosphate metabolite concentrations in maternal urine during pregnancy. Environ. Res. 2020, 182, 109003. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; McKenzie, J.F.; Mannetje, A.T.; Cheng, S.; He, C.; Leathem, J.; Pearce, N.; Sunyer, J.; Eskenazi, B.; et al. Pesticide exposure in New Zealand school-aged children: Urinary concentrations of biomarkers and assessment of determinants. Environ. Int. 2022, 163, 107206. [Google Scholar] [CrossRef]
- Dalmolin, S.P.; Dreon, D.B.; Thiesen, F.V.; Dallegrave, E. Biomarkers of occupational exposure to pesticides: Systematic review of insecticides. Environ. Toxicol. Pharmacol. 2020, 75, 103304. [Google Scholar] [CrossRef]
- Trunnelle, K.J.; Bennett, D.H.; Tulve, N.S.; Clifton, M.S.; Davis, M.D.; Calafat, A.M.; Moran, R.; Tancredi, D.J.; Hertz-Picciotto, I. Urinary pyrethroid and chlorpyrifos metabolite concentrations in Northern California families and their relationship to indoor residential insecticide levels, part of the Study of Use of Products and Exposure Related Behavior (SUPERB). Environ. Sci. Technol. 2014, 48, 1931–1939. [Google Scholar] [CrossRef]
Endpoint | EFSA PoD Value mg/kg bw day | HBM-PoD Adults mg/L | HBM-PoD Children mg/L |
---|---|---|---|
Overall (based on DNT LOAEL) | 0.3 1 | 5.94 | 3.96 |
Long-term and maternal toxicity NOAEL | 0.1 | 1.98 | 1.32 |
Short-term NOAEL for red blood cells AChE | 0.1 | 1.98 | 1.32 |
Offspring NOAEL | 1 | 19.81 | 13.21 |
Reproductive NOAEL | 5 | 99.05 | 66.03 |
Carcinogenic NOAEL | 10 | 198.10 | 132.07 |
Population Group | Country | P50 µg/L | P95 µg/L | Upper 95 CI µg/L |
---|---|---|---|---|
Children | Belgium | 1.22 | 3.24 | 5.05 |
Cyprus | 6.52 | 13.82 | 15.74 | |
France | n.r. | n.r. | n.r. | |
Israel | 2.80 | 18.38 | 28.84 | |
Slovenia | 0.61 | 3.08 | 4.92 | |
The Netherlands | 1.13 | 3.49 | 5.55 | |
Adults | France | n.r. | n.r | 0.06 |
Germany | 0.82 | 2.87 | 3.87 | |
Iceland | 0.61 | 2.07 | 3.30 | |
Israel | 2.75 | 11.22 | 55.22 | |
Portugal | 1.86 | 7.35 | 8.37 | |
Switzerland | 0.97 | 3.64 | 4.72 |
Population Group | Endpoint | MoE Range P50 | MoE Range P95 | MoE Range Upper CI P95 |
---|---|---|---|---|
Children 6–11 2014–2020 | Overall LOAEL Long-term Short-term AChE Carcinogenicity | 607–6462 203–2154 203–2154 47,180–215,519 | 215–1287 72–429 72–429 7184–42,926 | 137–804 46–268 46–268 4579–26,824 |
Adults 20–39 2014–2021 | Overall LOAEL Long-term Short-term AChE Carcinogenicity | 2159–7244 720–2415 720–2415 72,010–241,585 | 529–2870 176–957 176–957 17,648–95,701 | 108–1800 36–600 36–600 3587–60,030 |
Study | Endpoint | MoE P50 | MoE P95 | MoE Max |
---|---|---|---|---|
Roca et al. [28] | Overall LOAEL | 1201 | 320 | 33 |
Valencia | Long-term | 400 | 107 | 11 |
Children 6–11 | Short-term AChE | 400 | 107 | 11 |
N = 125; 2010 | Carcinogenicity | 4007 | 1066 | 112 |
Fernandez et al. [29] | Overall LOAEL | 3504 | 357 | 39 |
Valencia | Long-term | 1168 | 119 | 13 |
Children 5–12 | Short-term AChE | 1168 | 119 | 13 |
N = 568; 2016 | Carcinogenicity | 116,876 | 11,920 | 1292 |
Suarez et al. [30] | Overall LOAEL | 247,500 | 58,929 | 4091 |
Andalusia | Long-term | 82,500 | 19,643 | 1364 |
Adolescents 15–17 | Short-term AChE | 82,500 | 19,643 | 1364 |
N = 117; 2017–2019 | Carcinogenicity | 5,282,675 | 1,257,780 | 87,317 |
Llop et al. [31] | Overall LOAEL | 12,122 | 1800 | 51 |
Valencia | Long-term | 4041 | 600 | 17 |
Pregnant women | Short-term AChE | 4041 | 600 | 17 |
N = 573; 2003–2006 | Carcinogenicity | 404,186 | 60,030 | 1689 |
Fernandez et al. [32] | Overall LOAEL | 2970 | 752 | 354 |
Valencia | Long-term | 990 | 251 | 118 |
