Biochar Is Not Durable for Remediation of Heavy Metal-Contaminated Soils Affected by Acid-Mine Drainage
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Soil Material
2.2. The Test-Vegetable-Plant Species
2.3. The Biochar Material
2.4. Microcosm Experiment
2.5. Analytical Methods
2.6. Quality Assurance and Quality Control
2.7. Statistical Analysis Method
2.8. Assessment Criteria
3. Results
3.1. Effects of Biochar on Soil Acidity and Phytoavailable Heavy Metals
3.2. Plant-Tissue-Borne Heavy Metals at Different Harvest Times
3.2.1. Chromium
3.2.2. Nickel
3.2.3. Copper
3.2.4. Zinc
3.2.5. Cadmium
3.2.6. Lead
3.3. Bioaccessible Heavy Metals in the Edible Vegetable Portion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Puga, A.P.; Abreu, C.A.; Melo, L.C.A.; Beesley, L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manag. 2015, 159, 86–93. [Google Scholar] [CrossRef]
- Khan, A.Z.; Khan, S.; Ayaz, T.; Brusseau, M.L.; Khan, M.A.; Nawab, J.; Muhammad, S. Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil. Environ. Pollut. 2020, 263, 114446. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Khan, A.Z.; Ding, X.; Khan, S.; Ayaz, T.; Fidel, R.; Khan, M.A. Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere 2020, 244, 125543. [Google Scholar] [CrossRef]
- Lin, C.; Melville, M.D. Control of soil acidification by fluvial sedimentation in an estuarine floodplain, eastern Australia. Sediment. Geol. 1993, 85, 271–284. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, C.; Ma, Y.; Lu, W.; Wu, Y.; Huang, S.; Zhu, L.; Li, J.; Chen, A. Toxic effects of two acid sulfate soils from the Dabaoshan Mine on Corymbia citridora var.variegata and Daphnia carinata. J. Hazard. Mater. 2009, 166, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Ru, X.; Xie, B.; Zhang, W.; Wu, H.; Wu, C. Multi-phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage. Ecotox. Environ. Saf. 2017, 141, 75–84. [Google Scholar] [CrossRef]
- Montiel-Rozas, M.M.; Madejón, E.; Madejón, P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environ. Pollut. 2016, 216, 273–281. [Google Scholar] [CrossRef]
- Onireti, O.O.; Lin, C.; Qin, J. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. Chemosphere 2017, 170, 161–168. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, X.; Bian, R.; Cheng, K.; Zhang, X.; Zheng, J.; Joseph, S.; Crowley, D.; Pan, G.; Li, L. Effects of biochar on availability and plant uptake of heavy metals-A me-ta-analysis. J. Environ. Manag. 2018, 222, 76–85. [Google Scholar] [CrossRef]
- Sui, F.; Zuo, J.; Chen, D.; Li, L.; Pan, G.; Crowley, D. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: A 3-year field study. Environ. Sci. Pollut. Res. 2018, 25, 3368–3377. [Google Scholar] [CrossRef] [PubMed]
