Recognition of Heavy Metals by Using Resorcin[4]arenes Soluble in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipments and Experimental Techniques
2.2.1. Conductometry
2.2.2. Ion-Selective Potentiometry (ISE)
2.2.3. Atomic Absorption
3. Results and Discussion
3.1. Complexation of Na4BRA with Cu2+
3.2. Complexation of Na4BRA with Pb2+
3.3. Complexation of Na4BRA with either Cd2+ or Hg2+
3.4. Complexation of Na4SRA with Hg2+
3.5. Complexation of Na4SRA with either Cu2+, Pb2+, or Cd2+
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, Z.; Jagadheeswari; Mohan, A.; Priya, S.; Tharini; Selvendran. Electrokinetic remediation: An innovation for heavy metal contamination in the soil environment. Mater. Today Proc. 2021, 37, 2730–2734. [Google Scholar] [CrossRef]
- Gujre, N.; Mitra, S.; Soni, A.; Agnihotri, R.; Rangan, L.; Rene, E.R.; Sharma, M.P. Speciation, contamination, ecological and human health risks assessment of heavy metals in soils dumped with municipal solid wastes. Chemosphere 2021, 262, 128013. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Shroff, J. Observations on the levels of total mercury (Hg) and selenium (Se) in species common to the artisanal fisheries of Seychelles. NeuroToxicology 2020, 81, 277–281. [Google Scholar] [CrossRef]
- Liu, P.; Yang, Y.; Li, M. Responses of soil and earthworm gut bacterial communities to heavy metal contamination. Environ. Pollut. 2020, 265, 114921. [Google Scholar] [CrossRef]
- Baruah, S.G.; Ahmed, I.; Das, B.; Ingtipi, B.; Boruah, H.; Gupta, S.K.; Nema, A.K.; Chabukdhara, M. Heavy metal(loid)s contamination and health risk assessment of soil-rice system in rural and peri-urban areas of lower brahmaputra valley, northeast India. Chemosphere 2021, 266, 129150. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Antoniadis, V.; Wang, K.; Huang, Y.; Tian, H. Assessment of heavy metal(loid)s contamination risk and grain nutritional quality in organic waste-amended soil. J. Hazard. Mater. 2020, 399, 123095. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef]
- Cruzado-Tafur, E.; Torró, L.; Bierla, K.; Szpunar, J.; Tauler, E. Heavy metal contents in soils and native flora inventory at mining environmental liabilities in the Peruvian Andes. J. South Am. Earth Sci. 2021, 106, 103107. [Google Scholar] [CrossRef]
- Peixoto, R.R.A.; Jadán-Piedra, C. Cadmium pollution of water, soil, and food: A review of the current conditions and future research considerations in Latin America. Environ. Rev. 2021, 30, 110–127. [Google Scholar] [CrossRef]
- Moon, M.K.; Lee, I.; Lee, A.; Park, H.; Kim, M.J.; Kim, S.; Cho, Y.H.; Hong, S.; Yoo, J.; Cheon, G.J.; et al. Lead, mercury, and cadmium exposures are associated with obesity but not with diabetes mellitus: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Environ. Res. 2022, 204, 111888. [Google Scholar] [CrossRef]
- Islam, S.; Proshad, R.; Haque, M.A.; Hoque, F.; Hossin, S.; Sarker, N.I. Assessment of heavy metals in foods around the industrial areas: Health hazard inference in Bangladesh. Geocarto. Int. 2020, 35, 280–295. [Google Scholar] [CrossRef]
