Integrating Multiscale Geospatial Environmental Data into Large Population Health Studies: Challenges and Opportunities
Abstract
:1. Introduction
2. Opportunities for Applying Geospatial Technologies to Advance Health Research
2.1. Satellite Remote Sensing
2.2. Hyperlocal Mapping
2.3. Personal Monitoring
3. Challenges, Research Gaps, and Research Advancements
3.1. Improving the Accuracy of Exposure Estimates by Reducing Measurement Errors and Controlling Uncertainty
3.1.1. Model Validation against Independent Measurements
3.1.2. Incorporation of Mobility and Time–Activity Patterns
3.1.3. Data Gaps in Indoor Exposure
3.1.4. Combining the Strengths of Diverse Geospatial Technologies
3.2. Enabling Multiscale Data Integration by Improving Data Access and Computational Methods and Models
3.2.1. Data Access and Data Interoperability
3.2.2. Data Infrastructure and Data Platforms
3.2.3. Data Analysis across Multiple Modalities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wild, C.P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappaport, S.M. Implications of the exposome for exposure science. J. Expo. Sci. Environ. Epid. 2011, 21, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.W.; Jones, D.P. The Nature of Nurture: Refining the Definition of the Exposome. Toxicol. Sci. 2014, 137, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishitsuka, K.; Nakayama, S.F.; Kishi, R.; Mori, C.; Yamagata, Z.; Ohya, Y.; Kawamoto, T.; Kamijima, M. Japan Environment and Children’s Study: Backgrounds, activities, and future directions in global perspectives. Environ. Health Prev. Med. 2017, 22, 61. [Google Scholar] [CrossRef]
- Steckling, N.; Gotti, A.; Bose-O’Reilly, S.; Chapizanis, D.; Costopoulou, D.; de Vocht, F.; Garí, M.; Grimalt, J.O.; Heath, E.; Hiscock, R.; et al. Biomarkers of exposure in environment-wide association studies—Opportunities to decode the exposome using human biomonitoring data. Environ. Res. 2018, 164, 597–624. [Google Scholar] [CrossRef]
- Vineis, P.; Chadeau-Hyam, M.; Gmuender, H.; Gulliver, J.; Herceg, Z.; Kleinjans, J.; Kogevinas, M.; Kyrtopoulos, S.; Nieuwenhuijsen, M.; Phillips, D.H.; et al. The exposome in practice: Design of the EXPOsOMICS project. Int. J. Hyg. Environ. Health 2017, 220 Pt. A, 142–151. [Google Scholar] [CrossRef]
- Vrijheid, M.; Slama, R.; Robinson, O.; Chatzi, L.; Coen, M.; van den Hazel, P.; Thomsen, C.; Wright, J.; Athersuch, T.J.; Avellana, N.; et al. The human early-life exposome (HELIX): Project rationale and design. Environ. Health Perspect. 2014, 122, 535–544. [Google Scholar] [CrossRef] [Green Version]
- The All of Us Research Program. Available online: https://allofus.nih.gov/ (accessed on 24 April 2022).
- The Environmental influences on Child Health Outcomes (ECHO) Program. Available online: https://echochildren.org/ (accessed on 24 April 2022).