- Nzediegwu, C.; Prasher, S.; Eman, E.; Dhiman, J.; Mawof, A.; Patel, R. Effect of biochar on heavy metal accumulation in potatoes from wastewater irrigation. J. Environ. Manag. 2019, 232, 153–164. [Google Scholar] [CrossRef]
- Gonzaga, M.; Silva, P. Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotox. Environ. Saf. 2019, 183, 109557. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Rivier, P.; Rasse, D.; Joner, E. Biochar Affects Heavy Metal Uptake in Plants through Interactions in the Rhizosphere. Appl. Sci. 2020, 10, 5105. [Google Scholar] [CrossRef]
- Achor, S.; Aravis, C.; Heaney, N.; Odion, E.; Lin, C.X. Response of organic acid-mobilized heavy metals in soils to biochar application. Geoderma 2020, 378, 114628. [Google Scholar] [CrossRef]
- Chen, A.; Lin, C.; Lu, W.; Ma, Y.; Bai, Y.; Chen, H.; Li, J. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water. J. Hazard. Mater. 2010, 175, 638–645. [Google Scholar] [CrossRef]
- Lin, C.; Wu, Y.; Lu, W.; Chen, A.; Liu, Y. Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event. J. Hazard. Mater. 2007, 142, 199–207. [Google Scholar] [CrossRef]
- Geremias, R.; Bortolotto, T.; Wilhelm-Filho, D.; Pedrosa, R.; Fáveree, V.; de Fáveree, V. Efficacy assessment of acid mine drainage treatment with coal mining waste using Allium cepa L. as a bioindicator. Ecotox. Environ. Saf. 2012, 79, 116–121. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, Y.; Guo, C.; Zheng, X.; Ding, C.; Lu, G.; Dang, Z. Soil rehabilitation shaped different patterns of bacterial and archaeal community in AMD-irrigated paddy soil. Chemosphere 2020, 9, 128259. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, D.; Balduccio, L.; Buysse, J.; Frederik, R.; Van Huylenbroeck, G.; Prins, W. Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy 2015, 7, 850–864. [Google Scholar] [CrossRef]
- Qin, J.; Niu, A.; Liu, Y.; Lin, C. Arsenic in leafy vegetable plants grown on mine water-contaminated soils: Uptake, human health risk and remedial effects of biochar. J. Hazard. Mater. 2021, 402, 123488. [Google Scholar] [CrossRef] [PubMed]
- Alozie, N.; Heaney, N.; Lin, C. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids. Sci. Total. Environ. 2018, 630, 1188–1194. [Google Scholar] [CrossRef]
- Heaney, N.; Ukpong, E.; Lin, C. Low-molecular-weight organic acids enable biochar to immobilize nitrate. Chemosphere 2020, 240, 124872. [Google Scholar] [CrossRef]
- Lin, C.; Lu, W.; Wu, Y. Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination. Aust. J. Soil. Res. 2005, 43, 819–826. [Google Scholar] [CrossRef]
- Qin, J.; Cui, X.; Yan, H.; Lu, W.; Lin, C. Active treatment of acidic mine water to minimize environmental impacts in a densely populated downstream area. J. Clean. Prod. 2019, 210, 309–316. [Google Scholar] [CrossRef]
- Qin, J.; Nworie, O.E.; Lin, C. Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements. Chemosphere 2016, 159, 442–448. [Google Scholar] [CrossRef]
