Exposure Routes and Health Risks Associated with Pesticide Application
Abstract
:1. Introduction
2. Pesticide Application Methods
2.1. Hydraulic Sprayers
2.2. Backpack Sprayers
2.3. Basal Trunk Sprayers
2.4. Aerial Sprayers
3. Routes of Pesticide Exposure
4. Human Health Effects Related to Pesticide Exposure
4.1. Acute Toxic Effects
4.2. Chronic Disease
5. The Impact of Pesticide Application Methods on Exposure and Health Risks Associated with Pesticide Use
6. General Health Problems Associated with Pesticide Exposure in Developing Countries
7. Methods of Health Risk Assessment Regarding Pesticide Application
7.1. Deterministic Risk Assessment
7.2. Probabilistic Risk Assessment
7.2.1. Risk Characterization and Quantification Using the Probabilistic Approach
7.2.2. Monte Carlo Health Risk Assessment
7.2.3. Overall Risk Probability Health Risk Assessment
8. Conclusions and New Directions
8.1. Conclusions
8.2. New Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Strassemeyer, J.; Daehmlow, D.; Dominic, A.; Lorenz, S.; Golla, B. Synops-Web, An Online Tool for Environmental Risk Assessment to Evaluate Pesticide Strategies on Field Level. Crop Prot. 2017, 97, 28–44. [Google Scholar] [CrossRef]
- Taufeeq, A.; Baqar, M.; Sharif, F.; Mumtaz, M.; Ullah, S.; Aslam, S.; Qadir, A.; Majid, M.; Jun, H. Assessment of Organochlorine Pesticides and Health Risk in Tobacco Farming Associated with River Barandu of Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 38774–38791. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.P. Pesticides, Environment, and Food Safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Chang, C.; Chen, M.; Gao, J.; Luo, J.; Wu, K.; Dong, T.; Zhou, K.; He, X.; Hu, W.; Wu, W. Current Pesticide Profiles in Blood Serum of Adults in Jiangsu Province of China and A Comparison with Other Countries. Environ. Int. 2017, 102, 213–222. [Google Scholar] [CrossRef]
- Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.; Alarcón, R.; López-Guarnido, O. Toxic Effects of Pesticide Mixtures At A Molecular Level: Their Relevance to Human Health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef]
- Tudi, M.; Atabila, A.; Ruan, H.D.; Wang, L.; Lyu, J.; Tong, S.; Yu, Q.J.; Sadler, R.; Phung, D.T.; Connell, D. Natural Dynamics and Residues of Pymetrozine for Typical Rice-Growing Areas of China. Ecotoxicol. Environ. Saf. 2022, 232, 113230. [Google Scholar] [CrossRef]
- Abdel-Halim, K.Y.; Osman, S.R. Cytotoxicity and Oxidative Stress Responses of Imidacloprid and Glyphosate in Human Prostate Epithelial Wpm-Y. 1 Cell Line. J. Toxicol. 2020, 4364650. [Google Scholar] [CrossRef]
- Lozier, M.J.; Montoya, J.F.L.; Del Rosario, A.; Martinez, E.P.; Fuortes, L.; Cook, T.M.; Sanderson, W.T. Personal Air Sampling and Risks of Inhalation Exposure During Atrazine Application in Honduras. Int. Arch. Occup. Environ. Health 2013, 86, 479–488. [Google Scholar] [CrossRef]
- Macfarlane, E.; Carey, R.; Keegel, T.; El-Zaemay, S.; Fritschi, L. Dermal Exposure Associated with Occupational End Use of Pesticides and The Role of Protective Measures. Saf. Health Work 2013, 4, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and The Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Tudi, M.; Wang, L.; Ruan, H.D.; Tong, S.; Atabila, A.; Sadler, R.; Yu, Q.J.; Connell, D.; Phung, D.T. Environmental Monitoring and Potential Health Risk Assessment from Pymetrozine Exposure Among Communities in Typical Rice-Growing Areas of China. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Anderson, S.E.; Meade, B.J. Potential Health Effects Associated with Dermal Exposure to Occupational Chemicals. Environ. Health Insights 2014, 8, EHI-S15258. [Google Scholar] [CrossRef] [Green Version]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Syed, J.H.; Cheng, Z.; Li, J.; Zhang, G.; Jones, K.C. Current Status of Persistent Organic Pesticides Residues in Air, Water, and Soil, and Their Possible Effect on Neighboring Countries: A Comprehensive Review of India. Sci. Total Environ. 2015, 511, 123–137. [Google Scholar] [CrossRef]
- Phung, D.T.; Connell, D.; Miller, G.; Rutherford, S.; Chu, C. Needs Assessment for Reducing Pesticide Risk: A Case Study with Farmers in Vietnam. J. Agromedicine 2013, 18, 293–303. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature Review: Impact of Climate Change on Pesticide Use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- Pan, L.; Sun, J.; Li, Z.; Zhan, Y.; Xu, S.; Zhu, L. Organophosphate Pesticide in Agricultural Soils from The Yangtze River Delta of China: Concentration, Distribution, and Risk Assessment. Environ. Sci. Pollut. Res. 2018, 25, 4–11. [Google Scholar] [CrossRef]
- Matthews, G. Pesticide Application Methods; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hanafi, A.; Hindy, M.; Ghani, S.A. Effect of Spray Application Techniques on Spray Deposits and Residues of Bifenthrin in Peas Under Field Conditions. J. Pestic. Sci. 2016, 41, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Gish, T.; Isensee, A.; Nash, R.; Helling, C. Impact of Pesticides on Shallow Groundwater Quality. Trans. Asae 1991, 34, 1745–1753. [Google Scholar] [CrossRef]
- Weirich Neto, P.H.; Meer, R.W.; Vink, P.; Justino, A.; Garcia, L.C. Automatic and Manual Spray Bar Sections Control. Eng. Agrícola 2014, 34, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Xiongkui, H.; Bonds, J.; Herbst, A.; Langenakens, J. Recent Development of Unmanned Aerial Vehicle for Plant Protection in East Asia. Int. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar]
- Sumner, H.R.; Herzog, G.A. Assessing the Effectiveness of Air-Assisted and Hydraulic Sprayers in Cotton Via Leaf Bioassay. J. Cotton Sci. 2000, 4, 79–83. [Google Scholar]
- Gil, E.; Salcedo, R.; Soler, A.; Ortega, P.; Llop, J.; Campos, J.; Oliva, J. Relative Efficiencies of Experimental and Conventional Foliar Sprayers and Assessment of Optimal Lwa Spray Volumes in Trellised Wine Grapes. Pest Manag. Sci. 2021, 77, 2462–2476. [Google Scholar] [CrossRef]
- Blanco, L.E.; Aragon, A.; Lundberg, I.; Liden, C.; Wesseling, C.; Nise, G. Determinants of Dermal Exposure Among Nicaraguan Subsistence Farmers During Pesticide Applications with Backpack Sprayers. Ann. Occup. Hyg. 2005, 49, 17–24. [Google Scholar]
- Konthonbut, P.; Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Yoosook, W.; Woskie, S. Paraquat Exposure of Backpack Sprayers in Agricultural Area in Thailand. Hum. Ecol. Risk Assess. 2020, 26, 2798–2811. [Google Scholar] [CrossRef]
- Thouvenin, I.; Bouneb, F.; Mercier, T. Operator Dermal Exposure and Individual Protection Provided by Personal Protective Equipment During Application Using a Backpack Sprayer in Vineyards. J. Verbrauch. Lebensm. 2016, 11, 325–336. [Google Scholar] [CrossRef]
- Gangstad, E.O. Practical Management for Rights-of-Way Herbicide Application. In Woody Brush Control; CRC-Press: Boca Raton, FL, USA, 1989; p. 31. [Google Scholar]
- Kuhns, M.R. Getting Chemicals into Trees Without Spraying. 2011. Available online: https://digitalcommons.usu.edu/extension_curall/1188 (accessed on 8 June 2022).
