Quercetin-3-O-β-D-Glucopyranoside-Rich Fraction from Spondias mombin Leaves Halted Responses from Oxidative Stress, Neuroinflammation, Apoptosis, and Lipid Peroxidation in the Brain of Dichlorvos-Treated Wistar Rats
Abstract
:Highlights
- Protective efficacy of Quercetin-3-O-β-D-glucopyranoside-rich fraction (Q3G-RF) from Spondias mombin role on Dichlorvos (DDVP) toxicity was studied.
- DDVP induced cognitive and locomotive impairment, free radicals, oxidative stress, neuroinflammation, and apoptosis in the brain of rats.
- Q3G-RF from S. mombin leaves prevented DDVP-induced cognitive and locomotion impairment in the rats.
- Q3G-RF from S. mombin leaves prevented DDVP-induced deficits in fluid intake and body weight of the rats.
- Q3G-RF from S. mombin leaves abated DDVP-induced inhibition of AChE, BuChE in the brain sections of rats.
- Q3G-RF from S. mombin leaves reversed elevated activities APEH, DPP-IV and POP in the brain sections of rats exposed to DDVP.
- Q3G-RF from S. mombin leaves revoked the DDVP-induced oxidative stress in the brain sections of rats.
- Q3G-RF from S. mombin leaves prevented DDVP-induced neuroinflammation in the brain sections of rats.
- Q3G-RF from S. mombin leaves reversed DDVP-induced apoptosis in the brain sections of rats.
- Q3G-RF from S. mombin leaves assuaged DDVP neural toxicity in the brain sections of rats via anti-oxidative and anti-inflammatory mechanisms.
Abstarct
1. Introduction
2. Materials and Method
2.1. Chemicals, Reagents, and Drugs
2.2. Plant Samples
2.3. Animal Handling
2.4. Experimental Procedure and Treatment Grouping of the Rats
2.5. Weight Measurement of the Total Body Mass and Brain of Rats
2.6. Measurement of Cognitive Performance
2.6.1. Y-Maze Test (YMT)
2.6.2. Novel Object Recognition Test (NORT)
2.6.3. Measurement of Locomotion
2.7. Animals’ Sacrifice, Blood Collection and Brain Sectioning
2.8. Assay for Cholinesterase, Neurodegeneration Marker Enzymes, Neuroinflammation, Apoptosis, and Antioxidant Parameters
2.8.1. Cholinesterase and Brain Marker Enzymes for Neurodegeneration
Acetylcholinesterase (AChE) Activity
Butyrylcholinesterase (BuChE) Activity
Acylpeptide Hydrolase Activity
Dipeptidylpeptidase IV Activity
Prolyl Oligopeptidase Activity
2.8.2. Antioxidant Status Marker Enzymes
Glutathione S-Transferase Activity
Glutathione Peroxidase Activity
Catalase Activity
Glutathione (GSH) Level
Superoxide Dismutase Activity
2.8.3. Oxidative Stress Markers
Hydrogen Peroxide Generation
Total Thiol Content
Malondialdehyde Level Determination
2.8.4. Neuroinflammation Markers
Nitric Oxide Level
Interleukin-1 Beta and Tumor Necrosis Factor-α Determination
Myeloperoxidase Activity Determination
2.8.5. Apoptosis Marker
Caspase-3 Activity Determination
2.8.6. Protein Concentration
2.8.7. Statistical Analysis of Data
3. Results
3.1. Q3G-RF from S. mombin Leaves Reversed DDVP-Induced Cognitive and Memory Impairment
3.2. Q3G-RF from S. mombin Leaves Improved DDVP-Induced Locomotion Impairment
3.3. Q3G-RF from S. mombin Leaves Prevented DDVP-Induced Body Weight Deficit in Rats
3.4. Q3G-RF from S. mombin Leaves Reversed the Inhibition of Cholinesterases and Alteration in Activities of Brain Enzymes of Rats Exposed to DDVP
3.5. Q3G-RF from S. mombin Leaves Improved Antioxidant Status in Rats Exposed to DDVP
3.6. Q3G-RF from S. mombin Leaves Prevented DDVP-Induced Oxidative Stress
