Essential Trace Elements in Scalp Hair of Residents across the Caspian Oil and Gas Region of Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sites Description
2.2. Sampling
2.3. Data Collection
Statistical Processing
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chanturidze, T.; Adams, O.; Tokezhanov, B.; Naylor, M.; Richardson, E. Building policy-making capacity in the Ministry of Health: The Kazakhstan experience. Hum. Resour. Health 2015, 13, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulis, G.; Aringazina, A.; Sangilbayeva, Z.; Zhan, K.; de Leeuw, E.; Allegrante, J.P. Population Health Status of the Republic of Kazakhstan: Trends and Implications for Public Health Policy. Int. J. Environ. Res. Public Health 2021, 18, 12235. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.; Moon, J.; Dyrszka, L.; Rodriguez, B.; Cox, C.; Patisaul, H.; Bushkin, S.; London, E. Neurodevelopmental and neurological effects of chemicals associated with unconventional oil and natural gas operations and their potential effects on infants and children. Rev. Environ. Health 2018, 33, 3–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radelyuk, I.; Tussupova, K.; Persson, M.; Zhapargazinova, K.; Yelubay, M. Assessment of groundwater safety surrounding contaminated water storage sites using multivariate statistical analysis and Heckman selection model: A case study of Kazakhstan. Environ. Geochem. Health 2021, 43, 1029–1050. [Google Scholar] [CrossRef]
- Alimbaev, T.; Yermagambetova, K.; Kabyltayeva, S.; Issayev, A.; Kairat, Z.; Mazhitova, Z. Environmental problems of the oil and gas industry in Kazakhstan. E3S Web Conf. 2020, 215, 03008. [Google Scholar] [CrossRef]
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in Tarragona, Spain. Sci. Total Environ. 2021, 787, 147550. [Google Scholar] [CrossRef]
- Benhaddya, M.L.; Boukhelkhal, A.; Halis, Y.; Hadjel, M. Human Health Risks Associated with Metals from Urban Soil and Road Dust in an Oilfield Area of Southeastern Algeria. Arch. Environ. Contam. Toxicol. 2016, 70, 556–571. [Google Scholar] [CrossRef]
- Rodrigues, J.L.; Batista, B.L.; Nunes, J.A.; Passos, C.J.; Barbosa, F. Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements. Sci. Total Environ. 2008, 405, 370–376. [Google Scholar] [CrossRef]
- Brázdová, Z.D.; Pomerleau, J.; Fiala, J.; Vorlová, L.; Müllerová, D. Heavy Metals in Hair Samples: A Pilot Study of Anaemic Children in Kazakhstan, Kyrgyzstan and Uzbekistan. Cent. Eur. J. Public Health 2014, 22, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Domingo, J.L.; Marquès, M.; Nadal, M.; Schuhmacher, M. Health risks for the population living near petrochemical industrial complexes. 1. Cancer risks: A review of the scientific literature. Environ. Res. 2020, 186, 109495. [Google Scholar] [CrossRef]