- Pan, S.; Lin, L.; Zeng, F.; Zhang, J.; Dong, G.; Yang, B.; Jing, Y.; Chen, S.; Zhang, G.; Yu, Z.; et al. Effects of lead, cadmium, arsenic, and mercury co-exposure on children’s intelligence quotient in an industrialized area of southern China. Environ. Pollut. 2018, 235, 47–54. [Google Scholar] [CrossRef]
- Osredkar, J.; Sustar, N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, s3, 0495. [Google Scholar] [CrossRef]
- Garza, A.; Vega, R.; Soto, E. Cellular mechanisms of lead neurotoxicity. Med. Sci. Monit. 2006, 12, RA57–RA65. [Google Scholar]
- Glicklich, D.; Frishman, W.H. The Case for Cadmium and Lead Heavy Metal Screening. Am. J. Med. Sci. 2021, 362, 344–354. [Google Scholar] [CrossRef]
- Es-Sahbany, H.; El Hachimi, M.; Hsissou, R.; Belfaquir, M.; Nkhili, S.; Loutfi, M.; Elyoubi, M. Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima–Morocco region). Mater. Today: Proc. 2021, 45, 7299–7305. [Google Scholar] [CrossRef]
- Qing, Y.; Yang, J.; Chen, Y.; Shi, C.; Zhang, Q.; Ning, Z.; Yu, Y.; Li, Y. Urinary cadmium in relation to bone damage: Cadmium exposure threshold dose and health-based guidance value estimation. Ecotoxicol. Environ. Saf. 2021, 226, 112824. [Google Scholar] [CrossRef]
- Wang, B.; Chen, M.; Ding, L.; Zhao, Y.; Man, Y.; Feng, L.; Li, P.; Zhang, L.; Feng, X. Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China. Environ. Int. 2021, 154, 106561. [Google Scholar] [CrossRef]
- Garcia-Ordiales, E.; Roqueñí, N.; Loredo, J. Mercury bioaccumulation by Juncus maritimus grown in a Hg contaminated salt marsh (northern Spain). Mar. Chem. 2020, 226, 103859. [Google Scholar] [CrossRef]
- Zheng, W.; Chandan, P.; Steffen, A.; Stupple, G.; De Vera, J.; Mitchell, C.P.; Wania, F.; Bergquist, B.A. Mercury stable isotopes reveal the sources and transformations of atmospheric Hg in the high Arctic. Appl. Geochem. 2021, 131, 105002. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, X.; Zeng, J.; Huang, W.; Xu, X.; Shou, L.; Chen, Q. Development of marine water quality criteria for inorganic mercury in China based on the retrievable toxicity data and a comparison with relevant criteria or guidelines. Ecotoxicology 2019, 28, 412–421. [Google Scholar] [CrossRef]
- Wang, L.; Hou, D.; Cao, Y.; Ok, Y.S.; Tack, F.M.G.; Rinklebe, J.; O’Connor, D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environ. Inter. 2020, 134, 105281. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, R.; Li, T.; Zhang, F.; Russell, J.; Guan, M.; Han, Q.; Zhou, Y.; Xiao, X.; Wang, X. Spatial distributions and sources of heavy metals in sediments of the Changjiang Estuary and its adjacent coastal areas based on mercury, lead and strontium isotopic compositions. CATENA 2019, 174, 154–163. [Google Scholar] [CrossRef]
- Sanabria, E. Physicochemical Study of Resorcin[4]arenes Sulfonated in Aqueous Solution and Its Complexity with Ions of Interest. Ph.D. Thesis, University of Los Andes, Bogotá, Colombia, 2016. Available online: https://ebuah.uah.es/dspace/bitstream/handle/10017/26597/Tesis%20Edilma%20Sanabria%20Espa%C3%B1ol.pdf?sequence=1&isAllowed=y (accessed on 30 June 2022).
