Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope
Abstract
:1. Introduction
2. Methods
2.1. Immunogen Design
2.2. Monoclonal Antibody Generation
2.3. Screening mAbs against Cell Line Lysates
2.4. Whole Mount Embryo Immunohistochemistry
2.5. Tissue Immunohistochemistry
3. Results
3.1. Generation of Monoclonal Antibodies
3.2. Cross Reactivity of mAb CRC4 against Induced CYP1A1 across Vertebrate Taxa
3.3. Detecting Induced Embryonic Expression of Zebrafish CYP1A Using mAb CRC4
3.4. Detecting Induced CYP1A Expression in Juvenle Zebrafish Tissues Using mAb CRC4
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, C.; Streisinger, G. Induction of Mutations by gamma-Rays in Pregonial Germ Cells of Zebrafish Embryos. Genetics 1983, 103, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Streisinger, G.; Singer, F.; Walker, C. Frequency of gamma-Ray Induced Specific Locus and Recessive Lethal Mutations in Mature Germ Cells of the Zebrafish, Brachydanio rerio. Genetics 1983, 103, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Streisinger, G.; Walker, C.; Dower, N.; Knauber, D.; Singer, F. Production of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981, 291, 293–296. [Google Scholar] [CrossRef]
- Kent, M.L.; Buchner, C.; Watral, V.G.; Sanders, J.L.; Ladu, J.; Peterson, T.S.; Tanguay, R.L. Development and maintenance of a specific pathogen-free (SPF) zebrafish research facility for Pseudoloma neurophilia. Dis. Aquat. Organ. 2011, 95, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio); University of Oregon Press: Eugene, OR, USA, 2007. [Google Scholar]
- Nüsslein-Volhard, C. The zebrafish issue of Development. Development 2012, 139, 4099–4103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoriello, C.; Zon, L.I. Hooked! Modeling human disease in zebrafish. J. Clin. Investig. 2012, 122, 2337–2343. [Google Scholar] [CrossRef] [Green Version]
- Teame, T.; Zhang, Z.; Ran, C.; Zhang, H.; Yang, Y.; Ding, Q.; Xie, M.; Gao, C.; Ye, Y.; Duan, M.; et al. The use of zebrafish (Danio rerio) as biomedical models. Anim. Front. 2019, 9, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Bailone, R.L.; Fukushima, H.C.S.; Ventura Fernandes, B.H.; De Aguiar, L.K.; Corrêa, T.; Janke, H.; Grejo Setti, P.; Roça, R.D.O.; Borra, R.C. Zebrafish as an alternative animal model in human and animal vaccination research. Lab. Anim. Res. 2020, 36, 13. [Google Scholar] [CrossRef]
- Gore, A.V.; Monzo, K.; Cha, Y.R.; Pan, W.; Weinstein, B.M. Vascular development in the zebrafish. Cold Spring Harb. Perspect. Med. 2012, 2, a006684. [Google Scholar] [CrossRef] [Green Version]
- Yaniv, K.; Isogai, S.; Castranova, D.; Dye, L.; Hitomi, J.; Weinstein, B.M. Live imaging of lymphatic development in the zebrafish. Nat. Med. 2006, 12, 711–716. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharm. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Huang, J.; Ye, J. A fresh look at zebrafish from the perspective of cancer research. J. Exp. Clin. Cancer Res. 2015, 34, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieschke, G.J.; Oates, A.C.; Crowhurst, M.O.; Ward, A.C.; Layton, J.E. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 2001, 98, 3087–3096. [Google Scholar] [CrossRef] [PubMed]