- Marquès, M.; Domingo, J.L.; Nadal, M.; Schuhmacher, M. Health risks for the population living near petrochemical industrial complexes. 2. Adverse health outcomes other than cancer. Sci. Total Environ. 2020, 730, 139122. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.-Y.; Yuan, T.-H.; Shie, R.-H.; Chen, C.-F.; Chan, C.-C. Increased incidence of allergic rhinitis, bronchitis and asthma, in children living near a petrochemical complex with SO2 pollution. Environ. Int. 2016, 96, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rovira, E.; Cuadras, A.; Aguilar, X.; Esteban, L.; Santos, A.B.; Zock, J.-P.; Sunyer, J. Asthma, respiratory symptoms and lung function in children living near a petrochemical site. Environ. Res. 2014, 133, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiee, A.; Delgado-Saborit, J.M.; Aquilina, N.J.; Amiri, H.; Hoseini, M. Assessing oxidative stress resulting from environmental exposure to metals (Oids) in a middle Eastern population. Environ. Geochem. Health 2021, 44, 2649–2668. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, A.; Delgado-Saborit, J.M.; Sly, P.D.; Quémerais, B.; Hashemi, F.; Akbari, S.; Hoseini, M. Environmental chronic exposure to metals and effects on attention and executive function in the general population. Sci. Total Environ. 2020, 705, 135911. [Google Scholar] [CrossRef]
- Bussan, D.; Harris, A.; Douvris, C. Monitoring of selected trace elements in sediments of heavily industrialized areas in Calcasieu Parish, Louisiana, United States by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Microchem. J. 2019, 144, 51–55. [Google Scholar] [CrossRef]
- Relić, D.; Sakan, S.; Anđelković, I.; Popović, A.; Đorđević, D. Pollution and Health Risk Assessments of Potentially Toxic Elements in Soil and Sediment Samples in a Petrochemical Industry and Surrounding Area. Molecules 2019, 24, 2139. [Google Scholar] [CrossRef] [Green Version]
- Dore, M.P.; Farias, C.; Hamacher, C. Offshore drilling effects in Brazilian SE marine sediments: A meta-analytical approach. Environ. Monit. Assess. 2017, 189, 44. [Google Scholar] [CrossRef]
- Rezende, C.; Lacerda, L.; Ovalle, A.; Souza, C.; Gobo, A.; Santos, D. The effect of an oil drilling operation on the trace metal concentrations in offshore bottom sediments of the Campos Basin oil field, SE Brazil. Mar. Pollut. Bull. 2002, 44, 680–684. [Google Scholar] [CrossRef]
- Breuer, E.; Stevenson, A.; Howe, J.; Carroll, J.; Shimmield, G. Drill cutting accumulations in the Northern and Central North Sea: A review of environmental interactions and chemical fate. Mar. Pollut. Bull. 2004, 48, 12–25. [Google Scholar] [CrossRef]
- Varrica, D.; Tamburo, E.; Alaimo, M.G. Levels of trace elements in human hair samples of adolescents living near petrochemical plants. Environ. Geochem. Health 2021, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Varrica, D.; Tamburo, E.; Milia, N.; Vallascas, E.; Cortimiglia, V.; De Giudici, G.; Dongarrà, G.; Sanna, E.; Monna, F.; Losno, R. Metals and metalloids in hair samples of children living near the abandoned mine sites of Sulcis-Inglesiente (Sardinia, Italy). Environ. Res. 2014, 134, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Caron-Beaudoin, É.; Bouchard, M.; Wendling, G.; Barroso, A.; Bouchard, M.F.; Ayotte, P.; Frohlich, K.L.; Verner, M.-A. Urinary and hair concentrations of trace metals in pregnant women from Northeastern British Columbia, Canada: A pilot study. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 613–623. [Google Scholar] [CrossRef]