- Weis, B.K.; Balshaw, D.; Barr, J.R.; Brown, D.; Ellisman, M.; Lioy, P.; Omenn, G.; Potter, J.D.; Smith, M.T.; Sohn, L.; et al. Personalized exposure assessment: Promising approaches for human environmental health research. Environ. Health Perspect. 2005, 113, 840–848. [Google Scholar] [CrossRef] [Green Version]
- Viet, S.M.; Falman, J.C.; Merrill, L.S.; Faustman, E.M.; Savitz, D.A.; Mervish, N.; Barr, D.B.; Peterson, L.A.; Wright, R.; Balshaw, D.; et al. Human Health Exposure Analysis Resource (HHEAR): A model for incorporating the exposome into health studies. Int. J. Hyg. Environ. Health 2021, 235, 113768. [Google Scholar] [CrossRef]
- Balshaw, D.M.; Collman, G.W.; Gray, K.A.; Thompson, C.L. The Children’s Health Exposure Analysis Resource: Enabling research into the environmental influences on children’s health outcomes. Curr. Opin. Pediatr. 2017, 29, 385–389. [Google Scholar] [CrossRef]
- Schootman, M.; Nelson, E.J.; Werner, K.; Shacham, E.; Elliott, M.; Ratnapradipa, K.; Lian, M.; McVay, A. Emerging technologies to measure neighborhood conditions in public health: Implications for interventions and next steps. Int. J. Health Geogr. 2016, 15, 20. [Google Scholar] [CrossRef] [Green Version]
- Franch-Pardo, I.; Napoletano, B.M.; Rosete-Verges, F.; Billa, L. Spatial analysis and GIS in the study of COVID-19. A review. Sci. Total Environ. 2020, 739, 140033. [Google Scholar] [CrossRef]
- Bazemore, A.W.; Cottrell, E.K.; Gold, R.; Hughes, L.S.; Phillips, R.L.; Angier, H.; Burdick, T.E.; Carrozza, M.A.; Devoe, J.E. “Community vital signs”: Incorporating geocoded social determinants into electronic records to promote patient and population health. J. Am. Med. Inform. Assn. 2016, 23, 407–412. [Google Scholar] [CrossRef] [Green Version]
- The 2021 NIEHS Workshop: Integrating Multiscale Geospatial Environmental Data Into Large Population Health Studies. Available online: https://www.niehs.nih.gov/news/events/pastmtg/2021/dert_geospatial_2021/index.cfm (accessed on 24 April 2022).
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef]
- Martin, R.V. Satellite remote sensing of surface air quality. Atmos. Environ. 2008, 42, 7823–7843. [Google Scholar] [CrossRef]
- Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; et al. Tropospheric emissions: Monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Diner, D.J. Multi-Angle Imager for Aerosols: A Satellite Investigation to Benefit Public Health. Public Health Rep. 2017, 132, 14–17. [Google Scholar] [CrossRef]
- NASA’s Applied Remote Sensing Training Program. Available online: https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset/about-arset (accessed on 24 April 2022).
- Chan, S.H.; van Hee, V.C.; Bergen, S.; Szpiro, A.A.; DeRoo, L.A.; London, S.J.; Marshall, J.D.; Kaufman, J.D.; Sandler, D.P. Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study. Environ. Health Persp. 2015, 123, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Jones, R.R.; James, P.; Kitahara, C.M.; Xiao, Q. Associations between artificial light at night and risk for thyroid cancer: A large US cohort study. Cancer Am. Cancer Soc. 2021, 127, 1448–1458. [Google Scholar] [CrossRef]
- Xiao, Q.; James, P.; Breheny, P.; Jia, P.; Park, Y.; Zhang, D.; Fisher, J.A.; Ward, M.H.; Jones, R.R. Outdoor light at night and postmenopausal breast cancer risk in the NIH-AARP diet and health study. Int. J. Cancer 2020, 147, 2363–2372. [Google Scholar] [CrossRef]
- James, P.; Hart, J.E.; Banay, R.F.; Laden, F. Exposure to Greenness and Mortality in a Nationwide Prospective Cohort Study of Women. Environ. Health Persp. 2016, 124, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Hankey, S. Using Street View Imagery to Predict Street-Level Particulate Air Pollution. Environ. Sci. Technol. 2021, 55, 2695–2704. [Google Scholar] [CrossRef]