- Trede, N.S.; Langenau, D.M.; Traver, D.; Look, A.T.; Zon, L.I. The Use of Zebrafish to Understand Immunity. Immunity 2004, 20, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.-J.; Jia, Y.-F.; Chen, N.; Bian, W.-P.; Li, Q.-K.; Ma, Y.-B.; Chen, Y.-L.; Pei, D.-S. Zebrafish as a model system to study toxicology. Environ. Toxicol. Chem. 2014, 33, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, J.J.; Goldstone, J.V.; Hahn, M.E. 10—Perspectives on zebrafish as a model in environmental toxicology. In Fish Physiology; Perry, S.F., Ekker, M., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 29, pp. 367–439. [Google Scholar]
- Zon, L.I.; Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 2005, 4, 35–44. [Google Scholar] [CrossRef]
- Cassar, S.; Adatto, I.; Freeman, J.L.; Gamse, J.T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R.T.; Van Cruchten, S.; Zon, L.I. Use of Zebrafish in Drug Discovery Toxicology. Chem. Res. Toxicol. 2020, 33, 95–118. [Google Scholar] [CrossRef] [Green Version]
- Andreasen, E.A.; Spitsbergen, J.M.; Tanguay, R.L.; Stegeman, J.J.; Heideman, W.; Peterson, R.E. Tissue-Specific Expression of AHR2, ARNT2, and CYP1A in Zebrafish Embryos and Larvae: Effects of Developmental Stage and 2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure. Toxicol. Sci. 2002, 68, 403–419. [Google Scholar] [CrossRef] [Green Version]
- Andreasen, E.A.; Hahn, M.E.; Heideman, W.; Peterson, R.E.; Tanguay, R.L. The Zebrafish (Danio rerio) Aryl Hydrocarbon Receptor Type 1 Is a Novel Vertebrate Receptor. Mol. Pharm. 2002, 62, 234–249. [Google Scholar] [CrossRef] [Green Version]
- Shankar, P.; Dasgupta, S.; Hahn, M.E.; Tanguay, R.L. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol. Sci. 2020, 178, 215–238. [Google Scholar] [CrossRef]
- Gu, Y.-Z.; Hogenesch, J.B.; Bradfield, C.A. The PAS Superfamily: Sensors of Environmental and Developmental Signals. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 519–561. [Google Scholar] [CrossRef] [Green Version]
- Hammond, C.L.; Roztocil, E.; Gupta, V.; Feldon, S.E.; Woeller, C.F. More than Meets the Eye: The Aryl Hydrocarbon Receptor is an Environmental Sensor, Physiological Regulator and a Therapeutic Target in Ocular Disease. Front. Toxicol. 2022, 4, 791082. [Google Scholar] [CrossRef]
- Denison, M.S.; Pandini, A.; Nagy, S.R.; Baldwin, E.P.; Bonati, L. Ligand binding and activation of the Ah receptor. Chem. Biol. Interact. 2002, 141, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Nebert, D.W.; Roe, A.L.; Dieter, M.Z.; Solis, W.A.; Yang, Y.; Dalton, T.P. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem. Pharm. 2000, 59, 65–85. [Google Scholar] [CrossRef]
- Köhle, C.; Bock, K.W. Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem. Pharm. 2007, 73, 1853–1862. [Google Scholar] [CrossRef]
- Hu, W.; Sorrentino, C.; Denison, M.S.; Kolaja, K.; Fielden, M.R. Induction of cyp1a1 is a nonspecific biomarker of aryl hydrocarbon receptor activation: Results of large scale screening of pharmaceuticals and toxicants in vivo and in vitro. Mol. Pharm. 2007, 71, 1475–1486. [Google Scholar] [CrossRef]