- Skalny, A.V.; Kaminskaya, G.A.; Krekesheva, T.I.; Abikenova, S.K.; Skalnaya, M.G.; Berezkina, E.S.; Grabeklis, A.R.; Tinkov, A.A. The level of toxic and essential trace elements in hair of petrochemical workers involved in different technological processes. Environ. Sci. Pollut. Res. 2017, 24, 5576–5584. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Smith, T.J.; Tamaro, S.; Enarson, D.; Fadl, S.; Davison, A.J.; Weldon, L. Trace metals in scalp hair of children and adults in three Alberta indian villages. Sci. Total Environ. 1986, 54, 107–125. [Google Scholar] [CrossRef]
- Esteban, M.; Castaño, A. Non-invasive matrices in human biomonitoring: A review. Environ. Int. 2009, 35, 438–449. [Google Scholar] [CrossRef]
- Molina-Villalba, I.; Lacasaña, M.; Rodríguez-Barranco, M.; Hernández, A.F.; Gonzalez-Alzaga, B.; Aguilar-Garduño, C.; Gil, F. Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere 2015, 124, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.; Hernández, A.F.; Márquez, C.; Femia, P.; Olmedo, P.; López-Guarnido, O.; Pla, A. Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci. Total Environ. 2011, 409, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Azhgaliev, D.K.; Karimov, S.G.; Isaev, A.A. Regional study is the next important stage in evaluation of oil and gas industry potential of sedimentary basins of Western Kazakhstan. Georesursy 2018, 20, 16–24. [Google Scholar] [CrossRef]
- Batyrova, G.; Tlegenova, Z.; Umarova, G.; Kononets, V.; Umarov, Y.; Kudabayeva, K.; Aitmaganbet, P.; Amanzholkyzy, A. Microelement Status of the Adult Population in Western Kazakhstan. Hum. Ecol. 2021, 28, 42–49. [Google Scholar] [CrossRef]
- Kenessaryiev, U.I.; Yerzhanova, A.E.; Kenessary, D.U.; Kenessary, A.U. Trends of change in demographic indices of population in the area of oil and gas deposits of the republic of Kazakhstan. Gig. Sanit. 2016, 95, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Sakieva, K.Z.; Mamyrbaev, A.A. State of health of the population of the one out of oil and gas extraction regions of Kazakhstan. Gig. Sanit. 2016, 95, 528–532. [Google Scholar] [CrossRef]
- McKenzie, L.M.; Crooks, J.; Peel, J.L.; Blair, B.D.; Brindley, S.; Allshouse, W.B.; Malin, S.; Adgate, J. Relationships between indicators of cardiovascular disease and intensity of oil and natural gas activity in Northeastern Colorado. Environ. Res. 2019, 170, 56–64. [Google Scholar] [CrossRef]
- Pragst, F.; Stieglitz, K.; Runge, H.; Runow, K.-D.; Quig, D.; Osborne, R.; Runge, C.; Ariki, J. High concentrations of lead and barium in hair of the rural population caused by water pollution in the Thar Jath oilfields in South Sudan. Forensic Sci. Int. 2017, 274, 99–106. [Google Scholar] [CrossRef]
- Pozebon, D.; Scheffler, G.; Dressler, V.L. Elemental hair analysis: A review of procedures and applications. Anal. Chim. Acta 2017, 992, 1–23. [Google Scholar] [CrossRef]
- Szynkowska, M.I.; Marcinek, M.; Pawlaczyk, A.; Albińska, J. Human hair analysis in relation to similar environmental and occupational exposure. Environ. Toxicol. Pharmacol. 2015, 40, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Walmsley, R.P. Learning and Understanding the Kruskal-Wallis One-Way Analysis-of-Variance-by-Ranks Test for Differences Among Three or More Independent Groups. Phys. Ther. 1997, 77, 1755–1761. [Google Scholar] [CrossRef]
