Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Care and Study Design
2.2. Inhalation Exposures
2.3. Bronchoalveolar Lavage Fluid Following Exposure
2.4. BALF Exosome Isolation and Quantification
2.5. ICP-MS Metals Content in BALF Exosomes
2.6. RT-qPCR Gene Expression
2.7. Electric Cell Impedance Sensing Assay
2.8. Immunofluorescent Staining
2.9. Microscopy and Imaging
2.10. High-Throughput Astrocyte Quantification via HALO Analysis
2.11. Behavioral Tasks
2.12. Serum Exosome Isolation
2.13. Sample Preparation for Lipidomics
2.14. UPLC–MS and Data Analysis for Lipidomics
2.15. Statistical Analyses
3. Results
3.1. Bronchoalveolar Lavage Cells
3.2. Brain and Lung Gene Expression
3.3. GFAP Staining and Cerebrovascular Endothelial Integrity
3.4. Behavioral Tasks
3.5. Exosome-Lipidomics and Exosome Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Begay, J.; Sanchez, B.; Wheeler, A.; Baldwin Jr, F.; Lucas, S.; Herbert, G.; Ordonez Suarez, Y.; Shuey, C.; Klaver, Z.; Harkema, J.R.; et al. Assessment of particulate matter toxicity and physicochemistry at the Claim 28 uranium mine site in Blue Gap, AZ. J. Toxicol. Environ. Health Part A 2021, 84, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Harmon, M.E.; Lewis, J.; Miller, C.; Hoover, J.; Ali, A.S.; Shuey, C.; Cajero, M.; Lucas, S.; Zychowski, K.; Pacheco, B.; et al. Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Nozadi, S.S.; Li, L.; Luo, L.; MacKenzie, D.; Erdei, E.; Du, R.; Roman, C.W.; Hoover, J.; O’Donald, E.; Burnette, C.; et al. Prenatal Metal Exposures and Infants’ Developmental Outcomes in a Navajo Population. Int. J. Environ. Res. Public Health 2021, 19, 425. [Google Scholar] [CrossRef] [PubMed]
- Hoover, J.H.; Erdei, E.; Begay, D.; Gonzales, M.; Jarrett, J.M.; Cheng, P.-Y.; Lewis, J.; Team, N.S. Exposure to uranium and co-occurring metals among pregnant Navajo women. Environ. Res. 2020, 190, 109943. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Velasco, C.A.; Herbert, G.W.; Lucas, S.N.; Sanchez, B.N.; Cerrato, J.M.; Spilde, M.; Li, Q.-Z.; Campen, M.J.; Zychowski, K.E. Mine-site derived particulate matter exposure exacerbates neurological and pulmonary inflammatory outcomes in an autoimmune mouse model. J. Toxicol. Environ. Health Part A 2021, 84, 503–517. [Google Scholar] [CrossRef]
- Sanchez, B.; Zhou, X.; Gardiner, A.S.; Herbert, G.; Lucas, S.; Morishita, M.; Wagner, J.G.; Lewandowski, R.; Harkema, J.R.; Shuey, C.; et al. Serum-borne factors alter cerebrovascular endothelial microRNA expression following particulate matter exposure near an abandoned uranium mine on the Navajo Nation. Part Fibre Toxicol. 2020, 17, 29. [Google Scholar] [CrossRef]
- Zychowski, K.E.; Kodali, V.; Harmon, M.; Tyler, C.R.; Sanchez, B.; Ordonez Suarez, Y.; Herbert, G.; Wheeler, A.; Avasarala, S.; Cerrato, J.M.; et al. Respirable Uranyl-Vanadate-Containing Particulate Matter Derived From a Legacy Uranium Mine Site Exhibits Potentiated Cardiopulmonary Toxicity. Toxicol. Sci. 2018, 164, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Zychowski, K.E.; Wheeler, A.; Sanchez, B.; Harmon, M.; Tyler, C.R.S.; Herbert, G.; Lucas, S.N.; Ali, A.-M.; Avasarala, S.; Kunda, N.; et al. Toxic effects of particulate matter derived from dust samples near the dzhidinski ore processing mill, Eastern Siberia, Russia. Cardiovasc. Toxicol. 2019, 19, 401–411. [Google Scholar] [CrossRef]