3.7. Q3G-RF from S. mombin Leaves Prevented DDVP-Induced Neuroinflammation and Apoptosis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Imam, A.; Sulaiman, N.A.; Oyewole, A.L.; Chengetanai, S.; Williams, V.; Ajibola, M.I.; Folarin, R.O.; Muhammad, A.S.; Shittu, S.T.T.; Ajao, M.S. Chlorpyrifos- and Dichlorvos-Induced Oxidative and Neurogenic Damage Elicits Neuro-Cognitive Deficits and Increases Anxiety-like Behavior in Wild-Type Rats. Toxics 2018, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Okoroiwu, H.U.; Iwara, I.A. Dichlorvos Toxicity: A Public Health Perspective. Interdiscip. Toxicol. 2018, 11, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Sinyangwe, D.M.; Mbewe, B.; Sijumbila, G. Determination of Dichlorvos Residue Levels in Vegetables Sold in Lusaka, Zambia. Pan. Afr. Med. J. 2016, 23, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sundarmurugasan, R.; Gumpu, M.B.; Ramachandra, B.L.; Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Simultaneous Detection of Monocrotophos and Dichlorvos in Orange Samples Using Acetylcholinesterase-Zinc Oxide Modified Platinum Electrode with Linear Regression Calibration. Sens. Actuators B Chem. 2016, 230, 306–313. [Google Scholar] [CrossRef]
- Brown, H.; Oruambo, I.; Kenanagha, B. Poor Antedotal Effects of Copper and Manganese on Rats Poor Antedotal Effects of Copper and Manganese on Rats expossed to acute dose of dichlorvos. Eur. J. Pharm. Med. Res. 2015, 2, 290–303. [Google Scholar]
- Jamal, F.; Haque, Q.S.; Singh, S. Interrelation of Glycemic Status and Neuropsychiatric Disturbances in Farmers with Organophosphorus Pesticide Toxicity. Open Biochem. J. 2016, 10, 27–34. [Google Scholar] [CrossRef]
- Yatendra, S.; Chandra, S.; Singh, M.; Joshi, A.; Kumar, J. Organophosphorus Poisoning: An Overview. Int. J. Health Sci. Res. 2014, 4, 245–257. [Google Scholar]
- Ajao, M.S.; Sansa, A.B.; Imam, A.; Ibrahim, A.; Adana, M.Y.; Alli-Oluwafuyi, A.; Kareem, S.B. Protective Effect of Nigella Sativa (Black Caraway (Oil on Oral Dichlorvos Induced Hematological, Renal and Nonspecific Immune System Toxicity in Wistar Rats. Iran. J. Toxicol. 2017, 11, 1–5. [Google Scholar] [CrossRef]
- Ajao, M.; Abdussalam, W.; Imam, A.; Amin, A.; Ibrahim, A.; Adana, M.; Sulaimon, F.; Atata, J. Histopathological and Biochemical Evaluations of the Antidotal Efficacy of Nigella sativa Oil on Organophosphate Induced Hepato-Toxicity. Res. J. Health Sci. 2017, 5, 18. [Google Scholar] [CrossRef]
- Kanu, K.C.; Ijioma, S.N.; Atiata, O. Haematological, Biochemical and Antioxidant Changes in Wistar Rats Exposed to Dichlorvos Based Insecticide Formulation Used in Southeast Nigeria. Toxics 2016, 4, 28. [Google Scholar] [CrossRef]
- Shiyovich, A.; Matot, R.; Elyagon, S.; Liel-Cohen, N.; Rosman, Y.; Shrot, S.; Kassirer, M.; Katz, A.; Etzion, Y. QT Prolongation as an Isolated Long-Term Cardiac Manifestation of Dichlorvos Organophosphate Poisoning in Rats. Cardiovasc. Toxicol. 2018, 18, 24–32. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Bui-Nguyen, T.M.; Baer, C.E.; Lewis, J.A.; Yang, D.; Lein, P.J.; Jackson, D.A. Dichlorvos Exposure Results in Large Scale Disruption of Energy Metabolism in the Liver of the Zebrafish, Danio Rerio. BMC Genom. 2015, 16, 853. [Google Scholar] [CrossRef]
