Methylmercury Risk Assessment Based on European Human Biomonitoring Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and HBM Dataset
2.2. RA Based on Integrating Data from European HBM Surveys
2.3. RA Based on EFSA (2012) Approach
3. Results and Discussion
3.1. HBM Dataset
3.2. RA Based on Integrating Data from European HBM Surveys
3.3. RA Based on EFSA (2012) Approach
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Mercury; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 1999.
- Dórea, J.G. Persistent, bioaccumulative and toxic substances in fish: Human health considerations. Sci. Total Environ. 2008, 400, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Marín, S.; Pardo, O.; Baguena, R.; Font, G.; Yusà, V. Dietary exposure to trace elements and health risk assessment in the region of Valencia, Spain: A total diet study. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 228–240. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- European Food Safety Authority (EFSA). Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef]
- World Health Organization (WHO). The World Health Report—Primary Health Care: Now More Than Ever; WHO: Geneva, Switzerland, 2008.
- National Research Council (US) Committee on the Toxicological Effects of Methylmercury. Toxicological Effects of Methylmercury; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Weihe, P.; Grandjean, P. Cohort studies of Faroese children concerning potential adverse health effects after the mothers’ exposure to marine contaminants during pregnancy. Acta Vet. Scand. 2012, 54, 1. [Google Scholar] [CrossRef]
- Grandjean, P.; Weihe, P.; White, R.F.; Debes, F.; Araki, S.; Yokoyama, K.; Murata, K.; Sørensen, N.; Dahl, R.; Jørgensen, P.J. Cognitive Deficit in 7-Year-Old Children with Prenatal Exposure to Methylmercury. Neurotoxicol. Teratol. 1997, 19, 417–428. [Google Scholar] [CrossRef]
- Van Wijngaarden, E.; Thurston, S.W.; Myers, G.J.; Harrington, D.; Cory-Slechta, D.A.; Strain, J.; Watson, G.; Zareba, G.; Love, T.; Henderson, J.; et al. Methyl mercury exposure and neurodevelopmental outcomes in the Seychelles Child Development Study Main cohort at age 22 and 24years. Neurotoxicol. Teratol. 2016, 59, 35–42. [Google Scholar] [CrossRef]
- Schulz, C.; Angerer, J.; Ewers, U.; Kolossa-Gehring, M. The German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 2007, 210, 373–382. [Google Scholar] [CrossRef]
- United Nations. Minamata Convention on Mercury. 2013. Available online: https://www.unep.org/resources/report/minamata-convention-mercury (accessed on 16 June 2022).
- Castaño, A.; Cutanda, F.; Esteban, M.; Pärt, P.; Navarro, C.; Gómez, S.; Rosado, M.; López, A.; López, E.; Exley, K.; et al. Fish consumption patterns and hair mercury levels in children and their mothers in 17 EU countries. Environ. Res. 2015, 141, 58–68. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Water Quality Criterion for the Protection of Human Health: Methylmercury; EPA-823-R-01e001; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 2007, 210, 201–228. [Google Scholar] [CrossRef]
- Kim, B.G.; Jo, E.M.; Kim, G.Y.; Kim, D.S.; Kim, Y.M.; Kim, R.B.; Suh, B.S.; Hong, Y.S. Analysis of methylmercury concentration in the blood of Koreans by using cold vapor atomic fluorescence spectrophotometry. Ann. Lab. Med. 2012, 32, 31–37. [Google Scholar] [CrossRef]
- Cernichiari, E.; Toribara, T.Y.; Liang, L.; Marsh, D.O.; Berlin, M.W.; Myers, G.J.; Cox, C.; Shamlaye, C.F.; Choisy, O.; Davidson, P. The biological monitoring of mercury in the Seychelles study. NeuroToxicology 1995, 16, 613–628. [Google Scholar]
- Miklavčič, A.; Cuderman, P.; Mazej, D.; Tratnik, J.S.; Krsnik, M.; Planinšek, P.; Osredkar, J.; Horvat, M. Biomarkers of low-level mercury exposure through fish consumption in pregnant and lactating Slovenian women. Environ. Res. 2011, 111, 1201–1207. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidance for Identifying Populations at Risk from Mercury Exposure; UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases: Geneva, Switzerland, 2008; p. 176.