- Li, H.; He, Y.J.; Qin, C.B.; Liu, D.Q.; Zhang, K.F. Ecological Analysis on Spray Performance of Multi-Rotor Unmanned Aerial Sprayer in Soybean Field. Ekoloji 2019, 28, 4573–4579. [Google Scholar]
- Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Coverage and Drift Potential Associated with Nozzle and Speed Selection for Herbicide Applications Using an Unmanned Aerial Sprayer. Weed Technol. 2020, 34, 235–240. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on The Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Singh, T.; Singh, D.K. Phytoremediation of Organochlorine Pesticides: Concept, Method, and Recent Developments. Int. J. Phytoremediat. 2017, 19, 834–843. [Google Scholar] [CrossRef]
- Scholtz, M.; Bidleman, T. Modelling of The Long-Term Fate of Pesticide Residues in Agricultural Soils and Their Surface Exchange with The Atmosphere: Part Ii. Projected Long-Term Fate of Pesticide Residues. Sci. Total Environ. 2007, 377, 61–80. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Li, J. A 1961–2010 Record of Fertilizer Use, Pesticide Application and Cereal Yields: A Review. Agron. Sustain. Dev. 2015, 35, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Tefera, Y.M.; Gaskin, S.; Thredgold, L.; Pisaniello, D. The Role of Formulation Co-Ingredients in Skin and Glove Barrier Protection Against Organophosphate Insecticides. Pest Manag. Sci. 2022, 78, 177–183. [Google Scholar] [CrossRef]
- Simas, J.M.M.; Yamauchi, L.Y.; De Alencar, M.D.B. Risk Factors Associated Among Respiratory Health and Banana Farming. Arch. Environ. Occup. Health 2021, 76, 181–187. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Hongsibsong, S.; Naksata, M.; Naksata, W. Insecticide Filtration Efficiency of Respiratory Protective Equipment Commonly Worn by Farmers in Thailand. Int. J. Environ. Res. Public Health 2021, 18, 2624. [Google Scholar] [CrossRef]
- Yan, X.J.; Zhou, Y.Y.; Liu, X.H.; Yang, D.B.; Yuan, H.Z. Minimizing Occupational Exposure to Pesticide and Increasing Control Efficacy of Pests by Unmanned Aerial Vehicle Application on Cowpea. Appl. Sci. 2021, 11, 9579. [Google Scholar] [CrossRef]
- Liu, S.Y.; Jin, Q.; Ren, R.; Zhu, G.N. Risk Assessment of Endocrine-Disrupting Pesticides Exposure Through Consumption ofcarassius Auratuscollected from Qiantang River, China. Hum. Ecol. Risk Assess. 2021, 27, 865–875. [Google Scholar] [CrossRef]
- Korucu, M.K.; Elibol, P.S.; Isleyen, M. An Environmental Risk Assessment for A Ddx-Contaminated Agricultural Area in Turkey: Soil vs. Plant or Human Vs. Animal. Environ. Sci. Pollut. Res. 2021, 28, 50127–50140. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahman, M.R.; Prodhan, M.D.H.; Sarker, D.; Rahman, M.M.; Uddin, M.K. Human Health Risk Assessment of Pesticide Residues in Pointed Gourd Collected from Retail Markets of Dhaka City, Bangladesh. Accredit. Qual. Assur. 2021, 26, 201–210. [Google Scholar] [CrossRef]
- Saeed, M.F.; Shaheen, M.; Ahmad, I.; Zakir, A.; Nadeem, M.; Chishti, A.A.; Shahid, M.; Bakhsh, K.; Damalas, C.A. Pesticide Exposure in The Local Community of Vehari District in Pakistan: An Assessment of Knowledge and Residues in Human Blood. Sci. Total Environ. 2017, 587, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Kalsoom, K.S.; Ihsanullah, R.I.U.; Muhammad, S. Human Health Risk Assessment Through Consumption of Organophosphate Pesticide-Contaminated Water of Peshawar Basin, Pakistan. Expo. Health 2018, 10, 259–272. [Google Scholar] [CrossRef]
- Sampath, S.; Shanmugam, G.; Selvaraj, K.K.; Ramaswamy, B.R. Spatio-Temporal Distribution of Polycyclic Aromatic Hydrocarbons (Pahs) in Atmospheric Air of Tamil Nadu, India, and Human Health Risk Assessment. Environ. Forensics 2015, 16, 76–87. [Google Scholar] [CrossRef]
- Pedroso, T.M.A.; Benvindo-Souza, M.; Nascimento, F.D.; Woch, J.; Dos Reis, F.G.; Silva, D.D.E. Cancer and Occupational Exposure to Pesticides: A Bibliometric Study of The Past 10 Years. Environ. Sci. Pollut. Res. 2022, 29, 17464–17475. [Google Scholar] [CrossRef]
- Schneider, T.; Vermeulen, R.; Brouwer, D.H.; Cherrie, J.W.; Kromhout, H.; Fogh, C.L. Conceptual Model for Assessment of Dermal Exposure. Occup. Environ. Med. 1999, 56, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Vercruysse, F.; Drieghe, S.; Steurbaut, W.; Dejonckheere, W. Exposure Assessment of Professional Pesticide Users During Treatment of Potato Fields. Pestic. Sci. 1999, 55, 467–473. [Google Scholar] [CrossRef]
- Krieger, R.I.; Bernard, C.E.; Dinoff, T.M.; Fell, L.; Osimitz, T.G.; Ross, J.H.; Thongsinthusak, T. Biomonitoring and Whole Body Cotton Dosimetry to Estimate Potential Human Dermal Exposure to Semivolatile Chemicals. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Bootsikeaw, S.; Kongtip, P.; Nankongnab, N.; Chantanakul, S.; Sujirarat, D.; Mahaboonpeeti, R.; Khangkhun, P.; Woskie, S. Urinary Glyphosate Biomonitoring of Sprayers in Vegetable Farm in Thailand. Hum. Ecol. Risk Assess. 2021, 27, 1019–1036. [Google Scholar] [CrossRef]
- Bormann, J.L.; Acipayam, A.S.F.; Maibach, H.I. Percutaneous Absorption of Chemicals from Fabric (Textile). J. Appl. Toxicol. 2021, 41, 363–374. [Google Scholar] [CrossRef]
- Mahaboonpeeti, R.; Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Bunngamchairat, A.; Yoosook, W.; Woskie, S. Evaluation of Dermal Exposure to The Herbicide Alachlor Among Vegetable Farmers in Thailand. Ann. Work. Expo. Health 2018, 62, 1147–1158. [Google Scholar] [CrossRef]
- Bányiová, K.; Čupr, P.; Kohoutek, J. An Experimentally Refined Tool to Assess the Risks of the Human Dermal Exposure to Herbicide Chlorotoluron. Environ. Sci. Pollut. Res. 2015, 22, 10713–10720. [Google Scholar] [CrossRef]