- Trakal, L.; Komárek, M.; Száková, J.; Zemanová, V.; Tlustoš, P. Biochar application to metal-contaminated soil: Evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment. Plant Soil Environ. 2011, 57, 372–380. [Google Scholar] [CrossRef]
- Rizwan, M.S.; Imtiaz, M.; Huang, G.; Chhajro, M.A. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar. Environ. Sci. Pollut. R. 2016, 23, 15532–15543. [Google Scholar] [CrossRef]
- Salam, A.; Bashir, S.; Khan, I.; Hussain, Q.; Gao, R. Biochar induced Pb and Cu immobilization, phytoavailability attenuation in Chinese cabbage, and improved biochemical properties in naturally co-contaminated soil. J. Soils Sediments 2019, 19, 2381–2392. [Google Scholar] [CrossRef]
- Salam, A.; Shaheen, S.M.; Bashir, S.; Khan, I.; Wang, J. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. J. Environ. Manag. 2019, 237, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurti, G.S.R.; Smith, L.H.; Naidu, R. Method for assessing plant-available cadmium in soils. Aust. J. Soil. Res. 2000, 38, 823–836. [Google Scholar] [CrossRef]
- Schöning, A.; Brümmer, G.W. Extraction of mobile element fractions in forest soils using ammonium nitrate and ammonium chloride. J. Plant Nutr. Soil Sci. 2008, 171, 392–398. [Google Scholar] [CrossRef]
- Cornelis, G.; Johnson, C.A.; Gerven, T.V. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: A review. Appl. Geochem. 2008, 23, 955–976. [Google Scholar] [CrossRef]
- Markelova, E.; Couture, R.M.; Parsons, C.T.; Markelov, I. Speciation dynamics of oxyanion contaminants (As, Sb, Cr) in argillaceous suspensions during oxic-anoxic cycles. Appl. Geochem. 2018, 91, 75–88. [Google Scholar] [CrossRef]
- Jones, D.L.; Dennis, P.G.; Owen, A.G.; Van Hees, P.A.W. Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil 2003, 248, 31–41. [Google Scholar] [CrossRef]
- John, R.; Ahmad, P.; Gadgil, K.; Sharma, S. Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod. 2009, 3, 65–76. [Google Scholar]
- Kumar, V.; Singh, J.; Kumar, P. Chapter 4: Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Agro Environ Media, Publication Cell of AESA, Agriculture and Environmental Science Academy: Haridwar, India, 2019; pp. 39–53. [Google Scholar]
- Shanmugaraj, B.M.; Malla, A.; Ramalingam, S. Chapter 1: Cadmium Stress and Toxicity in Plants: An Overview. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation; Academic Press: Cambridge, MA, USA, 2019; pp. 1–17. [Google Scholar]
- Mirecki, N.; Agic, R.; Sunic, L.; Milenkovic, L. Transfer factor as indicator of heavy metals content in plants. Fresen. Environ. Bull. 2015, 24, 4212–4219. [Google Scholar]
- Zheng, N.; Wang, Q.; Zheng, D. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Sci. Total Environ. 2007, 383, 81–89. [Google Scholar] [CrossRef]