- Vogel, C.F.A.; Haarmann-Stemmann, T. The aryl hydrocarbon receptor repressor—More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. Curr. Opin. Toxicol. 2017, 2, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Denison, M.S.; Soshilov, A.A.; He, G.; DeGroot, D.E.; Zhao, B. Exactly the Same but Different: Promiscuity and Diversity in the Molecular Mechanisms of Action of the Aryl Hydrocarbon (Dioxin) Receptor. Toxicol. Sci. 2011, 124, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Urban, P.; Jobert, A.S.; Lainé, R.; Pompon, D. Cytochrome P450 (CYP) mutants and substrate-specificity alterations: Segment-directed mutagenesis applied to human CYP1A1. Biochem. Soc. Trans. 2001, 29, 128–135. [Google Scholar] [CrossRef]
- Lu, J.; Shang, X.; Zhong, W.; Xu, Y.; Shi, R.; Wang, X. New insights of CYP1A in endogenous metabolism: A focus on single nucleotide polymorphisms and diseases. Acta Pharm. Sin. B 2020, 10, 91–104. [Google Scholar] [CrossRef]
- Rannug, A. How the AHR Became Important in Intestinal Homeostasis—A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. Int. J. Mol. Sci. 2020, 21, 5681. [Google Scholar] [CrossRef]
- Wincent, E.; Kubota, A.; Timme-Laragy, A.; Jönsson, M.E.; Hahn, M.E.; Stegeman, J.J. Biological effects of 6-formylindolo [3,2-b] carbazole (FICZ) in vivo are enhanced by loss of CYP1A function in an Ahr2-dependent manner. Biochem. Pharm. 2016, 110, 117–129. [Google Scholar] [CrossRef]
- Kaplan, B.L.F.; Sulentic, C.E.W.; Holsapple, M.P.; Kaminski, N.E. Toxic Responses of the Immune System. In Casarett and Doull’s Toxicology: The Basic Science of Poisons, 8e; McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Reed, L.; Arlt, V.M.; Phillips, D.H. The role of cytochrome P450 enzymes in carcinogen activation and detoxication: An in vivo–in vitro paradox. Carcinogenesis 2018, 39, 851–859. [Google Scholar] [CrossRef]
- Goksøyr, A. Use of cytochrome P450 1A (CYP1A) in fish as a biomarker of aquatic pollution. In Toxicology in Transition; Degen, G., Seiler, J., Bentley, P., Eds.; Archives of Toxicology; Springer: Berlin/Heidelberg, Germany, 1995; Volume 17, pp. 80–95. [Google Scholar]
- Sarasquete, C.; Segner, H. Cytochrome P4501A (CYP1A) in teleostean fishes. A review of immunohistochemical studies. Sci. Total Environ. 2000, 247, 313–332. [Google Scholar] [CrossRef]
- Veld, P.A.V.; Westbrook, D.J. Evidence for depression of cytochrome P4501A in a population of chemically resistant mummichogs, (Fundulus heteroclitus). Environ. Sci. 1995, 3, 221–234. [Google Scholar]
- Oziolor, E.M.; Bigorgne, E.; Aguilar, L.; Usenko, S.; Matson, C.W. Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas. Aquat. Toxicol. 2014, 150, 210–219. [Google Scholar] [CrossRef]
- Wills, L.P.; Matson, C.W.; Landon, C.D.; Di Giulio, R.T. Characterization of the recalcitrant CYP1 phenotype found in Atlantic killifish (Fundulus heteroclitus) inhabiting a Superfund site on the Elizabeth River, VA. Aquat. Toxicol. 2010, 99, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Clark, B.W.; Bone, A.; Di Giulio, R.T. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway. Environ. Sci. Pollut. Res. 2014, 21, 13898–13908. [Google Scholar] [CrossRef] [Green Version]
- Bello, S.M.; Franks, D.G.; Stegeman, J.J.; Hahn, M.E. Acquired Resistance to Ah Receptor Agonists in a Population of Atlantic Killifish (Fundulus heteroclitus) Inhabiting a Marine Superfund Site: In Vivo and In Vitro Studies on the Inducibility of Xenobiotic Metabolizing Enzymes. Toxicol. Sci. 2001, 60, 77–91. [Google Scholar] [CrossRef]