- Wang, Z.N.; Meng, Y.X.; Mei, X.D.; Ning, J.; Ma, X.D.; She, D.M. Assessment of Handler Exposure to Pesticides from Stretcher-Type Power Sprayers in Orchards. Appl. Sci. 2020, 10, 8684. [Google Scholar] [CrossRef]
- Wang, X.; Murison, J.; Wang, J.; Leong, G.; Wu, Z.C.; Li, Q.X. Dermal Exposure Assessment to Trinexapac-Ethyl: A Case Study of Workers in Golf Course in Hawaii, Usa. Environ. Sci. Pollut. Res. 2021, 28, 1072–1076. [Google Scholar] [CrossRef]
- Siriwat, S.; Nganchamung, T.; Ponrachom, C.; Siriwong, W.; Robson, M.G. Health Risk Assessment of Dermal Exposure to Chlorpyrifos Among Children in Agricultural Areas in Sakon Nakhon Province, Thailand. Hum. Ecol. Risk Assess. 2021, 27, 2277–2287. [Google Scholar] [CrossRef]
- Han, R.; Wu, Z.; Huang, Z.; Man, X.; Teng, L.; Wang, T.; Liu, P.; Wang, W.; Zhao, X.; Hao, J.; et al. Tracking Pesticide Exposure to Operating Workers for Risk Assessment in Seed Coating with Tebuconazole and Carbofuran. Pest Manag. Sci. 2021, 77, 2820–2825. [Google Scholar] [CrossRef]
- Lei, B.L.; Zhang, K.Q.; An, J.; Zhang, X.Y.; Yu, Y.X. Human Health Risk Assessment of Multiple Contaminants Due to Consumption of Animal-Based Foods Available in The Markets of Shanghai, China. Environ. Sci. Pollut. Res. 2015, 22, 4434–4446. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Nie, Z.Q.; Yang, Y.M.; Die, Q.Q.; Liu, F.; He, J.; Huang, Q.F. Human Health Risk Assessment of Pesticide Residues in Market-Sold Vegetables and Fish in A Northern Metropolis of China. Environ. Sci. Pollut. Res. 2015, 22, 6135–6143. [Google Scholar] [CrossRef]
- Cui, L.L.; Ge, J.; Zhu, Y.D.; Yang, Y.Y.; Wang, J. Concentrations, Bioaccumulation, and Human Health Risk Assessment of Organochlorine Pesticides and Heavy Metals in Edible Fish from Wuhan, China. Environ. Sci. Pollut. Res. 2015, 22, 15866–15879. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Zhang, L.; Cai, Y.J.; Chen, Y.W. Distribution of Polycyclic Aromatic Hydrocarbon (Pah) Residues in Several Tissues of Edible Fishes from The Largest Freshwater Lake in China, Poyang Lake, and Associated Human Health Risk Assessment. Ecotoxicol. Environ. Saf. 2014, 104, 323–331. [Google Scholar] [CrossRef]
- Shi, J.C.; Li, Y.L.; Liang, H.; Zheng, G.J.; Wu, Y.L.; Liu, W.H. Ocps and Pcbs in Marine Edible Fish and Human Health Risk Assessment in The Eastern Guangdong, China. Arch. Environ. Contam. Toxicol. 2013, 64, 632–642. [Google Scholar] [CrossRef]
- Kwong, L.H.; Ercumen, A.; Pickering, A.J.; Unicomb, L.; Davis, J.; Leckie, J.O.; Luby, S.P. Soil Ingestion Among Young Children in Rural Bangladesh. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 82–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.Y.; Wei, D.; Deng, Y.J.; Feng, W.Z.; Gao, Q.; Shi, Y.H.; Xiao, J.J. Bioaccessibility and Health Risk of Neonicotinoids in Apple and Pear Samples as Affected By in Vitro Digestion. Qual. Assur. Saf. Crops Foods 2021, 13, 74–81. [Google Scholar] [CrossRef]
- Yohannes, Y.B.; Ikenaka, Y.; Saengtienchai, A.; Watanabe, K.P.; Nakayam, S.M.M.; Ishizuka, M. Concentrations and Human Health Risk Assessment of Organochlorine Pesticides in Edible Fish Species from A Rift Valley Lake-Lake Ziway, Ethiopia. Ecotoxicol. Environ. Saf. 2014, 106, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Khairy, M.A.; Kolb, M.; Mostafa, A.R.; El-Fiky, A.; Bahadir, M. Risk Posed by Chlorinated Organic Compounds in Abu Qir Bay, East Alexandria, Egypt. Environ. Sci. Pollut. Res. 2012, 19, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Odewale, G.O.; Sosan, M.B.; Oyekunle, J.A.O.; Adeleye, A.O. Human Health Risk Assessment of Dichlorodiphenyltrichloroethane (Ddt) and Hexachlorocyclohexane (Hch) Pesticide Residues in Fruits and Vegetables in Nigeria. Environ. Sci. Pollut. Res. 2021, 28, 33133–33145. [Google Scholar] [CrossRef] [PubMed]
- Msibi, S.S.; Chen, C.Y.; Chang, C.P.; Chen, C.J.; Chiang, S.Y.; Wu, K.Y. High Pesticide Inhalation Exposure from Multiple Spraying Sources Amongst Applicators in Eswatini, Southern Africa. Pest Manag. Sci. 2021, 77, 4303–4312. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.W.; Li, J.G.; Zhao, Y.F.; Wu, Y.N. Human Exposure of Fipronil Insecticide and The Associated Health Risk. J. Agric. Food Chem. 2022, 70, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Ratanachina, J.; Amaral, A.; De Matteis, S.; Cullinan, P.; Burney, P. Farming, Pesticide Exposure and Respiratory Health: A Cross-Sectional Study in Thailand. Occup. Environ. Med. 2022, 79, 38–45. [Google Scholar] [CrossRef]
- Yoshida, T.; Mimura, M.; Sakon, N. Estimating Household Exposure to Pyrethroids and The Relative Contribution of Inhalation Pathway in A Sample of Japanese Children. Environ. Sci. Pollut. Res. 2021, 28, 19310–19324. [Google Scholar] [CrossRef]
- Afata, T.N.; Mekonen, S.; Shekelifa, M.; Tucho, G.T. Prevalence of Pesticide Use and Occupational Exposure Among Small-Scale Farmers in Western Ethiopia. Environ. Health Insights 2022, 16, 11786302211072950. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Li, J.; Zhang, G.; Shakya, P.R. Occurrence, Profile and Spatial Distribution of Organochlorines Pesticides in Soil of Nepal: Implication for Source Apportionment and Health Risk Assessment. Sci. Total Environ. 2016, 573, 1598–1606. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An Update of Human Exposure and Toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Lang, C.; Tao, S.; Wangj, X.J.; Zhang, G.; Fu, J.M. Modeling Polycyclic Aromatic Hydrocarbon Composition Profiles of Sources and Receptors in The Pear River Delta, China. Environ. Toxicol. Chem. 2008, 27, 4–9. [Google Scholar] [CrossRef]
- Das, G.P.; Jamil, K.; Rahman, M. Effect of Four Organophosphorus Compounds on Human Blood Acetylcholinesterase: In Vitro Studies. Toxicol. Mech. Methods 2006, 16, 455–459. [Google Scholar] [CrossRef]