- Kim, I.S.; Kang, K.H.; Johnson-Green, P.; Lee, E.J. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextration. Environ. Pollut. 2003, 126, 235–243. [Google Scholar] [CrossRef]
Water-Extractable | NH4Cl-Extratable | ||||
---|---|---|---|---|---|
Element | Harvest Time | Control | Treatment | Control | Treatment |
Cr | 1st | 0.004 ± 0.001a | 0.015 ± 0.002a ** | 0.009 ± 0.000b | 0.013 ± 0.002b |
2nd | 0.002 ± 0.000bc | 0.003 ± 0.000b | 0.014 ± 0.002a | 0.011 ± 0.001b | |
3rd | 0.001 ± 0.000c | 0.004 ± 0.000b ** | 0.015 ± 0.001a | 0.021 ± 0.004a | |
4th | 0.003 ± 0.000ab | 0.003 ± 0.000b | 0.005 ± 0.000c | 0.013 ± 0.002b * | |
5th | 0.002 ± 0.000c | 0.002 ± 0.000b | 0.012 ± 0.001ab | 0.010 ± 0.000b | |
Ni | 1st | 0.073 ± 0.001c | 0.118 ± 0.001ab ** | 0.585 ± 0.012d | 0.533 ± 0.008b * |
2nd | 0.092 ± 0.006b | 0.074 ± 0.003c * | 0.648 ± 0.011c | 0.602 ± 0.015a * | |
3rd | 0.127 ± 0.007a | 0.099 ± 0.003b * | 0.708 ± 0.008b | 0.621 ± 0.007a ** | |
4th | 0.086 ± 0.007bc | 0.133 ± 0.011a * | 0.829 ± 0.005a | 0.538 ± 0.009 ** | |
5th | 0.074 ± 0.001c | 0.073 ± 0.008c | 0.614 ± 0.015cd | 0.530 ± 0.009b ** | |
Cu | 1st | 0.443 ± 0.018b | 0.257 ± 0.020bc ** | 7.201 ± 0.069a | 5.423 ± 0.268cd ** |
2nd | 0.193 ± 0.083c | 0.167 ± 0.016c | 6.187 ± 0.312b | 4.931 ± 0.110d * | |
3rd | 0.632 ± 0.045a | 0.299 ± 0.005bc ** | 6.147 ± 0.263b | 6.877 ± 0.228b | |
4th | 0.292 ± 0.004c | 1.553 ± 0.097a ** | 4.334 ± 0.093c | 8.149 ± 0.019a ** | |
5th | 0.262 ± 0.009c | 0.378 ± 0.009b ** | 4.022 ± 0.229c | 5.597 ± 0.068c * | |
Zn | 1st | 4.191 ± 0.119b | 5.613 ± 0.405b * | 14.25 ± 0.230b | 12.57 ± 0.372a * |
2nd | 4.371 ± 0.100b | 3.367 ± 0.155c ** | 16.66 ± 0.710b | 12.61 ± 0.343a ** | |
3rd | 6.099 ± 0.131a | 5.253 ± 0.078b ** | 16.35 ± 1.023b | 13.12 ± 0.605a * | |
4th | 4.039 ± 0.185b | 7.629 ± 0.145a ** | 23.50 ± 0.808a | 13.93 ± 0.069a ** | |
5th | 3.313 ± 0.022c | 4.008 ± 0.128c ** | 15.66 ± 1.321b | 13.45 ± 0.754a | |
Cd | 1st | 0.024 ± 0.002ab | 0.020 ± 0.001d | 0.135 ± 0.002b | 0.111 ± 0.004a ** |
2nd | 0.021 ± 0.001b | 0.018 ± 0.001d | 0.134 ± 0.009b | 0.104 ± 0.006a * | |
3rd | 0.039 ± 0.001a | 0.033 ± 0.001b | 0.157 ± 0.016b | 0.100 ± 0.003ab* | |
4th | 0.033 ± 0.011ab | 0.045 ± 0.002a | 0.223 ± 0.006a | 0.103 ± 0.002ab ** | |
5th | 0.020 ± 0.001b | 0.027 ± 0.001c ** | 0.143 ± 0.006b | 0.091 ± 0.003b ** | |
Pb | 1st | 0.075 ± 0.006a | 0.036 ± 0.001b ** | 22.436 ± 0.346a | 18.044 ± 0.669c ** |
2nd | 0.052 ± 0.002bc | 0.039 ± 0.002b * | 19.020 ± 0.553b | 18.190 ± 0.525bc | |
3rd | 0.077 ± 0.001a | 0.050 ± 0.004b ** | 19.287 ± 0.151b | 20.252 ± 0.642a | |
4th | 0.061 ± 0.004b | 0.282 ± 0.021a ** | 11.782 ± 0.508d | 19.704 ± 0.090ab ** | |
5th | 0.047 ± 0.001c | 0.060 ± 0.002b ** | 13.729 ± 0.158c | 12.524 ± 0.332d |
Above-Ground Portion | Below-Ground Portion | ||||
---|---|---|---|---|---|