- Esteban-López, M.; Arrebola, J.P.; Juliá, M.; Pärt, P.; Soto, E.; Cañas, A.; Pedraza-Díaz, S.; González-Rubio, J.; Castaño, A. Selecting the best non-invasive matrix to measure mercury exposure in human biomonitoring surveys. Environ. Res. 2022, 204 Pt D, 112394. [Google Scholar] [CrossRef]
- Casteleyn, L.; Biot, P.; Viso, A.C. From Human biomarkers to human biomonitoring in environmental health in Europe—Highlights of the Conference held in Paris on 4–5 November 2008. Bull. Epidemiol. Hebd. 2009, 16, 2–5. [Google Scholar]
- Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.; et al. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int. J. Hyg. Environ. Health 2019, 222, 727–737. [Google Scholar] [CrossRef]
- Ganzleben, C.; Antignac, J.P.; Barouki, R.; Castaño, A.; Fiddicke, U.; Klánová, J.; Lebret, E.; Olea, N.; Sarigiannis, D.; Schoeters, G.R.; et al. Human biomonitoring as a tool to support chemicals regulation in the European Union. Int. J. Hyg. Environ. Health 2017, 220, 94–97. [Google Scholar] [CrossRef]
- Scoping Document on Mercury and Its Organic Compounds. Available online: https://www.hbm4eu.eu/hbm4eu-substances/mercury/ (accessed on 9 March 2022).
- St-Amand, A.; Werry, K.; Aylward, L.L.; Hays, S.M.; Nong, A. Screening of population level biomonitoring data from the Canadian Health Measures Survey in a risk-based context. Toxicol. Lett. 2014, 231, 126–134. [Google Scholar] [CrossRef]
- Coscollà, C.; Sánchez, A.; Corpas-Burgos, F.; López, A.; Pérez, R.; Kuligowski, J.; Vento, M.; Yusà, V. Exposure and Risk Assessment of Hg, Cd, As, Tl, Se, and Mo in Women of Reproductive Age Using Urinary Biomonitoring. Environ. Toxicol. Chem. 2021, 40, 1477–1490. [Google Scholar] [CrossRef]
- Schoeters, G.; Colles, A.; Hond, E.D.; Croes, K.; Vrijens, J.; Baeyens, W.; Nelen, V.; Mieroop, E.V.D.; Covaci, A.; Bruckers, L.; et al. Chapter 2F the flemish environment and health study (FLEHS)—Second survey (2007–2011): Establishing reference values for biomarkers of exposure in the flemish population. In Biomarkers and Human Biomonitoring; The Royal Society of Chemistry: London, UK, 2012; Volume 1, pp. 135–165. [Google Scholar]
- Hond, E.D.; Govarts, E.; Willems, H.; Smolders, R.; Casteleyn, L.; Kolossa-Gehring, M.; Schwedler, G.; Seiwert, M.; Fiddicke, U.; Castaño, A.; et al. First Steps toward Harmonized Human Biomonitoring in Europe: Demonstration Project to Perform Human Biomonitoring on a European Scale. Environ. Health Perspect. 2015, 123, 255–263. [Google Scholar] [CrossRef]
- Batáriová, A.; Spěváčková, V.; Beneš, B.; Čejchanová, M.; Šmíd, J.; Černá, M. Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. Int. J. Hyg. Environ. Health 2006, 209, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Puklová, V.; Krsková, A.; Černá, M.; Čejchanová, M.; Řehůřková, I.; Ruprich, J.; Kratzer, K.; Kubínová, R.; Zimová, M. The mercury burden of the Czech population: An integrated approach. Int. J. Hyg. Environ. Health 2010, 213, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Czech Republic National Institute of Public Health. Environmental Health Monitoring System in the Czech Republic—Summary Report, 2015, 1st ed.; TIGIS: Prague, Czech, 2016; ISBN 978-80-7071-352-5. [Google Scholar]