- Séralini, G.-E.; Clair, E.; Mesnage, R.; Gress, S.; Defarge, N.; Malatesta, M.; Hennequin, D.; De Vendômois, J.S. Republished Study: Long-Term Toxicity of a Roundup Herbicide and A Roundup-Tolerantgenetically Modified Maize. Environ. Sci. Eur. 2014, 26, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tsui, M.T.; Chu, L. Aquatic Toxicity of Glyphosate-Based Formulations: Comparison Between Different Organisms and The Effects of Environmental Factors. Chemosphere 2003, 52, 1189–1197. [Google Scholar] [CrossRef]
- World Health Organization. Public Health Impact of Pesticides Used in Agriculture; WHO: Geneva, Switzerland, 1990. [Google Scholar]
- Zhang, Q.; Fu, C.; Guo, X.; Gao, J.; Zhang, P.; Ding, C. Fluorescent Determination of Butyrylcholinesterase Activity and Its Application in Biological Imaging and Pesticide Residue Detection. ACS Sens. 2021, 6, 1138–1146. [Google Scholar] [CrossRef]
- Lu, P.; Li, Q.F.; Liu, H.M.; Feng, Z.Z.; Yan, X.; Hong, Q.; Li, S.P. Biodegradation of Chlorpyrifos and 3,5,6-Trichloro-2-Pyridinol by Cupriavidus Sp Dt-1. Bioresour. Technol. 2013, 127, 337–342. [Google Scholar] [CrossRef]
- Tyagi, H.; Gautam, T.; Prashar, P. Survey of Pesticide Use Patterns and Farmers’ Perceptions: A Case Study from Cauliflower and Tomato Cultivating Areas of District Faridabad, Haryana, India. Int. J. Medipharm Res. 2015, 1, 139–146. [Google Scholar]
- Chawla, P.; Kaushik, R.; Swaraj, V.S.; Kumar, N. Organophosphorus Pesticides Residues in Food and Their Colorimetric Detection. Environ. Nanotechnol. Monit. Manag. 2018, 10, 292–307. [Google Scholar] [CrossRef]
- Ding, G.D.; Bao, Y.X. Revisiting Pesticide Exposure and Children’s Health: Focus on China. Sci. Total Environ. 2014, 472, 289–295. [Google Scholar] [CrossRef] [PubMed]
- An, X.H.; Ji, X.F.; Jiang, J.H.; Wang, Y.H.; Wu, C.X.; Zhao, X.P. Potential Dermal Exposure and Risk Assessment for Applicators of Chlorothalonil and Chlorpyrifos in Cucumber Greenhouses in China. Hum. Ecol. Risk Assess. 2015, 21, 972–985. [Google Scholar] [CrossRef]
- Yuan, G.L.; Sun, Y.; Qin, J.X.; Li, J.; Wang, G.H. Chiral Signature of Alpha-Hch and O,P′-Ddt in The Soil and Grass of The Central Tibetan Plateau, China. Sci. Total Environ. 2014, 500, 147–154. [Google Scholar] [CrossRef] [PubMed]
- An, X.H.; Wu, S.G.; Guan, W.B.; Lv, L.; Liu, X.J.; Zhang, W.P.; Zhao, X.P.; Cai, L.M. Effects of Different Protective Clothing for Reducing Body Exposure to Chlorothalonil During Application in Cucumber Greenhouses. Hum. Ecol. Risk Assess. 2018, 24, 14–25. [Google Scholar] [CrossRef]
- Cao, L.D.; Zhang, H.J.; Li, F.M.; Zhou, Z.L.; Wang, W.L.; Ma, D.K.; Yang, L.; Zhou, P.G.; Huang, Q.L. Potential Dermal and Inhalation Exposure to Imidacloprid and Risk Assessment Among Applicators During Treatment in Cotton Field in China. Sci. Total Environ. 2018, 624, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Guodong, D.; Pei, W.; Ying, T.; Jun, Z.; Yu, G.; Xiaojin, W.; Rong, S.; Guoquan, W.; Xiaoming, S. Organophosphate Pesticide Exposure and Neurodevelopment in Young Shanghai Children. Environ. Sci. Technol. 2012, 46, 2911–2917. [Google Scholar] [CrossRef] [PubMed]
- Demir, V.; Ergin, S. Occurrence and Assessment of Chemical Contaminants in Drinking Water in Tunceli, Turkey. J. Chem. 2013, 2013, 238374. [Google Scholar] [CrossRef]
- Devi, N.L.; Yadav, I.C.; Qi, S.H.; Chakraborty, P.; Dan, Y. Distribution and Risk Assessment of Polychlorinated Biphenyls (Pcbs) in The Remote Air and Soil of Manipur, India. Environ. Earth Sci. 2014, 72, 3955–3967. [Google Scholar] [CrossRef]
- Devi, N.L.; Yadav, I.C.; Raha, P.; Qi, S.H.; Dan, Y. Spatial Distribution, Source Apportionment and Ecological Risk Assessment of Residual Organochlorine Pesticides (Ocps) in The Himalayas. Environ. Sci. Pollut. Res. 2015, 22, 20154–20166. [Google Scholar] [CrossRef]
- Fang, L.P.; Zhang, S.Q.; Chen, Z.L.; Du, H.X.; Zhu, Q.; Dong, Z.; Li, H.D. Risk Assessment of Pesticide Residues in Dietary Intake of Celery in China. Regul. Toxicol. Pharmacol. 2015, 73, 578–586. [Google Scholar] [CrossRef]
- Farooq, S.; Eqani, S.A.M.A.S.; Malik, R.N.; Katsoyiannis, A.; Zhang, G.; Zhang, Y.L.; Li, J.; Xiang, L.; Jones, K.C.; Shinwari, Z.K. Occurrence, Finger Printing and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons (Pahs) in The Chenab River, Pakistan. J. Environ. Monit. 2011, 13, 3207–3215. [Google Scholar] [CrossRef]
- Yang, C.-C.; Deng, J.-F. Intermediate Syndrome Following Organophosphate Insecticide Poisoning. J. Chin. Med. Assoc. 2007, 70, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Gopesh, A.; Singh, K.P. Acute Toxic Effects of Chlorpyrifos on Pseudobranchial Neurosecretory System, Brain Regions and Locomotory Behavior of An Air-Breathing Catfish, Heteropneustes Fossilis (Bloch 1794). Drug Chem. Toxicol. 2022, 45, 670–679. [Google Scholar] [CrossRef]
- Cui, K.D.; He, L.M.; Zhang, Z.Q.; Zhang, L.Y.; Mu, W.; Liu, F. Effects of Benzothiazole on Survival for Reduced Reproduction and Development in Tribolium Castaneum Herbst (Coleoptera: Tenebrionidae). Pest Manag. Sci. 2020, 76, 3088–3095. [Google Scholar] [CrossRef]
- Debleecker, J.L. The Intermediate Syndrome in Organophosphate Poisoning: An Overview of Experimental and Clinical Observations. J. Toxicol. Clin. Toxicol. 1995, 33, 683–686. [Google Scholar] [CrossRef]
- Uckun, M.; Yologlu, E.; Uckun, A.A.; Oz, O.B. Acute Toxicity of Insecticide Thiamethoxam to Crayfish (Astacus Leptodactylus): Alterations in Oxidative Stress Markers, Atpases and Cholinesterase. Acta Chim. Slov. 2021, 68, 521–531. [Google Scholar] [CrossRef]
- Kwon, H.A.; Jeong, Y.; Jeon, H.P.; Kim, S. Comparing Passive Dosing and Solvent Spiking Methods to Determine the Acute Toxic Effect of Pentachlorophenol on Daphnia Magna. Ecotoxicology 2020, 29, 286–294. [Google Scholar] [CrossRef]