Element | Harvest Time | Control | Treatment | Control | Treatment |
Cr | 1st | 26.88 ± 1.60a | 18.47 ± 0.89bc * | 61.13 ± 5.71a | 70.37 ± 5.95a |
2nd | 28.09 ± 3.28a | 21.02 ± 0.99b * | 48.93 ± 7.03a | 50.24 ± 17.81a | |
3rd | 20.06 ± 1.48b | 26.60 ± 2.47a | 29.94 ± 1.53b | 19.55 ± 1.91b * | |
4th | 16.82 ± 1.88b | 15.58 ± 0.78c ** | 21.75 ± 2.13b | 22.41 ± 0.94b | |
5th | 19.47 ± 0.24b | 18.58 ± 0.05bc * | 20.95 ± 2.64b | 19.12 ± 2.45b | |
Ni | 1st | 6.80 ± 0.59b | 5.25 ± 1.33b | 97.50 ± 2.40a | 26.25 ± 3.52a ** |
2nd | 8.58 ± 0.31a | 5.00 ± 0.32b ** | 34.02 ± 1.91b | 26.52 ± 0.86a * | |
3rd | 5.96 ± 0.52b | 5.26 ± 0.94b | 21.77 ± 2.74c | 12.95 ± 1.73b | |
4th | 5.53 ± 1.78b | 6.32 ± 0.10b * | 13.36 ± 2.47d | 8.45 ± 2.22b | |
5th | 6.73 ± 0.75b | 18.50 ± 1.66a ** | 13.01 ± 1.36d | 7.86 ± 0.36b * | |
Cu | 1st | 44.89 ± 4.17b | 23.43 ± 2.41bc * | 497.58 ± 28.61b | 157.00 ± 34.61c ** |
2nd | 64.55 ± 3.71a | 26.41 ± 0.75bc ** | 926.40 ± 24.22a | 350.42 ± 35.91ab ** | |
3rd | 26.60 ± 1.18c | 21.78 ± 3.12c | 444.27 ± 61.64b | 258.80 ± 85.40bc | |
4th | 34.00 ± 1.85c | 36.04 ± 8.33b | 503.31 ± 98.12b | 440.55 ± 23.05ab | |
5th | 44.11 ± 3.51b | 52.27 ± 0.75a | 484.79 ± 39.48b | 493.62 ± 70.50a | |
Zn | 1st | 316.83 ± 30.43b | 148.39 ± 11.63b ** | 408.69 ± 13.87a | 340.32 ± 18.31a * |
2nd | 466.71 ± 25.28a | 214.41 ± 22.30ab ** | 377.43 ± 39.65a | 248.36 ± 18.30b * | |
3rd | 318.68 ± 71.63b | 226.72 ± 30.23ab | 395.56 ± 29.92a | 239.06 ± 18.06b * | |
4th | 273.78 ± 20.13b | 339.31 ± 75.92a | 257.16 ± 21.85b | 200.84 ± 10.25b | |
5th | 387.65 ± 19.05ab | 297.80 ± 58.23ab * | 233.04 ± 8.81b | 262.70 ± 42.50b | |
Cd | 1st | 3.94 ± 0.54b | 4.41 ± 0.20bc | 5.46 ± 1.08ab | 6.32 ± 0.13a |
2nd | 6.87 ± 0.36a | 6.21 ± 0.36b | 7.44 ± 2.14a | 6.35 ± 0.65a | |
3rd | 3.91 ± 0.06b | 3.95 ± 0.37c | 5.13 ± 0.37ab | 3.24 ± 0.29b * | |
4th | 5.55 ± 0.35a | 8.36 ± 0.25a ** | 3.39 ± 0.27b | 3.58 ± 0.45b | |
5th | 5.97 ± 0.79a | 6.27 ± 1.31b | 3.08 ± 0.09b | 3.66 ± 0.62b | |
Pb | 1st | 8.65 ± 0.36d | 3.49 ± 0.25d ** | 262.32 ± 28.48b | 132.11 ± 25.02b * |
2nd | 22.45 ± 1.21b | 9.31 ± 0.05c ** | 392.43 ± 28.48a | 176.44 ± 15.13b ** | |
3rd | 18.70 ± 1.10c | 11.34 ± 0.90bc ** | 226.12 ± 34.38b | 165.40 ± 29.20b | |
4th | 15.25 ± 0.65c | 14.27 ± 0.58b | 288.00 ± 58.29ab | 280.80 ± 16.72a | |
5th | 28.43 ± 1.77a | 21.69 ± 2.23a | 273.44 ± 24.61ab | 298.00 ± 24.05a |
Gastric Phase | Gastrointestinal Phase | ||||
---|---|---|---|---|---|
Element | Harvest Time | Control | Treatment | Control | Treatment |
Cr | 1st | 0.14 ± 0.00b | 0.03 ± 0.00c ** | 0.12 ± 0.01b | 0.05 ± 0.00b * |
2nd | 0.39 ± 0.02a | 0.09 ± 0.00a ** | 0.72 ± 0.05a | 0.05 ± 0.00b ** | |
3rd | 0.15 ± 0.00b | 0.08 ± 0.01a ** | 0.14 ± 0.00b | 0.09 ± 0.01a ** | |
4th | 0.14 ± 0.00b | 0.06 ± 0.00b ** | 0.19 ± 0.01b | 0.08 ± 0.00a ** | |