- Galloway, T.S.; Sanger, R.C.; Smith, K.L.; Fillmann, G.; Readman, J.W.; Ford, T.E.; Depledge, M.H. Rapid assessment of marine pollution using multiple biomarkers and chemical immunoassays. Environ. Sci. Technol. 2002, 36, 2219–2226. [Google Scholar] [CrossRef]
- Knap, A.; Dewailly, É.; Furgal, C.; Galvin, J.; Baden, D.; Bowen, R.E.; Depledge, M.; Duguay, L.; Fleming, L.E.; Ford, T. Indicators of ocean health and human health: Developing a research and monitoring framework. Environ. Health Perspect. 2002, 110, 839. [Google Scholar] [CrossRef] [Green Version]
- Fleming, L.E.; Broad, K.; Clement, A.; Dewailly, E.; Elmir, S.; Knap, A.; Pomponi, S.A.; Smith, S.; Solo Gabriele, H.; Walsh, P. Oceans and human health: Emerging public health risks in the marine environment. Mar. Pollut. Bull. 2006, 53, 545–560. [Google Scholar] [CrossRef] [Green Version]
- Zemanova, M.A. Towards more compassionate wildlife research through the 3Rs principles: Moving from invasive to non-invasive methods. Wildl. Biol. 2020, 2020, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rice, C.D.; Schlenk, D.; Ainsworth, J.; Goksøyr, A. Cross-reactivity of monoclonal antibodies against peptide 277–294 of rainbow trout CYP1A1 with hepatic CYP1A among fish. Mar. Environ. Res. 1998, 46, 87–91. [Google Scholar] [CrossRef]
- Margiotta, A.L.; Bain, L.J.; Rice, C.D. Expression of the Major Vault Protein (MVP) and Cellular Vault Particles in Fish. Anat. Rec. 2017, 300, 1981–1992. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.L.; Watson, A.M.; Place, A.R.; Jagus, R. Taurine Biosynthesis in a Fish Liver Cell Line (ZFL) Adapted to a Serum-Free Medium. Mar. Drugs 2017, 15, 147. [Google Scholar] [CrossRef] [Green Version]
- DeLong, G.T.; Rice, C.D. Tributyltin potentiates 3,3′,4,4′,5-pentachlorobiphenyl-induced cytochrome P-4501A-related activity. J. Toxicol. Environ. Health 1997, 51, 131–148. [Google Scholar] [CrossRef]
- Dubansky, B.; Verbeck IV, G.F.; Mach, P.M.; Burggren, W. Methodology for exposing avian embryos to quantified levels of airborne aromatic compounds associated with oil spills. Environ. Toxicol. Pharmacol. 2018, 58, 163–169. [Google Scholar] [CrossRef]
- Dubansky, B.; Rice, C.D.; Barrois, L.F.; Galvez, F. Biomarkers of Aryl-hydrocarbon Receptor Activity in Gulf Killifish (Fundulus grandis) from Northern Gulf of Mexico Marshes Following the Deepwater Horizon Oil Spill. Arch. Environ. Contam. Toxicol. 2017, 73, 63–75. [Google Scholar] [CrossRef]
- Lane, D.; Harlow, E. Antibodies: A Laboratory Manual, 1st ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1988. [Google Scholar]
- Mandrell, D.; Truong, L.; Jephson, C.; Sarker, M.R.; Moore, A.; Lang, C.; Simonich, M.T.; Tanguay, R.L. Automated zebrafish chorion removal and single embryo placement: Optimizing throughput of zebrafish developmental toxicity screens. J. Lab. Autom. 2012, 17, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Hodson, P.V.; Qureshi, K.; Noble, C.A.; Akhtar, P.; Brown, R.S. Inhibition of CYP1A enzymes by alpha-naphthoflavone causes both synergism and antagonism of retene toxicity to rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2007, 81, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.A.; Incardona, J.P.; Pelkki, K.; Shepardson, S.; Hodson, P.V. AhR2-mediated, CYP1A-independent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. Aquat. Toxicol. 2011, 101, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, A.; Dubansky, B.; Bodinier, C.; Garcia, T.I.; Miles, S.; Pilley, C.; Raghunathan, V.; Roach, J.L.; Walker, N.; Walter, R.B.; et al. Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc. Natl. Acad. Sci. USA 2012, 109, 20298–20302. [Google Scholar] [CrossRef] [Green Version]