- Middleton, J.; Patterson, A.M.; Gardner, L.; Schmutz, C.; Ashton, B. A Leukocyte extravasation: Chemokine transport and presentation by the endothelium. Blood 2002, 100, 3853–3860. [Google Scholar] [CrossRef] [Green Version]
- Aragon, M.J.; Topper, L.; Tyler, C.R.; Sanchez, B.; Zychowski, K.; Young, T.; Herbert, G.; Hall, P.; Erdely, A.; Eye, T.; et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc. Natl. Acad. Sci. USA 2017, 114, E1968–E1976. [Google Scholar] [CrossRef] [Green Version]
- Petkus, A.; Wang, X.; Younan, D.; Beavers, D.; Espeland, M.; Millstein, J.; Gatz, M.; Chen, J.-C. Air Quality Improvement Is Associated With Decreasing Depressive Symptoms in Older Women. Innov. Aging 2021, 5 (Suppl. 1), 339–340. [Google Scholar] [CrossRef]
- Haghani, A.; Johnson, R.; Safi, N.; Zhang, H.; Thorwald, M.; Mousavi, A.; Woodward, N.C.; Shirmohammadi, F.; Coussa, V.; Wise, J.P., Jr. Toxicity of urban air pollution particulate matter in developing and adult mouse brain: Comparison of total and filter-eluted nanoparticles. Environ. Int. 2020, 136, 105510. [Google Scholar] [CrossRef]
- Alvarez, H.A.O.; Kubzansky, L.D.; Campen, M.J.; Slavich, G.M. Early life stress, air pollution, inflammation, and disease: An integrative review and immunologic model of social-environmental adversity and lifespan health. Neurosci. Biobehav. Rev. 2018, 92, 226–242. [Google Scholar] [CrossRef]
- Vogel, C.F.; Van Winkle, L.S.; Esser, C.; Haarmann-Stemmann, T. The aryl hydrocarbon receptor as a target of environmental stressors–Implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020, 34, 101530. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Adcock, I. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, K.A.; Secrest, J.R.; Lau, C.; Pulczinski, J.; Zamora, M.L.; Leal, J.; Langley, R.; Myatt, L.G.; Raju, M.; Chang, R.C.-A.; et al. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression. Proc. Natl. Acad. Sci. USA 2019, 116, 3443–3448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Zou, L.; Dai, Y.; Sun, J.; Chen, C.; Zhang, Y.; Peng, Q.; Zhang, Z.; Xie, Z.; Wu, H.; et al. Prognostic plasma exosomal microRNA biomarkers in patients with substance use disorders presenting comorbid with anxiety and depression. Sci. Rep. 2021, 11, 6271. [Google Scholar] [CrossRef] [PubMed]
- Paffett, M.L.; Zychowski, K.E.; Sheppard, L.; Robertson, S.; Weaver, J.M.; Lucas, S.N.; Campen, M.J. Ozone inhalation impairs coronary artery dilation via intracellular oxidative stress: Evidence for serum-borne factors as drivers of systemic toxicity. Toxicol. Sci. 2015, 146, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Aragon, M.; Erdely, A.; Bishop, L.; Salmen, R.; Weaver, J.; Liu, J.; Hall, P.; Eye, T.; Kodali, V.; Zeidler-Erdely, P.; et al. MMP-9-Dependent Serum-Borne Bioactivity Caused by Multiwalled Carbon Nanotube Exposure Induces Vascular Dysfunction via the CD36 Scavenger Receptor. Toxicol. Sci. 2016, 150, 488–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A., III; Bhatnagar, A.; McCracken, J.P.; Abplanalp, W.; Conklin, D.J.; O’Toole, T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 2016, 119, 1204–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundar, I.K.; Li, D.; Rahman, I. Small RNA-sequence analysis of plasma-derived extracellular vesicle miRNAs in smokers and patients with chronic obstructive pulmonary disease as circulating biomarkers. J. Extracell. Vesicles 2019, 8, 1684816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, A. Extracellular vesicles in cancer progression. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Singh, K.P.; Maremanda, K.P.; Li, D.; Rahman, I. Exosomal microRNAs are novel circulating biomarkers in cigarette, waterpipe smokers, E-cigarette users and dual smokers. BMC Med. Genom. 2020, 13, 128. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Kim, H.S.; Bojmar, L.; Gyan, K.E.; Cioffi, M.; Hernandez, J.; Zambirinis, C.P.; Rodrigues, G.; Molina, H.; Heissel, S.; et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 2020, 182, 1044–1061.e18. [Google Scholar] [CrossRef]
- Ayaz, A.; Houle, E.; Pilsner, J.R. Extracellular vesicle cargo of the male reproductive tract and the paternal preconception environment. Syst. Biol. Reprod. Med. 2021, 67, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Maremanda, K.P.; Campos, M.; Chand, H.S.; Li, F.; Hirani, N.; Haseeb, M.; Li, D.; Rahman, I. Distinct Exosomal miRNA Profiles from BALF and Lung Tissue of COPD and IPF Patients. Int. J. Mol. Sci. 2021, 22, 11830. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.; Baccarelli, A.; Prada, D. Role of brain extracellular vesicles in air pollution-related cognitive impairment and neurodegeneration. Environ. Res. 2022, 204, 112316. [Google Scholar] [CrossRef]
- Kupsco, A.; Lee, J.J.; Prada, D.; Valvi, D.; Hu, L.; Petersen, M.S.; Coull, B.A.; Weihe, P.; Grandjean, P.; Baccarelli, A.A. Marine pollutant exposures and human milk extracellular vesicle-microRNAs in a mother-infant cohort from the Faroe Islands. Environ. Int. 2022, 158, 106986. [Google Scholar] [CrossRef]
- Bowers, E.C.; Hassanin, A.A.I.; Ramos, K.S. In vitro models of exosome biology and toxicology: New frontiers in biomedical research. Toxicol. Vitr. 2020, 64, 104462. [Google Scholar] [CrossRef]
- Kloska, A.; Malinowska, M.; Gabig-Cimińska, M.; Jakóbkiewicz-Banecka, J. Lipids and lipid mediators associated with the risk and pathology of ischemic stroke. Int. J. Mol. Sci. 2020, 21, 3618. [Google Scholar] [CrossRef]
- Record, M.; Silvente-Poirot, S.; Poirot, M.; Wakelam, M.O. Extracellular vesicles: Lipids as key components of their biogenesis and functions. J. Lipid Res. 2018, 59, 1316–1324. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.C.; Marfell, B.J.; Waterhouse, N.J. Analyzing cell death by nuclear staining with Hoechst 33342. Cold Spring Harb. Protoc. 2016, 2016, prot087205. [Google Scholar] [CrossRef]
- Koritzinsky, E.H.; Street, J.M.; Star, R.A.; Yuen, P.S. Quantification of exosomes. J. Cell. Physiol. 2017, 232, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Markova, M.; Pohl, G.; Marschall, T.A.; Pivovarova, O.; Pfeiffer, A.F.; Schwerdtle, T. Development, validation and application of an ICP-MS/MS method to quantify minerals and (ultra-) trace elements in human serum. J. Trace Elem. Med. Biol. 2018, 49, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zychowski, K.E.; Sanchez, B.; Pedrosa, R.P.; Lorenzi-Filho, G.; Drager, L.F.; Polotsky, V.Y.; Campen, M.J. Serum from obstructive sleep apnea patients induces inflammatory responses in coronary artery endothelial cells. Atherosclerosis 2016, 254, 59–66. [Google Scholar] [CrossRef] [Green Version]
- El Andaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef]
- Potter, N.A.; Meltzer, G.Y.; Avenbuan, O.N.; Raja, A.; Zelikoff, J.T. Particulate matter and associated metals: A link with neurotoxicity and mental health. Atmosphere 2021, 12, 425. [Google Scholar] [CrossRef]