- Czech Republic National Institute of Public Health. Environmental Health Monitoring System in the Czech Republic—Summary Report, 2016, 1st ed.; TIGIS: Prague, Czech, 2017; ISBN 978-80-7071-365-5. [Google Scholar]
- Schulz, C.; Conrad, A.; Becker, K.; Kolossa-Gehring, M.; Seiwert, M.; Seifert, B. Twenty years of the German Environmental Survey (GerES): Human biomonitoring—Temporal and spatial (West Germany/East Germany) differences in population exposure. Int. J. Hyg. Environ. Health 2007, 210, 271–297. [Google Scholar] [CrossRef] [PubMed]
- Pino, A.; Amato, A.; Alimonti, A.; Mattei, D.; Bocca, B. Human biomonitoring for metals in Italian urban adolescents: Data from Latium Region. Int. J. Hyg. Environ. Health 2012, 215, 185–190. [Google Scholar] [CrossRef]
- Valent, F.; Mariuz, M.; Bin, M.; Little, D.; Mazej, D.; Tognin, V.; Tratnik, J.; McAfee, A.J.; Mulhern, M.S.; Parpinel, M.; et al. Associations of Prenatal Mercury Exposure From Maternal Fish Consumption and Polyunsaturated Fatty Acids With Child Neurodevelopment: A Prospective Cohort Study in Italy. J. Epidemiol. 2013, 23, 360–370. [Google Scholar] [CrossRef]
- Tratnik, J.S.; Falnoga, I.; Mazej, D.; Kocman, D.; Fajon, V.; Jagodic, M.; Stajnko, A.; Trdin, A.; Šlejkovec, Z.; Jeran, Z.; et al. Results of the first national human biomonitoring in Slovenia: Trace elements in men and lactating women, predictors of exposure and reference values. Int. J. Hyg. Environ. Health 2019, 222, 563–582. [Google Scholar] [CrossRef]
- Trdin, A.; Falnoga, I.; Fajon, V.; Živković, I.; Tratnik, J.S.; Prpić, I.; Špirić, Z.; Horvat, M. Mercury speciation in meconium and associated factors. Environ. Res. 2019, 179, 108724. [Google Scholar] [CrossRef]
- Batista, J.; Schuhmacher, M.; Domingo, J.; Corbella, J. Mercury in hair for a child population from Tarragona Province, Spain. Sci. Total Environ. 1996, 193, 143–148. [Google Scholar] [CrossRef]
- Castaño, A.; Pedraza-Díaz, S.; Cañas, A.; Pérez-Gómez, B.; Ramos, J.; Bartolomé, M.; Pärt, P.; Soto, E.; Motas, M.; Navarro, C.; et al. Mercury levels in blood, urine and hair in a nation-wide sample of Spanish adults. Sci. Total Environ. 2019, 670, 262–270. [Google Scholar] [CrossRef]
- Llop, S.; Murcia, M.; Amorós, R.; Julvez, J.; Santa-Marina, L.; Soler-Blasco, R.; Rebagliato, M.; Iñiguez, C.; Aguinagalde, X.; Iriarte, G.; et al. Postnatal exposure to mercury and neuropsychological development among preschooler children. Eur. J. Epidemiol. 2020, 35, 259–271. [Google Scholar] [CrossRef]
- Pérez, R.; Suelves, T.; Molina, Y.; Corpas-Burgos, F.; Yusà, V.; on behalf of the BIOVAL task force. Biomonitoring of mercury in hair of children living in the Valencian Region (Spain). Exposure and risk assessment. Chemosphere 2018, 217, 558–566. [Google Scholar] [CrossRef]
- Yusà, V.; Pérez, R.; Suelves, T.; Corpas-Burgos, F.; Gormáz, M.; Dualde, P.; Coscolla, C.; Quiles, J.; Roca, M.; Vento, M. Biomonitoring of mercury in hair of breastfeeding mothers living in the Valencian Region (Spain). Levels and predictors of exposure. Chemosphere 2017, 187, 106–113. [Google Scholar] [CrossRef]
- Bocca, B.; Ruggieri, F.; Pino, A.; Rovira, J.; Calamandrei, G.; Mirabella, F.; Martínez, M.; Domingo, J.L.; Alimonti, A.; Schuhmacher, M. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part B: Predictors of exposure. Environ. Res. 2020, 182, 109108. [Google Scholar] [CrossRef]