Lactating women | Short-term AChE | 990 | 251 | 118 |
N = 116; 2015 | Carcinogenicity | 99,050 | 25,076 | 11,792 |
Gari et al., [33] | Overall LOAEL | 2475 | 675 | |
Catalonia | Long-term | 825 | 225 | |
Adults | Short-term AChE | 825 | 225 | |
N = 80; year not reported | Carcinogenicity | 82,542 | 22,511 | |
Gari et al., [33] | Overall LOAEL | 1414 | 297 | |
Catalonia | Long-term | 471 | 99 | |
Farm workers | Short-term AChE | 471 | 99 | |
N = 45; year not reported | Carcinogenicity | 47,167 | 9905 | |
HBM4EU | Overall LOAEL | 3193 | 808 | 710 |
Portugal | Long-term | 1064 | 269 | 237 |
Adults | Short-term AChE | 1064 | 269 | 237 |
N = 296; 2019–2020 | Carcinogenicity | 106,477 | 26,952 | 23,680 |
Study | Population Group | Country/Region | Average Population | High Exposed Group | Highest Individual |
---|---|---|---|---|---|
Roca et al. [28] | Children | ES-Valencia | C | C | All |
Fernandez [29] | Children | ES-Valencia | ST | ST | All |
Suarez et al. [30] | adolescents | ES-Andalusia | ST/C | ||
HBM4EU-aligned studies | Children | Belgium | OA/ST | All | ST |
Children | Cyprus | ST | All | All | |
Children | Israel | All | All | All | |
Children | Netherlands | OA/ST | All | ST | |
Children | Slovenia | OA/ST | All | ST | |
Llop et al. [31] | Pregnant women | ES-Valencia | All | All | |
Fernandez [32] | lactating women | ES-Valencia | All | OA/ST | OA/ST |
Gari et al. [33] | Adults | ES-Catalonia | All | No data | OA/ST |
Gari et al. [33] | farm workers | ES-Catalonia | All | No data | OA/ST |
HBM4EU-aligned studies | Adults | Germany | OA/ST | All | All |
Adults | Iceland | OA/ST | All | All | |
Adults | Israel | All | OA/ST | All | |
Adults | Portugal | OA/LT/ST | OA/ST | OA/ST | |
Adults | Switzerland | OA/LT/ST | All | All |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarazona, J.V.; González-Caballero, M.d.C.; Alba-Gonzalez, M.d.; Pedraza-Diaz, S.; Cañas, A.; Dominguez-Morueco, N.; Esteban-López, M.; Cattaneo, I.; Katsonouri, A.; Makris, K.C.; et al. Improving the Risk Assessment of Pesticides through the Integration of Human Biomonitoring and Food Monitoring Data: A Case Study for Chlorpyrifos. Toxics 2022, 10, 313. https://doi.org/10.3390/toxics10060313
Tarazona JV, González-Caballero MdC, Alba-Gonzalez Md, Pedraza-Diaz S, Cañas A, Dominguez-Morueco N, Esteban-López M, Cattaneo I, Katsonouri A, Makris KC, et al. Improving the Risk Assessment of Pesticides through the Integration of Human Biomonitoring and Food Monitoring Data: A Case Study for Chlorpyrifos. Toxics. 2022; 10(6):313. https://doi.org/10.3390/toxics10060313
Chicago/Turabian StyleTarazona, Jose V., Maria del Carmen González-Caballero, Mercedes de Alba-Gonzalez, Susana Pedraza-Diaz, Ana Cañas, Noelia Dominguez-Morueco, Marta Esteban-López, Irene Cattaneo, Andromachi Katsonouri, Konstantinos C. Makris, and et al. 2022. "Improving the Risk Assessment of Pesticides through the Integration of Human Biomonitoring and Food Monitoring Data: A Case Study for Chlorpyrifos" Toxics 10, no. 6: 313. https://doi.org/10.3390/toxics10060313
APA StyleTarazona, J. V., González-Caballero, M. d. C., Alba-Gonzalez, M. d., Pedraza-Diaz, S., Cañas, A., Dominguez-Morueco, N., Esteban-López, M., Cattaneo, I., Katsonouri, A., Makris, K. C., Halldorsson, T. I., Olafsdottir, K., Zock, J. -P., Dias, J., Decker, A. D., Morrens, B., Berman, T., Barnett-Itzhaki, Z., Lindh, C., ... Castaño, A. (2022). Improving the Risk Assessment of Pesticides through the Integration of Human Biomonitoring and Food Monitoring Data: A Case Study for Chlorpyrifos. Toxics, 10(6), 313. https://doi.org/10.3390/toxics10060313