- Lu, T.J.; Lansing, J.; Zhang, W.W.; Bechle, M.J.; Hankey, S. Land Use Regression models for 60 volatile organic compounds: Comparing Google Point of Interest (POI) and city permit data. Sci. Total Environ. 2019, 677, 131–141. [Google Scholar] [CrossRef]
- Goin, D.E.; Sudat, S.; Riddell, C.; Morello-Frosch, R.; Apte, J.S.; Glymour, M.M.; Karasek, D.; Casey, J.A. Hyperlocalized Measures of Air Pollution and Preeclampsia in Oakland, California. Environ. Sci. Technol. 2021, 55, 14710–14719. [Google Scholar] [CrossRef]
- Caubel, J.J.; Cados, T.E.; Preble, C.V.; Kirchstetter, T.W. A Distributed Network of 100 Black Carbon Sensors for 100 Days of Air Quality Monitoring in West Oakland, California. Environ. Sci. Technol. 2019, 53, 7564–7573. [Google Scholar] [CrossRef] [Green Version]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef]
- Weichenthal, S.; Hatzopoulou, M.; Brauer, M. A picture tells a thousand...exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environ. Int. 2019, 122, 3–10. [Google Scholar] [CrossRef]
- Bi, J.Z.; Wildani, A.; Chang, H.H.; Liu, Y. Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale. Environ. Sci. Technol. 2020, 54, 2152–2162. [Google Scholar]
- Medgyesi, D.N.; Fisher, J.A.; Cervi, M.M.; Weyer, P.J.; Patel, D.M.; Sampson, J.N.; Ward, M.H.; Jones, R.R. Impact of residential mobility on estimated environmental exposures in a prospective cohort of older women. Environ. Epidemiol. 2020, 4, e110. [Google Scholar] [CrossRef]
- Bradley, P.M.; Argos, M.; Kolpin, D.W.; Meppelink, S.M.; Romanok, K.M.; Smalling, K.L.; Focazio, M.J.; Allen, J.M.; Dietze, J.E.; Devito, M.J.; et al. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. Sci. Total Environ. 2020, 719, 137236. [Google Scholar] [CrossRef]
- Kirchner, T.R.; Shiffman, S. Spatio-temporal determinants of mental health and well-being: Advances in geographically-explicit ecological momentary assessment (GEMA). Soc. Psych. Psych. Epid. 2016, 51, 1211–1223. [Google Scholar] [CrossRef] [Green Version]
- Loh, M.; Sarigiannis, D.; Gotti, A.; Karakitsios, S.; Pronk, A.; Kuijpers, E.; Annesi-Maesano, I.; Baiz, N.; Madureira, J.; Oliveira Fernandes, E.; et al. How Sensors Might Help Define the External Exposome. Int. J. Environ. Res. Public Health 2017, 14, 434. [Google Scholar] [CrossRef] [Green Version]
- Bui, A.A.T.; Hosseini, A.; Rocchio, R.; Jacobs, N.; Ross, M.K.; Okelo, S.; Lurmann, F.; Eckel, S.; Dzubur, E.; Dunton, G.; et al. Biomedical REAl-Time Health Evaluation (BREATHE): Toward an mHealth informatics platform. JAMIA Open 2020, 3, 190–200. [Google Scholar] [CrossRef]
- Young, A.S.; Herkert, N.; Stapleton, H.M.; Cedeño Laurent, J.G.; Jones, E.R.; MacNaughton, P.; Coull, B.A.; James-Todd, T.; Hauser, R.; Luna, M.L.; et al. Chemical contaminant exposures assessed using silicone wristbands among occupants in office buildings in the USA, UK, China, and India. Environ. Int. 2021, 156, 106727. [Google Scholar] [CrossRef]
- Do You Have Outdoor Air Monitoring Data for All Counties in the U.S.? Available online: https://www.epa.gov/outdoor-air-quality-data/do-you-have-outdoor-air-monitoring-data-all-counties-us (accessed on 24 April 2022).
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epid. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.T.; Sengupta, D.; Campmier, M.J.; Lunderberg, D.M.; Apte, J.S.; Goldstein, A.H. Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in California. Proc. Natl. Acad. Sci. USA 2021, 118, e2106478118. [Google Scholar] [CrossRef]
- Stapleton, H.M.; Misenheimer, J.; Hoffman, K.; Webster, T.F. Flame retardant associations between children’s handwipes and house dust. Chemosphere 2014, 116, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Why Indoor Chemistry Matters. Available online: https://nap.nationalacademies.org/resource/26228/Indoor_Chemistry_Report_Highlights.pdf (accessed on 7 July 2022).