- Dubansky, B.; Whitehead, A.; Miller, J.; Rice, C.D.; Galvez, F. Multi-tissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident Gulf killifish (Fundulus grandis). Environ. Sci. Technol. 2013, 47, 5074–5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oziolor, E.M.; Dubansky, B.; Burggren, W.W.; Matson, C.W. Cross-resistance in Gulf killifish (Fundulus grandis) populations resistant to dioxin-like compounds. Aquat. Toxicol. 2016, 175, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Copper, J.E.; Budgeon, L.R.; Foutz, C.A.; van Rossum, D.B.; Vanselow, D.J.; Hubley, M.J.; Clark, D.P.; Mandrell, D.T.; Cheng, K.C. Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrafish. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 2018, 208, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Miller, H.; Klotz, A.V.; Kloepper-Sams, P.J.; Stegeman, J.J.; Gelboin, H.V. Monoclonal antibodies to liver microsomal cytochrome P-450E of the marine fish Stenotomus chrysops (scup): Cross reactivity with 3-methylcholanthrene induced rat cytochrome P-450. Arch. Biochem. Biophys. 1986, 249, 339–350. [Google Scholar] [CrossRef]
- Kloepper-Sams, P.J.; Park, S.S.; Gelboin, H.V.; Stegeman, J.J. Specificity and cross-reactivity of monoclonal and polyclonal antibodies against cytochrome P-450E of the marine fish scup. Arch. Biochem. Biophys. 1987, 253, 268–278. [Google Scholar] [CrossRef]
- Stegeman, J.J.; Hahn, M.E. Biochemistry and molecular biology of monoxygenases: Current perspectives on forms, functions, and regulation of cytochrome P450 in aquatic species. In Aquatic Toxicology: Molecular, Biochemical, and Cellular Perspectives, 1st ed.; Donald, C., Malins, G.K.O., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 87–206. [Google Scholar]
- Laub, L.B.; Jones, B.D.; Powell, W.H. Responsiveness of a Xenopus laevis cell line to the aryl hydrocarbon receptor ligands 6-formylindolo [3,2-b] carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Chem. Biol. Interact. 2010, 183, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Lavine, J.A.; Rowatt, A.J.; Klimova, T.; Whitington, A.J.; Dengler, E.; Beck, C.; Powell, W.H. Aryl hydrocarbon receptors in the frog Xenopus laevis: Two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol. Sci. 2005, 88, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Guiney, P.D.; Smolowitz, R.M.; Peterson, R.E.; Stegeman, J.J. Correlation of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Induction of Cytochrome P4501A in Vascular Endothelium with Toxicity in Early Life Stages of Lake Trout. Toxicol. Appl. Pharmacol. 1997, 143, 256–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godard, C.A.; Smolowitz, R.M.; Wilson, J.Y.; Payne, R.S.; Stegeman, J.J. Induction of cetacean cytochrome P4501A1 by β-naphthoflavone exposure of skin biopsy slices. Toxicol. Sci. 2004, 80, 268–275. [Google Scholar] [CrossRef]