- Bocca, B.; Ruggieri, F.; Pino, A.; Rovira, J.; Calamandrei, G.; Martínez, M.Á.; Domingo, J.L.; Alimonti, A.; Schuhmacher, M. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ. Res. 2019, 177, 108599. [Google Scholar] [CrossRef]
- Almerud, P.; Zamaratskaia, G.; Lindroos, A.K.; Bjermo, H.; Andersson, E.M.; Lundh, T.; Ankarberg, E.H.; Lignell, S. Cadmium, total mercury, and lead in blood and associations with diet, sociodemographic factors, and smoking in Swedish adolescents. Environ. Res. 2021, 197, 110991. [Google Scholar] [CrossRef]
- Esteban, M.; Schindler, B.K.; Jiménez, J.A.; Koch, H.M.; Angerer, J.; Rosado, M.; Gómez, S.; Casteleyn, L.; Kolossa-Gehring, M.; Becker, K.; et al. Mercury analysis in hair: Comparability and quality assessment within the transnational COPHES/DEMOCOPHES project. Environ. Res. 2015, 141, 24–30. [Google Scholar] [CrossRef]
- Budtz-Jørgensen, E.; Grandjean, P.; Jørgensen, P.J.; Weihe, P.; Keiding, N. Association between mercury concentrations in blood and hair in methylmercury-exposed subjects at different ages. Environ. Res. 2004, 95, 385–393. [Google Scholar] [CrossRef]
- Packull-McCormick, S.; Ratelle, M.; Lam, C.; Napenas, J.; Bouchard, M.; Swanson, H.; Laird, B.D. Hair to blood mercury concentration ratios and a retrospective hair segmental mercury analysis in the Northwest Territories, Canada. Environ. Res. 2021, 203, 111800. [Google Scholar] [CrossRef]
- Kirk, L.E.; Jørgensen, J.S.; Nielsen, F.; Grandjean, P. Public health benefits of hair-mercury analysis and dietary advice in lowering methylmercury exposure in pregnant women. Scand. J. Public Health 2017, 45, 444–451. [Google Scholar] [CrossRef]
- Namorado, S.; Assunção, R.; Santiago, S.; Esteban-López, M.; Domínguez-Morueco, N. HBM4EU-MOM: Intervene to raise awareness to specific dietary recommendations and reduce prenatal exposure to mercury. In Proceedings of the 33rd Annual Conference of the International Society for Environmental Epidemiology, Online, 23–26 August 2021. E-poster No. P-473. [Google Scholar]
- Jacobs, S.; Sioen, I.; Jacxsens, L.; Domingo, J.L.; Sloth, J.J.; Marques, A.; Verbeke, W. Risk assessment of methylmercury in five European countries considering the national seafood consumption patterns. Food Chem. Toxicol. 2017, 104, 26–34. [Google Scholar] [CrossRef]
- Schartup, A.; Thackray, C.P.; Qureshi, A.; Dassuncao, C.; Gillespie, K.; Hanke, A.; Sunderland, E.M. Climate change and overfishing increase neurotoxicant in marine predators. Nature 2019, 572, 648–650. [Google Scholar] [CrossRef]
Country | Study | Year | Population Age (N) | Hg | MeHg | Refs. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Blood (µg/L) | Hair (μg/g) | Blood (µg/L) | Hair (μg/g) | |||||||||
GM | P95 | GM | P95 | GM | P95 | GM | P95 | |||||
Belgium | FLESH | 2007–2011 | Adolescents 14–15 y (206) | − | − | 0.19 | − | − | − | 0.12 | − | [27] |
Mothers 20–40 y (242) | − | − | 0.35 | − | − | − | 0.26 | − | ||||
DEMOCOPHES-BE | 2010–2012 | Children 6–11 y (127) | − | − | 0.20 | − | − | − | − | − | [28] | |
Mothers <45 y (127) | − | − | 0.37 | − | − | − | − | − | ||||
Cyprus | DEMOCOPHES-CY | 2010–2012 | Children 6–11 y (60) | − | − | 0.33 | − | − | − | − | − | [28] |