- Vural, K.; Seyrek, O. The Neuroprotective Effect of Pioglitazone on Nb2a Mouse Neuroblastoma Cell Culture. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 1–8. [Google Scholar]
- Abass, K.; Turpeinen, M.; Pelkonen, O. An Evaluation of The Cytochrome P450 Inhibition Potential of Selected Pesticides in Human Hepatic Microsomes. J. Environ. Sci. Health Part B 2009, 44, 553–563. [Google Scholar] [CrossRef]
- Pereira, L.C.; De Souza, A.O.; Bernardes, M.F.F.; Pazin, M.; Tasso, M.J.; Pereira, P.H.; Dorta, D.J. A Perspective on The Potential Risks of Emerging Contaminants to Human and Environmental Health. Environ. Sci. Pollut. Res. 2015, 22, 13800–13823. [Google Scholar] [CrossRef]
- Mosiichuk, N.; Husak, V.; Storey, K.B.; Lushchak, V. Acute Exposure to The Penconazole-Containing Fungicide Topas Induces Metabolic Stress in Goldfish. Chem. Res. Toxicol. 2021, 34, 2441–2449. [Google Scholar] [CrossRef] [PubMed]
- Snow, N.P.; Horak, K.E.; Humphrys, S.T.; Staples, L.D.; Hewitt, D.G.; Vercauteren, K.C. Low Secondary Risks for Captive Coyotes from A Sodium Nitrite Toxic Bait for Invasive Wild Pigs. Wildl. Soc. Bull. 2019, 43, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.D.; Carter, J.; Thomas, D.; Purdie, D.M.; Kay, B.H. Pulse-Exposure Effects of Selected Insecticides to Juvenile Australian Crimson-Spotted Rainbowfish (Melanotaenia Duboulayi). J. Econ. Entomol. 2002, 95, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Yao, J.; Wang, F.; Bramanti, E.; Maskow, T.; Zaray, G. Acute Toxic Effects of Three Pesticides on Pseudomonas Putida Monitored by Microcalorimeter. J. Environ. Sci. Health Part B-Pestic. Food Contam. Agric. Wastes 2009, 44, 157–163. [Google Scholar] [CrossRef]
- Lo, S.; King, I.; Alléra, A.; Klingmüller, D. Effects of Various Pesticides on Human 5α-Reductase Activity in Prostate and Lncap Cells. Toxicol. In Vitro 2007, 21, 502–508. [Google Scholar] [CrossRef]
- Forsythe, S.D.; Devarasetty, M.; Shupe, T.; Bishop, C.; Atala, A.; Soker, S.; Skardal, A. Environmental Toxin Screening Using Human-Derived 3d Bioengineered Liver and Cardiac Organoids. Front. Public Health 2018, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Kanu, K.C.; Ogbonna, O.A.; Mpamah, I.C. Acute Toxicity and Biological Responses of Clarias Gariepinus to Environmentally Realistic Chlorpyrifos Concentrations. Pollution 2019, 5, 839–846. [Google Scholar]
- Palkhade, R.; Yadav, S.; Mishra, S.; Muhamed, J. Acute Oral Toxicity of Pesticide Combination (Acephate 50% and Imidacloprid 1.8% As Active Ingredients) in Sprague-Dawley Rats. Vet. World 2018, 11, 1291–1297. [Google Scholar] [CrossRef] [Green Version]
- Arias-Andres, M.; Ramo, R.; Torres, F.M.; Ugalde, R.; Grandas, L.; Ruepert, C.; Castillo, L.E.; Van Den Brink, P.J.; Gunnarsson, J.S. Lower Tier Toxicity Risk Assessment of Agriculture Pesticides Detected on The Rio Madre De Dios Watershed, Costa Rica. Environ. Sci. Pollut. Res. 2018, 25, 13312–13321. [Google Scholar] [CrossRef]
- Boobis, A.R. Chronic Health Effects from Pesticide Exposure. Toxicology 2003, 191, 6. [Google Scholar]
- Meltzer, G.; Avenbuan, O.; Wu, F.; Shah, K.; Chen, Y.; Mann, V.; Zelikoff, J.T. The Ramapough Lunaape Nation: Facing Health Impacts Associated with Proximity to A Superfund Site. J. Community Health 2020, 45, 1196–1204. [Google Scholar] [CrossRef]
- Séralini, G.-E.; Clair, E.; Mesnage, R.; Gress, S.; Defarge, N.; Malatesta, M.; Hennequin, D.; De Vendômois, J.S. Retracted: Long Term Toxicity of a Roundup Herbicide and a Roundup-Tolerant Genetically Modified Maize; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Petarli, G.B.; Cattafesta, M.; Sant’anna, M.M.; Bezerra, O.; Zandonade, E.; Salaroli, L.B. Multimorbidity and Complex Multimorbidity in Brazilian Rural Workers. PLoS ONE 2019, 14, e0225416. [Google Scholar]
- You, L.; Zheng, F.J.; Su, C.; Wang, L.M.; Li, X.; Chen, Q.Q.; Kou, J.; Wang, X.L.; Wang, Y.F.; Wang, Y.T.; et al. Metabolome-Wide Association Study of Serum Exogenous Chemical Residues in A Cohort with 5 Major Chronic Diseases. Environ. Int. 2022, 158, 106919. [Google Scholar] [CrossRef]
- Conti, C.L.; Borcoi, A.R.; Almanca, C.C.J.; Barbosa, W.M.; Archanjo, A.B.; Pinheiro, J.D.; Freitas, F.V.; De Oliveira, D.R.; Cardoso, L.D.; De Paula, H.; et al. Factors Associated with Depressive Symptoms Among Rural Residents from Remote Areas. Community Ment. Health J. 2020, 56, 1292–1297. [Google Scholar] [CrossRef]
- Meng, S.L.; Chen, X.; Song, C.; Fan, L.M.; Qiu, L.P.; Zheng, Y.; Chen, J.Z.; Xu, P. Effect of Chronic Exposure to Pesticide Methomyl on Antioxidant Defense System in Testis of Tilapia (Oreochromis Niloticus) and Its Recovery Pattern. Appl. Sci. 2021, 11, 3332. [Google Scholar] [CrossRef]
- Antonine, B.; Guillaume, M.; Philippe, D.; Marie-Helene, P. 2022. Low Concentrations of Glyphosate Alone Affect the Pubertal Male Rat Meiotic Step: An in Vitro Study. Toxicol. In Vitro 2022, 79, 105291. [Google Scholar] [CrossRef]
- Meshkini, S.; Rahimi-Arnaei, M.; Tafi, A.A. The Acute and Chronic Effect of Roundup Herbicide on Histopathology and Enzymatic Antioxidant System of Oncorhynchus Mykiss. Int. J. Environ. Sci. Technol. 2019, 16, 6847–6856. [Google Scholar] [CrossRef]
- Ludwig-Borycz, E.; Guyer, H.M.; Aljahdali, A.A.; Baylin, A. Organic Food Consumption Is Associated with Inflammatory Biomarkers Among Older Adults. Public Health Nutr. 2021, 24, 4603–4613. [Google Scholar] [CrossRef]
- Nankongnab, N.; Kongtip, P.; Tipayamongkholgul, M.; Bunngamchairat, A.; Sitthisak, S.; Woskie, S. Difference in Accidents, Health Symptoms, and Ergonomic Problems Between Conventional Farmers Using Pesticides and Organic Farmers. J. Agromed. 2020, 25, 158–165. [Google Scholar] [CrossRef]