- González, N.; Esplugas, R.; Marquès, M.; Domingo, J.L. Concentrations of arsenic and vanadium in environmental and biological samples collected in the neighborhood of petrochemical industries: A review of the scientific literature. Sci. Total Environ. 2021, 771, 145149. [Google Scholar] [CrossRef]
- Yuan, T.-H.; Chio, C.-P.; Shie, R.-H.; Pien, W.-H.; Chan, C.-C. The distance-to-source trend in vanadium and arsenic exposures for residents living near a petrochemical complex. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 270–276. [Google Scholar] [CrossRef]
- Anticona, C.; Bergdahl, I.; Lundh, T.; Alegre, Y.; Sebastian, M.S. Lead exposure in indigenous communities of the Amazon basin, Peru. Int. J. Hyg. Environ. Health 2011, 215, 59–63. [Google Scholar] [CrossRef]
- Breuer, E.; Shimmield, G.; Peppe, O. Assessment of metal concentrations found within a North Sea drill cuttings pile. Mar. Pollut. Bull. 2008, 56, 1310–1322. [Google Scholar] [CrossRef] [PubMed]
- Nadal, M.; Mari, M.; Schuhmacher, M.; Domingo, J.L. Multi-compartmental environmental surveillance of a petrochemical area: Levels of micropollutants. Environ. Int. 2009, 35, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Dongarrà, G.; Varrica, D.; Tamburo, E.; D’Andrea, D. Trace elements in scalp hair of children living in differing environmental contexts in Sicily (Italy). Environ. Toxicol. Pharmacol. 2012, 34, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Baubekova, A.; Akindykova, A.; Mamirova, A.; Dumat, C.; Jurjanz, S. Evaluation of environmental contamination by toxic trace elements in Kazakhstan based on reviews of available scientific data. Environ. Sci. Pollut. Res. Int. 2021, 28, 43315–43328. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Bernhardt, E.S. Biogeochemistry: An Analysis of Global Change, 3rd ed.; Elsevier: Oxford, UK, 2013; 688p. [Google Scholar]
- Nowak, B.; Chmielnicka, J. Relationship of Lead and Cadmium to Essential Elements in Hair, Teeth, and Nails of Environmentally Exposed People. Ecotoxicol. Environ. Saf. 2000, 46, 265–274. [Google Scholar] [CrossRef]
- Kudabayeva, K.I.; Batyrova, G.A.; Bazargaliyev, Y.S.; Baspakova, A.M.; Sakhanova, S.K. Hair trace element composition in 6-to 12-year-old children with goiter in West Kazakhstan, a province of the Republic of Kazakhstan. J. Elementol. 2018, 23, 647–657. [Google Scholar] [CrossRef]
- Kudabayeva, K.; Batyrova, G.; Bazargaliyev, Y.; Agzamova, R.; Nuftieva, A. Microelement status in children with enlarged thyroid gland in West Kazakhstan region. Georgian Med. News 2017, 2, 64–71. [Google Scholar]
- Kudabayeva, K.I.; Koshmaganbetova, G.K.; Mickuviene, N.; Skalnaya, M.G.; Tinkov, A.A.; Skalny, A.V. Hair Trace Elements are Associated with Increased Thyroid Volume in Schoolchildren with Goiter. Biol. Trace Elem. Res. 2016, 174, 261–266. [Google Scholar] [CrossRef]