- Jain, V.K.; Kanaiya, P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 2011, 80, 75–102. [Google Scholar] [CrossRef]
- Kazakova, E.K.; Ziganshina, A.; Muslinkina, L.A.; Morozova, J.; Makarova, N.A.; Mustafina, A.R.; Habicher, W.D. The Complexation Properties of the Water-Soluble Tetrasulfonatomethylcalix[4]resorcinarene toward α-Aminoacids. J. Incl. Phenom. Macrocycl. Chem. 2002, 43, 65–69. [Google Scholar] [CrossRef]
- Skripacheva, V.V.; Kazakova, E.K.; Markarova, N.A.; Kataev, V.E.; Ermolaeva, L.V.; Habicher, W.D. A Water soluble Sulfonatomethylated Calix[4]resorcinarene as Artificial Receptor of Metal Complexes. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 77–81. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Guo, X.; Yan, C. Ammonium and imidazolium-based amphiphilic tetramethoxy resorcinarenes: Adsorption, micellization, and protein binding. J. Mol. Liq. 2020, 313, 113587. [Google Scholar] [CrossRef]
- Shalaeva, Y.; Morozova, J.E.; Gubaidullin, A.; Saifina, A.; Shumatbaeva, A.; Nizameev, I.; Kadirov, M.; Ovsyannikov, A.; Antipin, I. Photocatalytic properties of supramolecular nanoassociates based on gold and platinum nanoparticles, capped by amphiphilic calix[4]resorcinarenes, towards organic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2020, 596, 124700. [Google Scholar] [CrossRef]
- Sanabria, E.; Esteso, M.; Vargas, E.; Maldonado, M. Experimental comparative study of solvent effects on the structure of two sulfonated resorcinarenes. J. Mol. Liq. 2018, 254, 391–397. [Google Scholar] [CrossRef]
- Español, E.S.; Villamil, M.M.; Esteso, M.A.; Vargas, E.F. Volumetric and acoustic properties of two sodium sulfonateresorcin[4]arenes in water and dimethylsulfoxide. J. Mol. Liq. 2018, 249, 868–876. [Google Scholar] [CrossRef]
- Mironova, D.A.; Muslinkina, L.A.; Morozova, J.E.; Shalaeva, Y.V.; Kazakova, E.K.; Kadyrov, M.T.; Nizameev, I.R.; Konovalov, A.I. Complexes of tetramethylensulfonatocalix[4]resorcinarene aggregates with methyl orange: Interactions with guests and driving force of color response. Colloids Surf. A Physicochem. Eng. Asp. 2015, 468, 339–345. [Google Scholar] [CrossRef]
- Da Silva, E.; Rousseau, C.F.; Zanella-Cleon, I.; Becchi, M.; Coleman, A.W. Mass Spectrometric Determination of Association Constants of Bovine Serum Albumin (BSA) with para-Sulphonato-Calix[n]arene Derivatives. J. Incl. Phenom. Macrocycl. Chem. 2006, 54, 53–59. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Rezayi, M.; Karimi-Maleh, H.; Alias, Y. Conductometric measurements of complexation study between 4-Isopropylcalix[4]arene and Cr3+ cation in THF–DMSO binary solvents. Measurement 2015, 70, 214–224. [Google Scholar] [CrossRef]
- Sanabria, E.; Esteso, M.; Pérez-Redondo, A.; Vargas, E.F.; Maldonado, M. Synthesis and Characterization of Two Sulfonated Resorcinarenes: A New Example of a Linear Array of Sodium Centers and Macrocycles. Molecules 2015, 20, 9915–9928. [Google Scholar] [CrossRef]
- Amirov, R.R.; Nugaeva, Z.T.; Mustafina, A.R.; Fedorenko, S.V.; Morozov, V.I.; Kazakova, E.K.; Habicher, W.D.; Konovalov, A.I. Aggregation and counter ion binding ability of sulfonatomethylcalix[4]resorcinarenes in aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2004, 240, 35–43. [Google Scholar] [CrossRef]
- Rounaghi, G.H.; Razavipanah, E. Complexation of 4′-nitrobenzo-15-crown-5 with Li+, Na+, K+, and NH4+ cations in acetonitrile–methanol binary solutions. J. Incl. Phenom. Macrocycl. Chem. 2008, 61, 313–318. [Google Scholar] [CrossRef]