- Wesseling, C.; Mcconnell, R.; Partanen, T.; Hogstedt, C. Agricultural Pesticide Use in Developing Countries: Health Effects and Research Needs. Int. J. Health Serv. 1997, 27, 273–308. [Google Scholar] [CrossRef]
- Uram, C. International Regulation of The Sale and Use of Pesticides. Nw. J. Intl L. Bus. 1989, 10, 460. [Google Scholar]
- Phung, D.T.; Connell, D.; Miller, G.; Rutherford, S.; Chu, C. Pesticide Regulations and Farm Worker Safety: The Need to Improve Pesticide Regulations in Viet Nam. Bull. World Health Organ. 2012, 90, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Vanlaeys, A.; Dubuisson, F.; Seralini, G.-E.; Travert, C. Formulants of Glyphosate-Based Herbicides Have More Deleterious Impact Than Glyphosate on Tm4 Sertoli Cells. Toxicol. In Vitro 2018, 52, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Cayir, A.; Coskun, M.; Coskun, M.; Cobanoglu, H. Comet Assay for Assessment of Dna Damage in Greenhouse Workers Exposed to Pesticides. Biomarkers 2019, 24, 592–599. [Google Scholar] [CrossRef]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazlan, N.; Ahmed, M.; Muharam, F.M.; Alam, M.A. Status of Persistent Organic Pesticide Residues in Water and Food and Their Effects on Environment and Farmers: A Comprehensive Review in Nigeria. Semin.-Cienc. Agrar. 2017, 38, 2221–2236. [Google Scholar] [CrossRef] [Green Version]
- Illyassou, K.M.; Adamou, R.; Schiffers, B. Exposure Assessment of Operators to Pesticides in Kongou, A Sub-Watershed of Niger River Valley. J. Environ. Sci. Health Part B-Pestic. Food Contam. Agric. Wastes 2019, 54, 176–186. [Google Scholar] [CrossRef]
- Han, L.; Wu, Q.; Wu, X.M. Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Filed Conditions. Foods 2022, 11, 669. [Google Scholar] [CrossRef]
- Atreya, K.; Sitaula, B.K.; Johnsen, F.H.; Bajracharya, R.M. Continuing Issues in The Limitations of Pesticide Use in Developing Countries. J. Agric. Environ. Ethics 2011, 24, 49–62. [Google Scholar] [CrossRef]
- Tongo, I.; Ezemonye, L.; Akpeh, K. Distribution, Characterization, and Human Health Risk Assessment of Polycyclic Aromatic Hydrocarbons (Pahs) in Ovia River, Southern Nigeria. Environ. Monit. Assess. 2017, 189, 1–16. [Google Scholar] [CrossRef]
- Thompson, L.A.; Ikenaka, Y.; Yohannes, Y.B.; Van Vuren, J.J.; Wepener, V.; Smit, N.J.; Darwish, W.S.; Nakayama, S.M.M.; Mizukawa, H.; Ishizuka, M. Concentrations and Human Health Risk Assessment of Ddt and Its Metabolites in Free-Range and Commercial Chicken Products from Kwazulu-Natal, South Africa. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 1959–1969. [Google Scholar] [CrossRef]
- Massey, R.; Jacobs, M.; Gallager, L. Global Chemicals Outlook–Towards Sound Management of Chemicals; Unep: Nairobi, Kenya, 2013. [Google Scholar]
- Albertini, R.; Bird, M.; Doerrer, N.; Needham, L.; Robison, S.; Sheldon, L.; Zenick, H. The Use of Biomonitoring Data in Exposure and Human Health Risk Assessments. Environ. Health Perspect. 2006, 114, 1755–1762. [Google Scholar] [CrossRef]
- Albers, J.W.; Cole, P.; Greenberg, R.S.; Mandel, J.S.; Monson, R.R.; Ross, J.H.; Snodgrass, W.R.; Spurgeon, A.; Van Gemert, M. Analysis of Chlorpyrifos Exposure and Human Health: Expert Panel Report. J. Toxicol. Environ. Health Part B-Crit. Rev. 1999, 2, 301–324. [Google Scholar]
- Yu, R.; Wang, Y.; Cui, Z.W.; Xu, G.H.; Guan, Z.Y.; Yu, Y.; Liu, J.S. Human Health Risk Assessment of Organophosphorus Pesticides in Maize (Zea Mays L.) from Yushu, Northeast China. Hum. Ecol. Risk Assess. 2018, 24, 642–652. [Google Scholar] [CrossRef]
- Yu, J.; Bian, Z.Q.; Tian, X.H.; Zhang, J.; Zhang, R.; Zheng, H.H. Atrazine and Its Metabolites in Surface and Well Waters in Rural Area and Its Human and Ecotoxicological Risk Assessment of Henan Province, China. Hum. Ecol. Risk Assess. 2018, 24, 1–13. [Google Scholar] [CrossRef]
- Xu, G.H.; Yu, Y.; Wang, Y.; Wang, J.H.; Yu, R.; Chen, X.R.; Cui, Z.W. Polychlorinated Biphenyls in Vegetable Soils from Changchun, Northeast China: Concentrations, Distribution, Sources and Human Health Risks. Hum. Ecol. Risk Assess. 2018, 24, 590–601. [Google Scholar] [CrossRef]
- Rodrigues, E.T.; Alpendurada, M.F.; Ramos, F.; Pardal, M.A. Environmental and Human Health Risk Indicators for Agricultural Pesticides in Estuaries. Ecotoxicol. Environ. Saf. 2018, 150, 224–231. [Google Scholar] [CrossRef]
- Li, Z.J.; Jennings, A. Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review. Int. J. Environ. Res. Public Health 2017, 14, 826. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, F.; Moattar, F.; Monavari, S.M.; Arjmandi, R. Human Health Risk Assessment of Organophosphorus Pesticide in Rice Crop from Selected Districts of Anzali International Wetland Basin, Iran. Hum. Exp. Toxicol. 2017, 36, 438–444. [Google Scholar] [CrossRef]
- Yu, R.; Liu, Q.; Liu, J.S.; Wang, Q.C.; Wang, Y. Concentrations of Organophosphorus Pesticides in Rice (Oryza Sativa) and Human Health Risk Assessment from Songhua River, Northeast China. Hum. Ecol. Risk Assess. 2016, 22, 312–322. [Google Scholar] [CrossRef]
- Dai, W.B. Research on Prevention and Control of Chinese Agricultural Ecological Environment Pollution to Ensure Food Safety. Sustain. Dev. Nat. Resour. 2013, 616, 2247–2250. [Google Scholar] [CrossRef]
- Bernardes, M.F.F.; Pazin, M.; Pereira, L.C.; Dorta, D.J. Impact of Pesticides on Environmental and Human Health. Toxicol. Stud.-Cells Drugs Environ. 2015, 195–233. [Google Scholar] [CrossRef] [Green Version]
- Thammachai, A.; Sapbamrer, R.; Rohitrattana, J.; Tongprasert, S.; Hongsibsong, S.; Wangsan, K. Differences in Knowledge, Awareness, Practice, and Health Symptoms in Farmers Who Applied Organophosphates and Pyrethroids on Farms. Front. Public Health 2022, 10, 802810. [Google Scholar] [CrossRef] [PubMed]