- Garrick, R.A.; Woodin, B.R.; Wilson, J.Y.; Middlebrooks, B.L.; Stegeman, J.J. Cytochrome P4501A is induced in endothelial cell lines from the kidney and lung of the bottlenose dolphin, Tursiops truncatus. Aquat. Toxicol. 2006, 76, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isogai, S.; Horiguchi, M.; Weinstein, B.M. The vascular anatomy of the developing zebrafish: An atlas of embryonic and early larval development. Dev. Biol. 2001, 230, 278–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CYP1A Amino Acid Sequence | Species | Accession Number |
---|---|---|
VMEHYDTFDKDNIRDITDSLINHC | Zebrafish, D. rerio (F) | BAB90841.1 |
VSEHYESYDKDNIRDITDSLIDHC | Rainbow trout, O. mykiss (F) | AAB69383.1 |
VSDHYDTFDKDNIRDITDSLIDHC | Fathead minnow, P. promelas (F) | XP_039536214.1 |
VSEHYTTFDKDNIRDITDSLIDHC | Scup, S. chrysops (F) | AAA74969.1 |
VSEHYSTFDKDNIRDITDSLIDHC | Mummichog, F. heteroclitus (F) | AAD01809.1 |
VTEHYHTFDKDNIRDITDSLIDHC | Whale shark, R. typus (F) | XP_020387799.1 |
VREHYDTYDKDNIRDITDSLIDHC | Channel catfish, I. punctatus (F) | XP_017321977.1 |
VKEHYSSFDKDNIRDITDSLIEHC | Green Sea turtle, C. midas (Rp) | EMP30185.1 |
VEEHYQTFDKNNIRDVTDSLIEQC | Chicken, G. gallus (Av) | NP_990477.2 |
TKEHYKTFDKNHIRDITDSLIQHC | African clawed frog, X. laevis (Am) | NP_001090813.1 |
VKEHYKTFDKSHIRDITDSLIEHC | American alligator, A. miss. (Rp) | KYO21524.1 |
IKEHYRTFEKGHIRDITDSLIEHC | Mouse, M. musculus (M) | NP_001129531.1 |
IKEHYRTFEKGHIRDITDSLIEHC | Rat, R. norvegicus (M) | NP_036672.3 |
VKEHYKTFEKGHIRDITDSLIEHC | Human, H. sapiens (M) | P04798.1 |
IRDITDSLI | Conserved CYP1A1 epitope | All the above |
Animal Cell Lines and Tissues | Origin | Source |
---|---|---|
ZFL | Zebrafish liver cells | ATCC CRL-2643 |
PLHC-1 | Top minnow hepatocellular carcinoma | ATCC CRL-2406 |
Hepa1c1c7 | Mouse liver hepatoma | ATCC CRL-2026 |
XLK-WG | African clawed frog kidney epithelial | ATCC CRL-2527 |
HEK293 | Human embryonic kidney | ATCC CRL-3467 |
Rat liver S9 fraction | Arochlor-1254-induced P450s | MOLTOX 11101.5 |
Rat liver S9 fraction | Non-induced livers | MOLTOX 11102.2 |
Recombinant human CYP1A | Over-expressed in HEK293 cell lysates | OriGene LC400170 |
Mouse livers for IHC | PCB-126-induced CYP1A (and controls) | [51] |
Rainbow trout liver microsomes & tissue | Β-NF-induced CYP1A (and controls) | [48] |
Chicken embryo liver | Crude oil induced CYP1A (and controls) | [52] |
Adult zebrafish for IHC | PCB-126 induced CYP1A (and controls) | This study (see Methods) |
Larval zebrafish for whole mount IHC | Retene-induced CYP1A (and controls) | This study (see Methods) |
Gulf killifish for IHC | Tissues from Deep Water Horizon studies | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, A.L.; Dubanksy, B.D.; Wilson, L.B.; Tanguay, R.L.; Rice, C.D. Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope. Toxics 2022, 10, 404. https://doi.org/10.3390/toxics10070404
Anderson AL, Dubanksy BD, Wilson LB, Tanguay RL, Rice CD. Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope. Toxics. 2022; 10(7):404. https://doi.org/10.3390/toxics10070404
Chicago/Turabian StyleAnderson, Amy L., Benjamin D. Dubanksy, Lindsay B. Wilson, Robyn L. Tanguay, and Charles D. Rice. 2022. "Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope" Toxics 10, no. 7: 404. https://doi.org/10.3390/toxics10070404
APA StyleAnderson, A. L., Dubanksy, B. D., Wilson, L. B., Tanguay, R. L., & Rice, C. D. (2022). Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope. Toxics, 10(7), 404. https://doi.org/10.3390/toxics10070404