Mothers <45 y (60) | − | − | 0.46 | − | − | − | − | − | ||||
Czech Republic | CZ-HBM | 2001–2003 | Children 8–10 y (333) | 0.43 | 1.44 | − | − | − | − | − | − | [29] |
CZ-HBM | 1996–2008 | Children 8–10 y (344 a/347) * | 1.47 | 0.52 | − | − | − | − | [30] | |||
DEMOCOPHES-CZ | 2010–2012 | Children 6–11 y (120) | − | − | 0.10 | − | − | − | − | − | [28] | |
Mothers <45 y (120) | − | − | 0.16 | − | − | − | − | − | ||||
CZ-HBM | 2015 | Women 18–50 y (n.a.) | 0.80 | 0.90 | − | − | − | − | − | − | [31] | |
CZ-HBM | 2016 | Children 5 & 9 y (419) | 0.32 | 1.03 | − | − | − | − | − | − | [32] | |
Denmark | DEMOCOPHES-DK | 2010–2012 | Children 6–11 y (144) | − | − | 0.25 | − | − | − | − | − | [28] |
Mothers <45 y (144) | − | − | 0.39 | − | − | − | − | − | ||||
Germany | GerES II | 1990–1992 | Children 6–17 y (712) | 0.33 | 1.40 | − | − | − | − | − | − | [33] |
GerES IV | 2003–2006 | Children 3–14 y (1240) | 0.23 | 1.00 | − | − | − | − | − | − | [33] | |
DEMOCOPHES-DE | 2010–2012 | Children 6–11 y (120) | − | − | 0.06 | − | − | − | − | − | [28] | |
Mothers <45 y (120) | − | − | 0.11 | − | − | − | − | − | ||||
Hungary | DEMOCOPHES-HU | 2010–2012 | Children 6–11 y (119) | − | − | 0.03 | − | − | − | − | − | [28] |
Mothers <45 y (119) | − | − | 0.04 | − | − | − | − | − | ||||
Ireland | DEMOCOPHES-IE | 2010–2012 | Children 6–11 y (120) | − | − | 0.10 | − | − | − | − | − | [28] |
Mothers <45 y (120) | − | − | 0.16 | − | − | − | − | − | ||||
Italy | PROBE | 2008–2010 | Adolescents 13–15 y (252) | 0.94 | 3.55 | − | − | − | − | − | − | [34] |
− | 2007–2009 | Pregnant women n.a. (606 a/604 b/236 c/220 d) | 3.14 | − | 1.06 | − | 4.46 | − | 1.67 | − | [35] | |
Luxembourg | DEMOCOPHES -LU | 2010–2012 | Children 6–11 y (56) | − | − | 0.18 | − | − | − | − | − | [28] |
Mothers <45 y (56) | − | − | 0.39 | − | − | − | − | − | ||||
Poland | DEMOCOPHES-PL | 2010–2012 | Children 6–11 y (120) | − | − | 0.07 | − | − | − | − | − | [28] |
Mothers <45 y (120) | − | − | 0.14 | − | − | − | − | − | ||||
Portugal | DEMOCOPHES-PT | 2010–2012 | Children 6–11 y (120) | − | − | 1.03 | − | − | − | − | − | [28] |
Mothers <45 y (120) | − | − | 1.20 | − | − | − | − | − | ||||
Romania | DEMOCOPHES-RO | 2010–2012 | Children 6–11 y (120) | − | − | 0.09 | − | − | − | − | − | [28] |
Mothers <45 y (120) | − | − | 0.10 | − | − | − | − | − | ||||
Slovakia | DEMOCOPHES-SK | 2010–2012 | Children 6–11 y (129) | − | − | 0.09 | − | − | − | − | − | [28] |
Mothers <45 y (129) | − | − | 0.13 | − | − | − | − | − | ||||
Slovenia | SLO-HBM | 2008–2009, 2011–2014 | Women 19–39 y (535 a/503 b) | 1.1 | 4.06 | 0.27 | 0.99 | − | − | − | − | [36] |
PHIME project | 2011–2014 | Children 6–11 y (174) | 0.77 | − | 0.18 | − | − | − | − | − | [37] | |
Women 20–35 y (127) | 1.04 | − | 0.24 | − | − | − | − | − | ||||
DEMOCOPHES-SI | 2010–2012 | Children 6–11 y (120) | − | − | 0.17 | − | − | − | − | − | [28] | |
Mothers <45 y (120) | − | − | 0.23 | − | − | − | − | − | ||||
Spain | − | 1996 | Children 6–16 y (233) | − | − | 0.77 | − | − | − | − | − | [38] |
BIOAMBIENT.ES | 2009–2010 | Women >18 y (918 a/327 b) | 6.27 | 16.90 | 1.87 | 4.6 | − | − | − | − | [39] | |
INMA Project | 2008–2012 | Children 4–5 y (1252) | − | − | 0.98 | − | − | − | − | − | [40] | |