- Atreya, K.; Johnsen, F.H.; Sitaula, B.K. Health and Environmental Costs of Pesticide Use in Vegetable Farming in Nepal. Environ. Dev. Sustain. 2012, 14, 477–493. [Google Scholar] [CrossRef]
- Powell, S. New Challenges: Residential Pesticide Exposure Assessment in The California Department of Pesticide Regulation, Usa. Ann. Occup. Hyg. 2001, 45, S119–S123. [Google Scholar] [CrossRef]
- Lovison Sasso, E.; Cattaneo, R.; Rosso Storck, T.; Spanamberg Mayer, M.; Sant’Anna, V.; Clasen, B. Occupational Exposure of Rural Workers to Pesticides in a Vegetable-producing Region in Brazil. Environ. Sci. Pollut. Res. 2021, 28, 25758–25769. [Google Scholar] [CrossRef]
- Hailu, F. Farmers Perception of Pesticide Use and Genetic Erosion of Landraces of Tetraploid Wheat (Triticum Spp.) in Ethiopia. Genet. Resour. Crop Evol. 2017, 64, 979–994. [Google Scholar] [CrossRef]
- Bertolote, J.M.; Fleischmann, A.; Butchart, A.; Besbelli, N. Suicide, Suicide Attempts and Pesticides: A Major Hidden Public Health Problem. Bull. World Health Organ. 2006, 84, 260. [Google Scholar] [CrossRef]
- Casida, J.E.; Durkin, K.A. Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef]
- Goel, A.; Aggarwal, P. Pesticide Poisoning. Natl. Med. J. India 2007, 20, 182–191. [Google Scholar]
- Zafeiraki, E.; Kasiotis, K.M.; Nisianakis, P.; Manea-Karga, E.; Machera, K. Occurrence and Human Health Risk Assessment of Mineral Elements and Pesticides Residues in Bee Pollen. Food Chem. Toxicol. 2022, 161, 112826. [Google Scholar] [CrossRef]
- Wu, P.L.; Wang, P.S.; Gu, M.Y.; Xue, J.; Wu, X.L. Human Health Risk Assessment of Pesticide Residues in Honeysuckle Samples from Different Planting Bases in China. Sci. Total Environ. 2021, 759, 142747. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Liu, M.Z.; Dai, Y.; Luo, Y.; Zhang, S.L. Health and Ecotoxicological Risk Assessment for Human and Aquatic Organism Exposure to Polycyclic Aromatic Hydrocarbons in The Baiyangdian Lake. Environ. Sci. Pollut. Res. 2021, 28, 574–586. [Google Scholar] [CrossRef]
- Turdi, M.; Yang, L. Trace Elements Contamination and Human Health Risk Assessment in Drinking Water from the Agricultural and Pastoral Areas of Bay County, Xinjiang, China. Int. J. Environ. Res. Public Health 2016, 13, 938. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Li, H.; Wang, L.; Tudi, M.; Yang, L. Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019—A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 3099. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wei, B.; Wang, L.; Tong, S.; Kong, C.; Yang, L.S. Ecological and Health Risk Assessment of Trace Elements in Surface Soil in an Arid Region of Xin Jiang, China. J. Soils Sediments 2021, 21, 936–947. [Google Scholar] [CrossRef]
- Tong, S.; Li, H.; Tudi, M.; Yuan, X.; Yang, L. Comparison of Characteristics, Water Quality and Health Risk Assessment of Trace Elements in Surface Water and Groundwater in China. Ecotoxicol. Environ. Saf. 2021, 219, 112283. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Yu, Y.; Wang, L.; Wei, B.; Tong, S.; Kong, C.; Yang, L.S. Bioaccumulation and Translocation of Trace Elements in Soil-irrigation Water-wheat in Arid Agricultural areas of Xin Jiang, China. Ecotoxicology 2021, 30, 1290–1302. [Google Scholar] [CrossRef]
- Mercadante, R.; Dezza, B.; Mammone, T.; Moretto, A.; Fustinoni, S. Use of Plant Protection Products in Lombardy, Italy and The Health Risk for The Ingestion of Contaminated Water. Toxics 2021, 9, 160. [Google Scholar] [CrossRef]
- Chidya, R.; Derbalah, A.; Abdel-Dayem, S.; Kaonga, C.; Sakugawa, H. Ecotoxicological and Human Health Risk Assessment of Selected Pesticides in Kurose River, Higashi-Hiroshima City (Japan). Water Environ. Res. 2022, 94, e1676. [Google Scholar] [CrossRef]
- Tudi, M.; Phung, D.T.; Ruan, H.D.; Yang, L.-S.; Guo, H.-J.; Connell, D.; Sadler, R.; Chu, C. Difference of Trace Element Exposed Routes and Their Health Risks Between Agriculture and Pastoral Areas in Bay County Xinjiang, China. Environ. Sci. Pollut. Res. 2019, 26, 14073–14086. [Google Scholar] [CrossRef]
- Richardson, G.M. Deterministic Versus Probabilistic Risk Assessment: Strengths and Weaknesses in A Regulatory Context. Hum. Ecol. Risk Assess. Int. J. 1996, 2, 44–54. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Dragoi, E.N.; Almomani, F.; Golzadeh, N.; Vo, D.N. A Global Systematic Review of The Concentrations of Malathion in Water Matrices: Meta-Analysis, and Probabilistic Risk Assessment. Chemosphere 2022, 291, 132789. [Google Scholar] [CrossRef]
- Atabila, A.; Phung, D.T.; Hogarh, J.N.; Fobil, J.N.; Sadler, R.; Connell, D.; Chu, C. Probabilistic Health Risk Assessment of Chlorpyrifos Exposure Among Applicators on Rice Farms in Ghana. Environ. Sci. Pollut. Res. 2021, 28, 67555–67564. [Google Scholar] [CrossRef]
- Lou, T.T.; Huang, W.S.; Wu, X.D.; Wang, M.M.; Zhou, L.Y.; Lu, B.Y.; Zheng, L.F.; Hu, Y.Z. Monitoring, Exposure and Risk Assessment of Sulfur Dioxide Residues in Fresh or Dried Fruits and Vegetables in China. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 918–927. [Google Scholar] [CrossRef]
- Duan, Y.; Ramilan, T.; Luo, J.H.; French, N.; Guan, N. Risk Assessment Approaches for Evaluating Cumulative Exposures to Multiple Pesticide Residues in Agro-Products Using Seasonal Vegetable Monitoring Data from Hainan, China: A Case Study. Environ. Monit. Assess. 2021, 193, 1–19. [Google Scholar] [CrossRef]
- De Rop, J.; Senaeve, D.; Jacxsens, L.; Houbraken, M.; Van Klaveren, J.; Spanoghe, P. Cumulative Probabilistic Risk Assessment of Triazole Pesticides in Belgium from 2011-2014. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 911–921. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Dujardin, B.; Bocca, V. Cumulative Dietary Exposure Assessment of Pesticides that have Chronic Effects on the Thyroid Using SAS® software. EFSA J. 2019, 17, e05763. [Google Scholar]