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; Santos, L.B.D.; Bourne, P.E.; et al. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [Green Version]
- The Multi-Angle Imager for Aerosols (MAIA). Available online: https://maia.jpl.nasa.gov/ (accessed on 24 April 2022).
- Brook, J.R.; Doiron, D.; Setton, E.; Lakerveld, J. Centralizing environmental datasets to support (inter)national chronic disease research: Values, challenges, and recommendations. Environ. Epidemiol. 2021, 5, e129. [Google Scholar] [CrossRef] [PubMed]
- Joubert, B.R.; Kioumourtzoglou, M.A.; Chamberlain, T.; Chen, H.Y.; Gennings, C.; Turyk, M.E.; Miranda, M.L.; Webster, T.F.; Ensor, K.B.; Dunson, D.B.; et al. Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods. Int. J. Environ. Res. Public Health 2022, 19, 1378. [Google Scholar] [CrossRef]
- Oskar, S.; Stingone, J.A. Machine Learning Within Studies of Early-Life Environmental Exposures and Child Health: Review of the Current Literature and Discussion of Next Steps. Curr. Environ. Health Rep. 2020, 7, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Brokamp, C.; Wolfe, C.; Lingren, T.; Harley, J.; Ryan, P. Decentralized and reproducible geocoding and characterization of community and environmental exposures for multisite studies. J. Am. Med. Inform. Assoc. 2018, 25, 309–314. [Google Scholar] [CrossRef] [Green Version]
- The NIEHS Environmental Health Language Collaborative. Available online: https://www.niehs.nih.gov/research/programs/ehlc/index.cfm (accessed on 24 April 2022).
Satellite Remote Sensing | Hyperlocal Mapping | Personal Monitoring | |
---|---|---|---|
Spatial and Temporal Coverage | Global or large geographical area; years to decades of data | Neighborhood or community; months to years of data | Individual; usually days to weeks of data |
Spatial and Temporal Resolution | Varies across measurements, and usually low (250 m–1 km or lower); annual or daily average | Street level (10–30 m); multiple time points per day or real time | Immediate proximity of the person; real time (minutes or seconds) |
Ambient or Indoor | Ambient measurements only | Ambient measurements only | Both indoor and outdoor measurements |
Cost | Publicly available data, no cost to the users | May require new data collection, cost to the user is medium | Likely requires extensive efforts for data collection, cost to the user is high |
Disadvantages | Lower resolution of data may not be sufficient, and pollutants are limited | Require modeling techniques and validation to make the point estimates into useable continuous surfaces | Cost to collect, store, and analyze the highly dimensional dataset is high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Eccles, K.M.; Kwok, R.K.; Joubert, B.R.; Messier, K.P.; Balshaw, D.M. Integrating Multiscale Geospatial Environmental Data into Large Population Health Studies: Challenges and Opportunities. Toxics 2022, 10, 403. https://doi.org/10.3390/toxics10070403
Cui Y, Eccles KM, Kwok RK, Joubert BR, Messier KP, Balshaw DM. Integrating Multiscale Geospatial Environmental Data into Large Population Health Studies: Challenges and Opportunities. Toxics. 2022; 10(7):403. https://doi.org/10.3390/toxics10070403
Chicago/Turabian StyleCui, Yuxia, Kristin M. Eccles, Richard K. Kwok, Bonnie R. Joubert, Kyle P. Messier, and David M. Balshaw. 2022. "Integrating Multiscale Geospatial Environmental Data into Large Population Health Studies: Challenges and Opportunities" Toxics 10, no. 7: 403. https://doi.org/10.3390/toxics10070403
APA StyleCui, Y., Eccles, K. M., Kwok, R. K., Joubert, B. R., Messier, K. P., & Balshaw, D. M. (2022). Integrating Multiscale Geospatial Environmental Data into Large Population Health Studies: Challenges and Opportunities. Toxics, 10(7), 403. https://doi.org/10.3390/toxics10070403