5th | 0.16 ± 0.00b | 0.08 ± 0.00ab ** | 0.11 ± 0.00b | 0.09 ± 0.00a ** | |
Ni | 1st | 0.30 ± 0.02b | 0.09 ± 0.01b ** | 0.35 ± 0.02bc | 0.11 ± 0.00d ** |
2nd | 0.39 ± 0.02a | 0.24 ± 0.03a * | 0.38 ± 0.00b | 0.17 ± 0.01c ** | |
3rd | 0.34 ± 0.02ab | 0.20 ± 0.02a ** | 0.32 ± 0.01c | 0.22 ± 0.01b ** | |
4th | 0.33 ± 0.02ab | 0.20 ± 0.00a ** | 0.35 ± 0.03bc | 0.26 ± 0.01a * | |
5th | 0.37 ± 0.01a | 0.23 ± 0.00a ** | 0.46 ± 0.02a | 0.23 ± 0.01b ** | |
Cu | 1st | 2.61 ± 0.03ab | 0.54 ± 0.01d ** | 2.44 ± 0.03ab | 0.74 ± 0.07d ** |
2nd | 2.55 ± 0.05ab | 1.21 ± 0.06b ** | 2.68 ± 0.05a | 0.99 ± 0.02c ** | |
3rd | 1.26 ± 0.07c | 1.01 ± 0.04c ** | 1.61 ± 0.05c | 1.14 ± 0.09c ** | |
4th | 1.43 ± 0.05c | 1.07 ± 0.05c ** | 2.12 ± 0.15bc | 1.45 ± 0.02b * | |
5th | 2.71 ± 0.22a | 1.82 ± 0.02a * | 2.67 ± 0.22a | 1.75 ± 0.05a * | |
Zn | 1st | 14.89 ± 0.82d | 4.57 ± 0.38d ** | 11.55 ± 0.26c | 4.07 ± 0.21d ** |
2nd | 17.26 ± 0.53c | 10.06 ± 0.12c ** | 21.61 ± 0.77a | 8.17 ± 0.26b ** | |
3rd | 19.32 ± 0.14b | 12.52 ± 0.21bc ** | 11.24 ± 0.29c | 9.95 ± 0.10a * | |
4th | 17.04 ± 0.82c | 13.18 ± 0.91b * | 10.12 ± 0.77c | 5.65 ± 0.12c ** | |
5th | 21.02 ± 0.12a | 14.96 ± 0.35a ** | 16.44 ± 0.12b | 8.42 ± 0.48b ** | |
Cd | 1st | 0.24 ± 0.00b | 0.13 ± 0.01c ** | 0.12 ± 0.01d | 0.05 ± 0.00e ** |
2nd | 0.31 ± 0.00a | 0.28 ± 0.01a | 0.22 ± 0.00b | 0.10 ± 0.01c ** | |
3rd | 0.25 ± 0.01b | 0.24 ± 0.01b | 0.21 ± 0.00b | 0.09 ± 0.00d ** | |
4th | 0.31 ± 0.01a | 0.22 ± 0.04b | 0.19 ± 0.01c | 0.14 ± 0.00b * | |
5th | 0.36 ± 0.01a | 0.23 ± 0.00b ** | 0.28 ± 0.01a | 0.22 ± 0.00a ** | |
Pb | 1st | 0.20 ± 0.01c | 0.04 ± 0.00d ** | 0.02 ± 0.00c | 0.01 ± 0.00c * |
2nd | 0.80 ± 0.00a | 0.14 ± 0.00b ** | 0.54 ± 0.03a | 0.03 ± 0.00b ** | |
3rd | 0.19 ± 0.02c | 0.11 ± 0.01c * | 0.07 ± 0.00b | 0.04 ± 0.00a ** | |
4th | 0.28 ± 0.01b | 0.10 ± 0.01c ** | 0.07 ± 0.01b | 0.03 ± 0.01b ** | |
5th | 0.81 ± 0.02a | 0.46 ± 0.00a ** | 0.10 ± 0.00b | 0.05 ± 0.00a ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Wang, X.; Ying, J.; Lin, C. Biochar Is Not Durable for Remediation of Heavy Metal-Contaminated Soils Affected by Acid-Mine Drainage. Toxics 2022, 10, 462. https://doi.org/10.3390/toxics10080462
Qin J, Wang X, Ying J, Lin C. Biochar Is Not Durable for Remediation of Heavy Metal-Contaminated Soils Affected by Acid-Mine Drainage. Toxics. 2022; 10(8):462. https://doi.org/10.3390/toxics10080462
Chicago/Turabian StyleQin, Junhao, Xi Wang, Jidong Ying, and Chuxia Lin. 2022. "Biochar Is Not Durable for Remediation of Heavy Metal-Contaminated Soils Affected by Acid-Mine Drainage" Toxics 10, no. 8: 462. https://doi.org/10.3390/toxics10080462
APA StyleQin, J., Wang, X., Ying, J., & Lin, C. (2022). Biochar Is Not Durable for Remediation of Heavy Metal-Contaminated Soils Affected by Acid-Mine Drainage. Toxics, 10(8), 462. https://doi.org/10.3390/toxics10080462