- Eslami, Z.; Mahdavi, V.; Tajdar-Oranj, B. Probabilistic Health Risk Assessment Based on Monte Carlo Simulation for Pesticide Residues in Date Fruits of Iran. Environ. Sci. Pollut. Res. 2021, 28, 42037–42050. [Google Scholar] [CrossRef] [PubMed]
- Focks, A.; Luttik, R.; Zorn, M.; Brock, T.; Roex, E.; Van Der Linden, T.; Van Den Brink, P.J. A Simulation Study on Effects of Exposure to A Combination of Pesticides Used in An Orchard and Tuber Crop on The Recovery Time of a Vulnerable Aquatic Invertebrate. Environ. Toxicol. Chem. 2014, 33, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Phung, D.T.; Connell, D.; Yu, Q.M.; Chu, C. Health Risk Characterization of Chlorpyrifos Using Epidemiological Dose-Response Data and Probabilistic Techniques: A Case Study with Rice Farmers in Vietnam. Risk Anal. 2013, 33, 1596–1607. [Google Scholar] [CrossRef]
- Hung, C.C.; Huang, F.J.; Yang, Y.Q.; Hsieh, C.J.; Tseng, C.C.; Yiin, L.M. Pesticides in Indoor and Outdoor Residential Dust: A Pilot Study in a Rural County of Taiwan. Environ. Sci. Pollut. Res. 2018, 25, 23349–23356. [Google Scholar] [CrossRef]
- Pouzou, J.G.; Cullen, A.C.; Yost, M.G.; Kissel, J.C.; Fenske, R.A. Comparative Probabilistic Assessment of Occupational Pesticide Exposures Based on Regulatory Assessments. Risk Anal. 2018, 38, 1223–1238. [Google Scholar] [CrossRef]
- Kuan, A.C.; Degrandi-Hoffman, G.; Curry, R.J.; Garber, K.V.; Kanarek, A.R.; Snyder, M.N.; Wolfe, K.L.; Purucker, S.T. Sensitivity Analyses for Simulating Pesticide Impacts on Honey Bee Colonies. Ecol. Model. 2018, 376, 15–27. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, Q.; Connell, D.W. Health Risk Characterisation for Environmental Pollutants with A New Concept of Overall Risk Probability. J. Hazard. Mater. 2011, 187, 480–487. [Google Scholar] [CrossRef]
- Atabila, A.; Phung, D.T.; Hogarh, J.N.; Sadler, R.; Connell, D.; Chu, C. Health Risk Assessment of Dermal Exposure to Chlorpyrifos among Applicators on Rice Farms in Ghana. Chemosphere 2018, 203, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Kalantary, R.R.; Barzegar, G.; Jorfi, S. Monitoring of Pesticides in Surface Water, Pesticides Removal Efficiency in Drinking Water Treatment Plant and Potential Health Risk to Consumers Using Monte Carlo Simulation in Behbahan City, Iran. Chemosphere 2022, 286, 131667. [Google Scholar] [CrossRef]
- Shokoohi, R.; Khamutian, S.; Samadi, M.T.; Karami, M.; Heshmati, A.; Leili, M.; Shokoohizadeh, M.J. Effect of Household Processing on Pesticide Residues in Post-Harvested Tomatoes: Determination of The Risk Exposure and Modeling of Experimental Results Via Rsm. Environ. Monit. Assess. 2022, 194, 1–12. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Fakhri, Y.; Karami, M.; Akbarzadeh, R.; Safaei, Z.; Fatahi, N.; Sillanpaa, M.; Asadi, A. Measurement of Permethrin, Deltamethrin and Malathion Pesticide Residues in The Wheat Flour and Breads and Probabilistic Health Risk Assessment: A Case Study in Kermanshah, Iran. Int. J. Environ. Anal. Chem. 2019, 99, 1353–1364. [Google Scholar] [CrossRef]
- Mahdavi, V.; Gordan, H.; Peivasteh-Roudsari, L.; Thai, V.N.; Fakhri, Y. Carcinogenic and Non-Carcinogenic Risk Assessment Induced by Pesticide Residues in Commercially Available Ready-To-Eat Raisins of Iran Based on Monte Carlo Simulation. Environ. Res. 2022, 206, 112253. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Hosseinzadeh, S.; Khataee, A.; Dragoi, E.N. The Concentration of Persistent Organic Pollutants in Water Resources: A Global Systematic Review, Meta-Analysis and Probabilistic Risk Assessment. Sci. Total Environ. 2021, 796, 149000. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, B.; Hamed, O.; Jodeh, S.; Bol, R.; Hanbali, G.; Safi, Z.; Dagdag, O.; Berisha, A.; Samhan, S. Cellulose-Based Hectocycle Nanopolymers: Synthesis, Molecular Docking and Adsorption of Difenoconazole from Aqueous Medium. Int. J. Mol. Sci. 2021, 22, 6090. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, S.F.; Badibostan, H.; Hayes, A.W.; Giesy, J.P.; Karimi, G. Residues Levels of Pesticides in Walnuts of Iran and Associated Health Risks. Hum. Ecol. Risk Assess. 2021, 27, 191–204. [Google Scholar] [CrossRef]
- Yu, Q.J.; Cao, Q.; Connell, D.W. An Overall Risk Probability-Based Method for Quantification of Synergistic and Antagonistic Effects in Health Risk Assessment for Mixtures: Theoretical Concepts. Environ. Sci. Pollut. Res. 2012, 19, 2627–2633. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudi, M.; Li, H.; Li, H.; Wang, L.; Lyu, J.; Yang, L.; Tong, S.; Yu, Q.J.; Ruan, H.D.; Atabila, A.; et al. Exposure Routes and Health Risks Associated with Pesticide Application. Toxics 2022, 10, 335. https://doi.org/10.3390/toxics10060335
Tudi M, Li H, Li H, Wang L, Lyu J, Yang L, Tong S, Yu QJ, Ruan HD, Atabila A, et al. Exposure Routes and Health Risks Associated with Pesticide Application. Toxics. 2022; 10(6):335. https://doi.org/10.3390/toxics10060335
Chicago/Turabian StyleTudi, Muyesaier, Hairong Li, Hongying Li, Li Wang, Jia Lyu, Linsheng Yang, Shuangmei Tong, Qiming Jimmy Yu, Huada Daniel Ruan, Albert Atabila, and et al. 2022. "Exposure Routes and Health Risks Associated with Pesticide Application" Toxics 10, no. 6: 335. https://doi.org/10.3390/toxics10060335
APA StyleTudi, M., Li, H., Li, H., Wang, L., Lyu, J., Yang, L., Tong, S., Yu, Q. J., Ruan, H. D., Atabila, A., Phung, D. T., Sadler, R., & Connell, D. (2022). Exposure Routes and Health Risks Associated with Pesticide Application. Toxics, 10(6), 335. https://doi.org/10.3390/toxics10060335