- Namazbayeva, Z.I.; Berzhanova, R.S.; Ulzhibayeva, R.R.; Iskendirova, A.Z.; Kyzkenova, A.Z.; Mahmetova, A.M. Microelement profile of Aral region adult population. Med. Tr. Promyshlennaia Ekol. 2015, 7, 11–14. [Google Scholar]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Bailey, E.H.; Arshad, M.; Ahmed, S.; Watts, M.J.; Young, S.D. Multiple geochemical factors may cause iodine and selenium deficiency in Gilgit-Baltistan, Pakistan. Environ. Geochem. Health 2021, 43, 4493–4513. [Google Scholar] [CrossRef] [PubMed]
- Turan, E.; Turksoy, V.A. Selenium, Zinc, and Copper Status in Euthyroid Nodular Goiter: A Cross-Sectional Study. Int. J. Prev. Med. 2021, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, V.I.; Andrusyshyna, I.M.; Luzanchuk, I.A.; Polumbryk, M.O.; Tarashchenko, Y.M. Association Between Thyroid Hormone Status and Trace Elements in Serum of Patients with Nodular Goiter. Biol. Trace Elem. Res. 2020, 196, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.; Burtseva, T.I.; Salnikova, E.V.; Ajsuvakova, O.P.; Skalnaya, M.G.; Kirichuk, A.; Tinkov, A.A. Geographic variation of environmental, food, and human hair selenium content in an industrial region of Russia. Environ. Res. 2019, 171, 293–301. [Google Scholar] [CrossRef]
- Li, M.; Yun, H.; Huang, J.; Wang, J.; Wu, W.; Guo, R.; Wang, L. Hair Selenium Content in Middle-Aged and Elderly Chinese Population. Biol. Trace Elem. Res. 2020, 199, 3571–3578. [Google Scholar] [CrossRef]
- Skalny, A.V.; Skalnaya, M.G.; Serebryansky, E.P.; Zhegalova, I.V.; Grabeklis, A.R.; Skalnaya, O.A.; Skalnaya, A.A.; Huang, P.-T.; Wu, C.-C.; Bykov, A.T.; et al. Comparative Hair Trace Element Profile in the Population of Sakhalin and Taiwan Pacific Islands. Biol. Trace Elem. Res. 2018, 184, 308–316. [Google Scholar] [CrossRef]
- Chawla, R.; Filippini, T.; Loomba, R.; Cilloni, S.; Dhillon, K.S.; Vinceti, M. Exposure to a high selenium environment in Punjab, India: Biomarkers and health conditions. Sci. Total Environ. 2020, 719, 134541. [Google Scholar] [CrossRef]
- Rocha, A.V.; Cardoso, B.R.; Cominetti, C.; Bueno, R.B.; de Bortoli, M.C.; Farias, L.A.; Favaro, D.I.T.; Camargo, L.M.A.; Cozzolino, S.M.F. Selenium status and hair mercury levels in riverine children from Rondônia, Amazonia. Nutrition 2014, 30, 1318–1323. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Cilloni, S.; Bargellini, A.; Vergoni, A.V.; Tsatsakis, A.; Ferrante, M. Health risk assessment of environmental selenium: Emerging evidence and challenges. Mol. Med. Rep. 2017, 15, 3323–3335. [Google Scholar] [CrossRef] [Green Version]
- Kousa, A.; Loukola-Ruskeeniemi, K.; Hatakka, T.; Kantola, M. High manganese and nickel concentrations in human hair and well water and low calcium concentration in blood serum in a pristine area with sulphide-rich bedrock. Environ. Geochem. Health 2021, 1–21. [Google Scholar] [CrossRef]