DEMOCOPHES-ES | 2010–2012 | Children 6–11 y (120) | − | − | 0.88 | − | − | − | − | − | [28] | |
Mothers <45 y (120) | − | − | 1.49 | − | − | − | − | − | ||||
BIOVAL programme | 2016 | Children 6–11 y (611) | − | − | 0.79 | 3.25 | − | − | − | − | [41] | |
BETTERMILK Project | 2017 | Breastfeeding mothers 20–45 y (120) | − | − | 1.22 | − | − | − | − | − | [42] | |
HEALS-EXHES | 2016–2017 | Children cord blood (53) | 2.87 | 7.91 | − | − | − | − | − | − | [43,44] | |
Mothers GM 34 y (53) | 2.05 | 6.98 | − | − | − | − | − | − | ||||
Sweden | DEMOCOPHES-SE | 2010–2012 | Children 6–11 y (100) | − | − | 0.18 | − | − | − | − | − | [28] |
Mothers <45 y (100) | − | − | 0.25 | − | − | − | − | − | ||||
− | 2016–2017 | Children/adolescents 12, 15 & 18 y (1099) | 0.66 | 2.10 | − | − | − | − | − | − | [45] | |
Switzerland | DEMOCOPHES-CH | 2010–2012 | Children 6–11 y (120) | − | − | 0.08 | − | − | − | − | − | [28] |
Mothers <45 y (120) | − | − | 0.15 | − | − | − | − | − | ||||
United Kingdom | DEMOCOPHES-UK | 2010–2012 | Children 6–11 y (21) | − | − | 0.19 | − | − | − | − | − | [28] |
Mothers <45 y (21) | − | − | 0.15 | − | − | − | − | − | ||||
17 EU countries | DEMOCOPHES-17 | 2010–2012 | Children 6–11 y (1836) | − | − | 0.14 | 1.29 | − | − | − | − | [28] |
Mothers <45 y (1839) | − | − | 0.23 | 1.89 | − | − | − | − |
DEMOCOPHES | Other HBM Studies | |||
---|---|---|---|---|
Children | Mothers | Children/Adolescents | Women | |
(17 Studies) | (17 Studies) | (13 Studies) | (9 Studies) | |
Range of GM | 0.09–3.69 | 0.14–5.31 | 0.23–3.50 | 0.80–6.27 |
Range of P95 | − | − | 1.03–11.6 | 0.90–16.9 |
GMDEMOCOPHES-17 | 0.51 | 0.82 | − | − |
P95DEMOCOPHES-17 | 4.60 | 6.75 | − | − |
Children/Adolescents | Women of Childbearing Age | |||
---|---|---|---|---|
European HBM Studies | DEMOCOPHES | European HBM Studies | DEMOCOPHES | |
HQrange GM | 0.05 to 0.70 | 0.02 to 0.74 | 0.16 to 1.25 | 0.03 to 1.06 |
HQrange P95 | 0.21 to 2.32 | − | 0.18 to 3.38 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Morueco, N.; Pedraza-Díaz, S.; González-Caballero, M.d.C.; Esteban-López, M.; de Alba-González, M.; Katsonouri, A.; Santonen, T.; Cañas-Portilla, A.; Castaño, A. Methylmercury Risk Assessment Based on European Human Biomonitoring Data. Toxics 2022, 10, 427. https://doi.org/10.3390/toxics10080427
Domínguez-Morueco N, Pedraza-Díaz S, González-Caballero MdC, Esteban-López M, de Alba-González M, Katsonouri A, Santonen T, Cañas-Portilla A, Castaño A. Methylmercury Risk Assessment Based on European Human Biomonitoring Data. Toxics. 2022; 10(8):427. https://doi.org/10.3390/toxics10080427
Chicago/Turabian StyleDomínguez-Morueco, Noelia, Susana Pedraza-Díaz, María del Carmen González-Caballero, Marta Esteban-López, Mercedes de Alba-González, Andromachi Katsonouri, Tiina Santonen, Ana Cañas-Portilla, and Argelia Castaño. 2022. "Methylmercury Risk Assessment Based on European Human Biomonitoring Data" Toxics 10, no. 8: 427. https://doi.org/10.3390/toxics10080427
APA StyleDomínguez-Morueco, N., Pedraza-Díaz, S., González-Caballero, M. d. C., Esteban-López, M., de Alba-González, M., Katsonouri, A., Santonen, T., Cañas-Portilla, A., & Castaño, A. (2022). Methylmercury Risk Assessment Based on European Human Biomonitoring Data. Toxics, 10(8), 427. https://doi.org/10.3390/toxics10080427