- Ojo, O.A.; Oyinloye, B.E.; Ajiboye, B.O.; Ojo, A.B.; Musa, H.; Olarewaju, O.I. Dichlorvos-Induced Oxidative Stress in Rat Brain: Protective Effects of the Ethanolic Extract of Alstonia Boonei Stem Bark. Asian J. Pharm. 2014, 8, 216–221. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Karajibani, M.; Montazerifar, F.; Feizabad, A.K. Study of Oxidants and Antioxidants in Addicts. Int. J. High Risk Behav. Addict. 2017, 6, e3505. [Google Scholar] [CrossRef]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef]
- Jelinek, M.; Jurajda, M.; Duris, K. Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke. Antioxidants 2021, 10, 1886. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Yan, H.F.; Zou, T.; Tuo, Q.Z.; Xu, S.; Li, H.; Belaidi, A.A.; Lei, P. Ferroptosis: Mechanisms and links with diseases. Signal Transduct. Target. Ther. 2021, 6, 49. [Google Scholar] [CrossRef]
- Binukumar, B.K.; Bal, A.; Gill, K.D. Chronic Dichlorvos Exposure: Microglial Activation, Proinflammatory Cytokines and Damage to Nigrostriatal Dopaminergic System. Neuro Mol. Med. 2011, 13, 251–265. [Google Scholar] [CrossRef]
- Wani, W.Y.; Gudup, S.; Sunkaria, A.; Bal, A.; Singh, P.P.; Kandimalla, R.J.L.; Sharma, D.R.; Gill, K.D. Protective Efficacy of Mitochondrial Targeted Antioxidant MitoQ against Dichlorvos Induced Oxidative Stress and Cell Death in Rat Brain. Neuropharmacology 2011, 61, 1193–1201. [Google Scholar] [CrossRef]
- Ogunro, O.; Yakubu, M. Antifertility Effects of 60-Day Oral Gavage of Ethanol Extract of Spondias Mombin Leaves in Guinea Pigs: A Biochemical, Reproductive and Histological Study. Asian Pac. J. Reprod. 2021, 10, 56–67. [Google Scholar] [CrossRef]
- Akinmoladun, A.C.; Afolabi, C.A.; Mohammad, F.K.; Jayanta, S.; Ebenezer, O.F.; Rakesh, M. In Vitro Antioxidant, Cytotoxic and Phytochemical Studies of Clinacanthus Nutans Lindau Leaf Extracts. Afr. J. Pharm. Pharmacol. 2015, 9, 506–513. [Google Scholar] [CrossRef]
- VanWagenen, B.C.; Larsen, R.; Cardellina, J.H.; Randazzo, D.; Lidert, Z.C.; Swithenbank, C. Ulosantoin, a Potent Insecticide from the Sponge Ulosa Ruetzleri. J. Org. Chem. 1993, 58, 335–337. [Google Scholar] [CrossRef]
- Imam, A.; Ogunniyi, A.; Ibrahim, A.; Abdulmajeed, W.I.; Oyewole, L.A.; Lawan, A.H.; Sulaimon, F.A.; Adana, M.Y.; Ajao, M.S. Dichlorvos Induced Oxidative and Neuronal Responses in Rats: Mitigative Efficacy of Nigella Sativa (Black Cumin). Niger. J. Physiol. Sci. 2018, 33, 83–88. [Google Scholar]
- Dudchenko, P.A. An Overview of the Tasks Used to Test Working Memory in Rodents. Neurosci. Biobehav. Rev. 2004, 28, 699–709. [Google Scholar] [CrossRef]
- Ennaceur, A. One-Trial Object Recognition in Rats and Mice: Methodological and Theoretical Issues. Behav. Brain Res. 2010, 215, 244–254. [Google Scholar] [CrossRef]
- Ajayi, A.M.; Ben-Azu, B.; Onasanwo, S.A.; Adeoluwa, O.; Eduviere, A.; Ademowo, O.G. Flavonoid-Rich Fraction of Ocimum Gratissimum Attenuates Lipopolysaccharide-Induced Sickness Behavior, Inflammatory and Oxidative Stress in Mice. Drug Res. 2019, 69, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Tucker, A.M.; Shapiro, S. Procedure for Sectioning the Brains of Small Animals In Situ. Psychol. Rep. 1971, 29, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V. F-SRA New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharm. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Richards, P.G.; Johnson, M.K.; Ray, D.E. Identification of Acylpeptide Hydrolase as a Sensitive Site for Reaction with Organophosphorus Compounds and a Potential Target for Cognitive Enhancing Drugs. Mol. Pharmacol. 2000, 58, 577–583. [Google Scholar] [CrossRef]