- Takahashi, K.; Suzuki, N.; Ogra, Y. Effect of administration route and dose on metabolism of nine bioselenocompounds. J. Trace Elem. Med. Biol. 2018, 49, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, E.; Vinceti, M. Selenium and Human Health: Witnessing a Copernican Revolution? J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2015, 33, 328–368. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014, 39, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinkov, A.A.; Skalnaya, M.G.; Ajsuvakova, O.P.; Serebryansky, E.P.; Chao, J.C.-J.; Aschner, M.; Skalny, A.V. Selenium, Zinc, Chromium, and Vanadium Levels in Serum, Hair, and Urine Samples of Obese Adults Assessed by Inductively Coupled Plasma Mass Spectrometry. Biol. Trace Elem. Res. 2021, 199, 490–499. [Google Scholar] [CrossRef]
- Skalny, A.; Skalnaya, M.; Tinkov, A.A.; Serebryansky, E.P.; Demidov, V.A.; Lobanova, Y.N.; Grabeklis, A.; Berezkina, E.S.; Gryazeva, I.V.; Skalny, A.; et al. Hair concentration of essential trace elements in adult non-exposed Russian population. Environ. Monit. Assess. 2015, 187, 677. [Google Scholar] [CrossRef]
- Grabeklis, A.R.; Abazov, K.A.; Skalny, A.A.; Lobanova, Y.N. Regional approach to providing WFP un services: Comparison of multielement hair data of schoolchildren from Tajikistan, Azerbaijan, Kazakhstan, Turkmenistan, Bangladesh, Macedonia, Croatia, and Russian federation. Microelem. Med. 2018, 19, 49–56. [Google Scholar] [CrossRef]
- Caroli, S.; Alimonti, A.; Coni, E.; Petrucci, F.; Senofonte, O.; Violante, N. The Assessment of Reference Values for Elements in Human Biological Tissues and Fluids: A Systematic Review. Crit. Rev. Anal. Chem. 1994, 24, 363–398. [Google Scholar] [CrossRef]
- Iyengar, V.; Woittiez, J. Trace elements in human clinical specimens: Evaluation of literature data to identify reference values. Clin. Chem. 1988, 34, 474–481. [Google Scholar] [CrossRef]
- Goullé, J.P.; Mahieu, L.; Castermant, J.; Neveu, N.; Bonneau, L.; Lainé, G.; Bouige, D.; Lacroix, C. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: Reference values. Forensic Sci. Int. 2005, 153, 39–44. [Google Scholar] [CrossRef]
- Miekeley, N.; Carneiro, M.T.D.; Portodasilveira, C. How reliable are human hair reference intervals for trace elements? Sci. Total Environ. 1998, 218, 9–17. [Google Scholar] [CrossRef]
- Rodushkin, I.; Axelsson, M.D. Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part II. A study of the inhabitants of northern Sweden. Sci. Total Environ. 2000, 262, 21–36. [Google Scholar] [CrossRef]
- Chojnacka, K.; Zielińska, A.; Górecka, H.; Dobrzański, Z.; Górecki, H. Reference values for hair minerals of Polish students. Environ. Toxicol. Pharmacol. 2010, 29, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Tamburo, E.; Varrica, D.; Dongarrà, G. Gender as a key factor in trace metal and metalloid content of human scalp hair. A multi-site study. Sci. Total Environ. 2016, 573, 996–1002. [Google Scholar] [CrossRef]
Element | AM | GM | Min | Max | Me (Q1; Q3), | P2.5; P97.5 |
---|---|---|---|---|---|---|
Co | 0.055 | 0.017 | 0.001 | 3.94 | 0.014 (0.007; 0.031) | 0.014 (0.003; 0.361) |
Cu | 10.64 | 10.03 | 2.39 | 50.86 | 10.35 (8.56; 12.04) | 10.35 (4.71; 19.18) |
Fe | 26.02 | 21.58 | 5.77 | 204.79 | 20.14 (14.24; 29.89) | 20.14 (8.96; 83.43) |
I | 0.959 | 0.388 | 0.072 | 67.58 | 0.315 (0.198; 0.591) | 0.315 (0.101; 5.34) |
Mn | 1.43 | 0.615 | 0.074 | 40.97 | 0.526 (0.260; 1.127) | 0.526 (0.127; 10.94) |
Se | 0.507 | 0.472 | 0.101 | 9.11 | 0.496 (0.415; 0.568) | 0.496 (0.184; 0.768) |