- Ali, M.S.; Rub, M.A.; Khan, F.; Al-Lohedan, H.; Din, K.U. β-Cyclodextrin-promazine hydrochloride interaction: Conductometric and viscometric studies. J. Saudi Chem. Soc. 2012, 19, 83–87. [Google Scholar] [CrossRef]
- Ali, M.S.; Rub, M.A.; Khan, F.; Al-Lohedan, H.A.; Din, K. Interaction of amphiphilic drug amitriptyline hydrochloride with β-cyclodextrin as studied by conductometry, surface tensiometry and viscometry. J. Mol. Liq. 2012, 167, 115–118. [Google Scholar] [CrossRef]
- Jalali, F.; Ashrafi, A.; Shamsipur, M. Conductance study of the thermodynamics of complexation of amantadine, rimantadine and aminocyclohexane with some macrocyclic compounds in acetonitrile solution. J. Incl. Phenom. Macrocycl. Chem. 2007, 61, 77–82. [Google Scholar] [CrossRef]
- Vafi, M.; Rounaghi, G.H.; Chamsaz, M. Study of complex formation process between 4′-nitrobenzo-18-crown-6 and yttrium(III) cation in some binary mixed non-aqueous solvents using the conductometry method. Arab. J. Chem. 2017, 10, 739–745. [Google Scholar] [CrossRef]
- Granholm, K.; Sokalski, T.; Lewenstam, A.; Ivaska, A. Ion-selective electrodes in potentiometric titrations; a new method for processing and evaluating titration data. Anal. Chim. Acta 2015, 888, 36–43. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999, 184, 311–318. [Google Scholar] [CrossRef]
- Rathod, N.V.; Joshi, K.; Jadhav, A.S.; Kalyani, V.S.; Kalyani, V.S.; Malkhede, D.D. A novel interaction study of Th (IV) 451 and Zr (IV) with 4-sulfonatocalix[6]arene: Experimental and theoretical investigation. Polyhedron 2017, 137, 207–216. [Google Scholar] [CrossRef]
- Ashram, M.H. Conductance and Thermodynamic Study of the Complexation of Ethyl p-Tert-butylcalix[4]arene Tetraacetate with Alkali Metal and Silver Ions in Various Solvents. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 25–31. [Google Scholar] [CrossRef]
- De Namor, A.F.D.; Abbas, I. Sulfur-Containing Hetero-Calix[4]pyrroles as Mercury(II) Cation-Selective Receptors: Thermodynamic Aspects. J. Phys. Chem. B 2007, 111, 5803–5810. [Google Scholar] [CrossRef]
- Tracey, M.P.; Koide, K. Development of a Sustainable Enrichment Strategy for Quantification of Mercury Ions in Complex Samples at the Sub-Parts per Billion Level. Ind. Eng. Chem. Res. 2014, 53, 14565–14570. [Google Scholar] [CrossRef]
Host | Cu2+ | Pb2+ | Cd2+ | Hg2+ |
---|---|---|---|---|
Na4BRA | Conductometry Ion-selective potentiometry (ISE) | Conductometry Atomic absorption | ·Conductometry | Conductometry |
Na4SRA | Conductometry | Conductometry | ·Conductometry | Conductometry Atomic absorption |
Substance | Source | Purity |
---|---|---|
Cu(ClO4)2·6H2O | Alfa Aesar | >98% |
Pb(ClO4)2·3H2O | Alfa Aesar | 97% min. |
Cd(ClO4)2·6H2O | Alfa Aesar | >99% |
Hg(ClO4)2·3H2O | Alfa Aesar | >99% |
Host/Guest | Cu2+ | Pb2+ | Cd2+ | Hg2+ |
---|---|---|---|---|
Na4BRA | 1:1 | 1:2 | - | - |
Na4SRA | - | - | - | 1:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanabria, E.; Esteso, M.A.; Vargas, E.F. Recognition of Heavy Metals by Using Resorcin[4]arenes Soluble in Water. Toxics 2022, 10, 461. https://doi.org/10.3390/toxics10080461
Sanabria E, Esteso MA, Vargas EF. Recognition of Heavy Metals by Using Resorcin[4]arenes Soluble in Water. Toxics. 2022; 10(8):461. https://doi.org/10.3390/toxics10080461
Chicago/Turabian StyleSanabria, Edilma, Miguel A. Esteso, and Edgar F. Vargas. 2022. "Recognition of Heavy Metals by Using Resorcin[4]arenes Soluble in Water" Toxics 10, no. 8: 461. https://doi.org/10.3390/toxics10080461
APA StyleSanabria, E., Esteso, M. A., & Vargas, E. F. (2022). Recognition of Heavy Metals by Using Resorcin[4]arenes Soluble in Water. Toxics, 10(8), 461. https://doi.org/10.3390/toxics10080461