- Cahlíková, L.; Hulová, L.; Hrabinová, M.; Chlebek, J.; Hoš͗álková, A.; Adamcová, M.; Šafratová, M.; Jun, D.; Opletal, L.; Ločárek, M.; et al. Isoquinoline Alkaloids as Prolyl Oligopeptidase Inhibitors. Fitoterapia 2015, 103, 192–196. [Google Scholar] [CrossRef]
- Habig, W.H.; Jakoby, W.B. Assays for Differentiation of Glutathione S-Transferases. Methods Enzymol. 1981, 77, 398–405. [Google Scholar] [CrossRef]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene-Induced Liver Necrosis. Protective Role of Glutathione and Evidence for 3,4-Bromobenzene Oxide as the Hepatotoxic Metabolite. Pharmacology 1974, 11, 151–169. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Wolff, S.P. Ferrous Ion Oxidation in Presence of Ferric Ion Indicator Xylenol Orange for Measurement of Hydroperoxides. Methods Enzymol. 1994, 233, 182–189. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Biomembranes-Part C: Biological Oxidations. Methods Enzymol. 1978, 52, 302–310. [Google Scholar]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N]Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Granell, S.; Gironella, M.; Bulbena, O.; Panés, J.; Mauri, M.; Sabater, L.; Aparisi, L.; Gelpi, E.; Closa, D. Heparin Mobilizes Xanthine Oxidase and Induces Lung Inflammation in Acute Pancreatitis. Crit. Care Med. 2003, 31, 525–530. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Athira Sivadas, K.B. How Does My Brain Communicate with My Body? Front. Young Minds 2020, 8, 139–148. [Google Scholar] [CrossRef]
- Gao, H.M.; Hong, J.S. Why Neurodegenerative Diseases Are Progressive: Uncontrolled Inflammation Drives Disease Progression. Trends Immunol. Author 2008, 128, 357–365. [Google Scholar] [CrossRef]
- Menorca, R.M.G.; Fussell, T.S.; Elfar, J.C. Peripheral Nerve Trauma: Mechanisms of Injury and Recovery. Hand Clin. 2013, 29, 317. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The Effects of Oxidative Stress on Female Reproduction: A Review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef]
- Kaygusuzoglu, E.; Caglayan, C.; Kandemir, F.M.; Yıldırım, S.; Kucukler, S.; Kılınc, M.A.; Saglam, Y.S. Zingerone Ameliorates Cisplatin-induced Ovarian and Uterine Toxicity via Suppression of Sex Hormone Imbalances, Oxidative Stress, Inflammation and Apoptosis in Female Wistar Rats. Biomed. Pharmacother. 2018, 102, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Sajad, J.K.K. The Laboratory Rat: Age and Body Weight Matter. EXCLI J. 2021, 2005, 1431–1445. [Google Scholar]
- Imam, A.; Sulaiman, N.A.; Oyewole, A.L.; Amin, A.; Shittu, S.T.T.; Ajao, M.S. Pro-Neurogenic and Antioxidant Efficacy of Nigella Sativa Oil Reduced Vulnerability Cholinesterase Dysfunction and Disruption in Amygdala-Dependent Behaviours in Chlorpyrifos Exposure. J. Krishna Inst. Med. Sci. Univ. 2018, 7, 1–12. [Google Scholar]
- Godbout, J.P.; Johnson, R.W. Interleukin-6 in the Aging Brain. J. Neuroimmunol. 2004, 147, 141–144. [Google Scholar] [CrossRef]
- Toda, T.; Parylak, S.L.; Linker, S.B.; Gage, F.H. The Role of Adult Hippocampal Neurogenesis in Brain Health and Disease. Mol. Psychiatry 2019, 24, 67–87. [Google Scholar] [CrossRef]
- Ishola, I.O.; Ikuomola, B.O.; Adeyemi, O.O. Protective Role of Spondias Mombin Leaf and Cola Acuminata Seed Extracts against Scopolamine-Induced Cognitive Dysfunction. Alex. J. Med. 2018, 54, 27–39. [Google Scholar] [CrossRef]
- Ajayi, A.M.; Ben-Azu, B.; Godson, J.C.; Umukoro, S. Effect of Spondias Mombin Fruit Extract on Scopolamine-Induced Memory Impairment and Oxidative Stress in Mice Brain. J. Herbs. Spices Med. Plants 2020, 27, 24–36. [Google Scholar] [CrossRef]