Zn | 208.09 | 190.57 | 53.08 | 1200.42 | 185.59 (152.28; 232.06) | 185.59 (85.96; 509.41) |
Element | Distance <16 km (n = 79) | Distance 16–110 km (n = 422) | Distance >110 km (n = 349) | p K-W | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AM | GM | Me (Q1; Q3) | P2.5; P97.5 | AM | GM | Me (Q1; Q3), | P2.5; P97.5 | AM | GM | Me (Q1; Q3), | P2.5; P97.5 | ||
Co | 0.037 | 0.016 | 0.015 (0.008; 0.027) | (0.004; 0.222) | 0.056 | 0.018 | 0.015 (0.008; 0.036) | (0.003; 0.361) | 0.057 | 0.016 | 0.013 (0.007; 0.025) | (0.002; 0.556) | 0.076 |
Cu | 9.67 | 9.20 | 9.51 c (8.19; 11.44) | (4.34; 16.01) | 9.83 | 9.33 | 9.56 c (7.67; 11.52) | (4.70; 16.98) | 11.83 | 11.13 | 10.96 a,b (9.67; 12.78) | (6.15; 23.68) | <0.001 |
Fe | 25.85 | 20.998 | 18.53 (13.22; 30.73) | (9.29; 81.38) | 26.73 | 22.07 | 20.51 (14.58; 30.81) | (8.95; 86.55) | 25.20 | 21.12 | 20.01 (14.24; 28.44) | (8.93; 76.78) | 0.488 |
I | 1.11 | 0.324 | 0.238 c (0.178; 0.480) | (0.100; 2.64) | 0.919 | 0.346 | 0.290 c (0.175; 0.543) | (0.095; 5.34) | 0.973 | 0.464 | 0.391 a,b (0.250; 0.682) | (0.129; 5.35) | <0.001 |
Mn | 1.14 | 0.414 | 0.361 b,c (0.178; 0.773) | (0.109; 6.88) | 1.75 | 0.669 | 0.536 a (0.270; 1.19) | (0.133; 13.35) | 1.10 | 0.608 | 0.559 a (0.261; 1.17) | (0.127; 5.22) | 0.002 |
Se | 0.545 | 0.533 | 0.540 b*,c (0.466; 0.613) | (0.300; 0.858) | 0.530 | 0.481 | 0.509 a*,c (0.433; 0.575) | (0.146; 0.742) | 0.470 | 0.449 | 0.471 a,b (0.393; 0.549) | (0.187; 0.771) | <0.001 |
Zn | 207.78 | 192.69 | 182.57 (152.18; 42.71) | (93.03; 480.67) | 210.21 | 194.24 | 190.97 (155.77; 232.06) | (85.63; 490.50) | 205.59 | 185.75 | 178.87 (149.15; 228.35) | (79.38; 552.48) | 0.092 |
Element | Crude Difference | 95% CI | p | Model 1 | 95% CI | p | Model 2 | 95% CI | p | Model 3 | 95% CI | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Co | 0.040 | −0.120; 0.040 | 0.329 | −0.044 | −0.125; 0.037 | 0.287 | −0.044 | −0.126; 0.037 | 0.282 | −0.044 | −0.125; 0.038 | 0.293 |
Cu | 0.074 | 0.053; 0.096 | <0.001 | 0.073 | 0.051; 0.095 | <0.001 | 0.072 | 0.050; 0.094 | <0.001 | 0.072 | 0.050; 0.094 | <0.001 |
Fe | −0.012 | −0.049; 0.025 | 0.526 | −0.012 | −0.047; 0.024 | 0.530 | −0.013 | −0.049; 0.023 | 0.023 | −0.013 | −0.049; 0.023 | 0.474 |
I | 0.141 | 0.078; 0.205 | <0.001 | 0.124 | 0.061; 0.187 | <0.001 | 0.120 | 0.057; 0.183 | <0.001 | 0.121 | 0.058; 0.185 | <0.001 |
Mn | 0.016 | −0.057; 0.089 | 0.667 | 0.015 | −0.059; 0.089 | 0.689 | 0.011 | −0.063; 0.085 | 0.772 | 0.010 | −0.064; 0.084 | 0.799 |
Se | −0.032 | −0.055; −0.009 | 0.007 | −0.022 | −0.045; 0.001 | 0.058 | −0.022 | −0.045; 0.000 | 0.055 | −0.023 | −0.045; 0.000 | 0.054 |
Zn | −0.023 | −0.049; 0.003 | 0.085 | −0.012 | −0.038; 0.014 | 0.360 | −0.016 | −0.041; 0.010 | 0.227 | −0.015 | −0.041; 0.010 | 0.236 |
Sample Type & Location | Co Me (Range) | Cu Me (Range) | Fe Me (Range) | I Me (Range) | Mn Me (Range) | Se Me (Range) | Zn Me (Range) | References |
---|---|---|---|---|---|---|---|---|
Present study, n = 850 | 0.014 (0.003; 0.361) | 10.35 (4.71; 19.18) | 20.14 (8.96; 83.43) | 0.315 (0.101; 5.34) | 0.526 (0.127; 10.94) | 0.496 (0.184; 0.768) | 185.59 (85.96; 509.41) | |