- Block, M.L.; Calderón-Garcidueñas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, C.R.; Zychowski, K.E.; Sanchez, B.N.; Rivero, V.; Lucas, S.; Herbert, G.; Liu, J.; Irshad, H.; McDonald, J.D.; Bleske, B.E.; et al. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes. Part. Fibre Toxicol. 2016, 13, 64. [Google Scholar] [CrossRef] [Green Version]
- Roig-Carles, D.; Willms, E.; Fontijn, R.D.; Martinez-Pacheco, S.; Mäger, I.; de Vries, H.E.; Hirst, M.; Sharrack, B.; Male, D.K.; Hawkes, C.A. Endothelial-derived extracellular vesicles induce cerebrovascular dysfunction in inflammation. Pharmaceutics 2021, 13, 1525. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Niida, S.; Azuma, E.; Yanagibashi, T.; Muramatsu, M.; Huang, T.T.; Sagara, H.; Higaki, S.; Ikutani, M.; Nagai, Y.; et al. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci. Rep. 2015, 5, 8505. [Google Scholar] [CrossRef]
- Kilburg-Basnyat, B.; Reece, S.W.; Crouch, M.J.; Luo, B.; Boone, A.D.; Yaeger, M.; Hodge, M.; Psaltis, C.; Hannan, J.L.; Manke, J.; et al. Specialized pro-resolving lipid mediators regulate ozone-induced pulmonary and systemic inflammation. Toxicol. Sci. 2018, 163, 466–477. [Google Scholar] [CrossRef]
- van der Veen, J.N.; Lingrell, S.; da Silva, R.P.; Jacobs, R.L.; Vance, D.E. The concentration of phosphatidylethanolamine in mitochondria can modulate ATP production and glucose metabolism in mice. Diabetes 2014, 63, 2620–2630. [Google Scholar] [CrossRef] [Green Version]
- Byeon, S.K.; Madugundu, A.K.; Jain, A.P.; Bhat, F.A.; Jung, J.H.; Renuse, S.; Darrow, J.; Bakker, A.; Albert, M.; Moghekar, A.; et al. Cerebrospinal fluid lipidomics for biomarkers of Alzheimer’s disease. Mol. Omics 2021, 17, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.-C.; Ho, P.-C.; Tu, Y.-K.; Jou, I.-M.; Tsai, K.-J. Lipids and Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 1505. [Google Scholar] [CrossRef] [PubMed]
- Mostovenko, E.; Dahm, M.M.; Schubauer-Berigan, M.K.; Eye, T.; Erdely, A.; Young, T.L.; Campen, M.J.; Ottens, A.K. Serum peptidome: Diagnostic window into pathogenic processes following occupational exposure to carbon nanomaterials. Part. Fibre Toxicol. 2021, 18, 39. [Google Scholar] [CrossRef]
- Zychowski, K.E.; Tyler, C.R.S.; Sanchez, B.; Harmon, M.; Liu, J.; Irshad, H.; McDonald, J.D.; Bleske, B.E.; Campen, M.J. Vehicular particulate matter (PM) characteristics impact vascular outcomes following inhalation. Cardiovasc. Toxicol. 2020, 20, 211–221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, K.; Camacho, A.; Jacquez, Q.; Amistadi, M.K.; Medina, S.; Zychowski, K. Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure. Toxics 2022, 10, 457. https://doi.org/10.3390/toxics10080457
Lopez K, Camacho A, Jacquez Q, Amistadi MK, Medina S, Zychowski K. Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure. Toxics. 2022; 10(8):457. https://doi.org/10.3390/toxics10080457
Chicago/Turabian StyleLopez, Keegan, Alexandra Camacho, Quiteria Jacquez, Mary Kay Amistadi, Sebastian Medina, and Katherine Zychowski. 2022. "Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure" Toxics 10, no. 8: 457. https://doi.org/10.3390/toxics10080457
APA StyleLopez, K., Camacho, A., Jacquez, Q., Amistadi, M. K., Medina, S., & Zychowski, K. (2022). Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure. Toxics, 10(8), 457. https://doi.org/10.3390/toxics10080457