Occupationally non-exposed Russian adult population, n = 7256 | 0.015 (0.009; 0.073) | 13.0 (11.8; 29.2) | 12.5 (9.6; 31.5) | - | 0.52 (0.29; 1.76) | 0.296 (0.093; 0.482) | 186.4 (134.7; 301.9) | Skalny et al., 2015 [66] |
Children aged 7–11 years from Kazakhstan, n = 836 | 0.018 (0.012; 0.027) | 9.5 (8.3;10.9) | 22.8 (16.2; 32.1) | 0.886 (0.465; 1.871) | 0.852 (0.513; 1.408) | 0.388 (0.283; 0.471) | 121 (81;164) | Grabeklis et al., 2018 [67] |
Children and adults selected from various countries | 0.07; 1.70 | 6; 293 | 10; 900 | 0.03; 4.2 | 0.04; 24.00 | 0.002; 6.600 | 53.7; 327.0 | Caroli et al., 1994 [68] |
Adult population selected from various countries: nearly 100, 000 individuals from 55 countries | 0.077 (0.0004; 0.500) | 16.4 (6.8; 39.0) | 33 (13;177) | 0.60 (0.27; 4.20) | 1.2 (0.2; 4.4) | 0.53 (0.20; 1.40) | 175 (124; 320) | Iyengar and Woittiez, 1988 [69] |
Canada, adults, ng/mg | 0.023 (0.004; 0.140) | 20.3 (9.0; 61.3) | - | - | 0.067 (0.016; 0.570) | 0.54 (0.37; 1.37) | 162 (129; 209) | Gulle et al., 2005 [70] |
Brazil, adults, n = 1091 | (0.26;0.47) | (13;35) | (6.0;15) | - | (0.26;0.75) | (0.38;0.7) | (125; 165) | Miekeley et al., 1998 [71] |
Sweden, children+adults, from 1 year old up to 76, n = 114 | 0.010 (0.002; 0.063) | 18 (8.5; 96.0) | 8.4 (4.9; 23.0) | 0.52 (0.13; 3.31) | 0.35 (0.08; 2.41) | 0.79 (0.48; 1,84) | 144 (68; 198) | Rodushkin et al., 2000 [72] |
Brazil, adult healthy population n = 280 | - | 5.90 (0.02; 37.60) | - | - | 0.70 (0.05; 6.70) | - | - | Rodrigues et al., 2008 [8] |
Poland, Wroclaw, students aged 20, n = 117 | 0.789 (0.775; 0.985) | 13.00 (8.51; 34.97) | 22.1 (16.9; 29.6) | - | 0.627 (0.459; 1.046) | - | 181 (140; 371) | Chojnacka et al., 2010 [73] |
Sicily, children 11–14 years old, n = 943 | 0.040 (0.003; 0.450) | 13.0 (7.1; 45.0) | - | - | 0.31 (0.01; 1.60) | 0.50 (0.13; 1.40) | 200 (110; 295) | Tamburo et al., 2016 [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umarova, G.; Batyrova, G.; Tlegenova, Z.; Kononets, V.; Balmagambetova, S.; Umarov, Y.; Yessengaliyeva, I.; Mamyrbayev, A. Essential Trace Elements in Scalp Hair of Residents across the Caspian Oil and Gas Region of Kazakhstan. Toxics 2022, 10, 364. https://doi.org/10.3390/toxics10070364
Umarova G, Batyrova G, Tlegenova Z, Kononets V, Balmagambetova S, Umarov Y, Yessengaliyeva I, Mamyrbayev A. Essential Trace Elements in Scalp Hair of Residents across the Caspian Oil and Gas Region of Kazakhstan. Toxics. 2022; 10(7):364. https://doi.org/10.3390/toxics10070364
Chicago/Turabian StyleUmarova, Gulmira, Gulnara Batyrova, Zhenisgul Tlegenova, Victoria Kononets, Saule Balmagambetova, Yeskendir Umarov, Inkara Yessengaliyeva, and Arstan Mamyrbayev. 2022. "Essential Trace Elements in Scalp Hair of Residents across the Caspian Oil and Gas Region of Kazakhstan" Toxics 10, no. 7: 364. https://doi.org/10.3390/toxics10070364
APA StyleUmarova, G., Batyrova, G., Tlegenova, Z., Kononets, V., Balmagambetova, S., Umarov, Y., Yessengaliyeva, I., & Mamyrbayev, A. (2022). Essential Trace Elements in Scalp Hair of Residents across the Caspian Oil and Gas Region of Kazakhstan. Toxics, 10(7), 364. https://doi.org/10.3390/toxics10070364