- Flora, S.J.S.; Dwivedi, N.; Deb, U.; Kushwaha, P.; Lomash, V. Effects of Co-Exposure to Arsenic and Dichlorvos on Glutathione Metabolism, Neurological, Hepatic Variables and Tissue Histopathology in Rats. Toxicol. Res. 2014, 3, 23–31. [Google Scholar] [CrossRef]
- Kapeleka, J.A.; Sauli, E.; Sadik, O.; Ndakidemi, P.A. Biomonitoring of Acetylcholinesterase (AChE) Activity among Smallholder Horticultural Farmers Occupationally Exposed to Mixtures of Pesticides in Tanzania. J. Environ. Public Health 2019, 2019, 3084501. [Google Scholar] [CrossRef]
- Walczak-Nowicka, Ł.J.; Herbet, M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in Their Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9290. [Google Scholar] [CrossRef]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of Acetylcholinesterase Inhibitors in Alzheimer’s Disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef]
- Svenningsson, P.; Wirdefeldt, K.; Yin, L.; Fang, F.; Markaki, I.; Efendic, S.; Ludvigsson, J.F. Reduced Incidence of Parkinson’s Disease after Dipeptidyl Peptidase-4 Inhibitors—A Nationwide Case-Control Study. Mov. Disord. 2016, 31, 1422–1423. [Google Scholar] [CrossRef]
- Al-Badri, G.; Leggio, G.M.; Musumeci, G.; Marzagalli, R.; Drago, F.; Castorina, A. Tackling Dipeptidyl Peptidase IV in Neurological Disorders. Neural Regen. Res. 2018, 13, 26–34. [Google Scholar] [CrossRef]
- Trallero, N.; Anunciación-Llunell, A.; Prades, R.; Tarragó, T. The Role of Prolyl Oligopeptidase in Microtubule-Associated Processes and Cognitive Impairment. Int. J. Brain Disord. Treat. 2019, 5, 5–29. [Google Scholar] [CrossRef]
- García-Horsman, J.A. The Role of Prolyl Oligopeptidase, Understanding the Puzzle. Ann. Transl. Med. 2020, 8, 983. [Google Scholar] [CrossRef]
- Bernstein, H.G.; Dobrowolny, H.; Keilhoff, G.; Steiner, J. Dipeptidyl Peptidase IV, Which Probably Plays Important Roles in Alzheimer Disease (AD) Pathology, Is Upregulated in AD Brain Neurons and Associates with Amyloid Plaques. Neurochem. Int. 2018, 114, 55–57. [Google Scholar] [CrossRef]
- Shao, S.; Xu, Q.Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl Peptidase 4 Inhibitors and Their Potential Immune Modulatory Functions. Pharmacol. Ther. 2020, 209, 107503. [Google Scholar] [CrossRef]
- Yamin, R.; Zhao, C.; O’Connor, P.B.; McKee, A.C.; Abraham, C.R. Acyl Peptide Hydrolase Degrades Monomeric and Oligomeric Amyloid-Beta Peptide. Mol. Neurodegener. 2009, 4, 33. [Google Scholar] [CrossRef]
- Ajiboye, T.O. Oxidative Insults of 2, 2-Dichlorovinyl-Dimethyl Phosphate (DDVP), an Organophosphate Insecticide in Rats Brain. Fountain J. Nat. Appl. Sci. 2012, 1, 1–8. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, R. Dichlorvos and Lindane Induced Oxidative Stress in Rat Brain: Protective Effects of Ginger. Pharmacogn. Res. 2012, 4, 27–32. [Google Scholar] [CrossRef]
- Ochigbo, G.O.; Saba, A.B.; Oyagbemi, A.A.; Omobowale, T.O.; Asenuga, E.R. Polyphenol-Rich Fraction of Parquetina Nigrescens Mitigates Dichlorvos-Induced Neurotoxicity and Apoptosis. J. Ayurveda. Integr. Med. 2017, 8, 27–36. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Klebanoff, S.J.; Kettle, A.J.; Rosen, H.; Winterbourn, C.C.; Nauseef, W.M. Myeloperoxidase: A Front-Line Defender against Phagocytosed Microorganisms. J. Leukoc. Biol. 2013, 93, 185–198. [Google Scholar] [CrossRef]
- Mishra, A.; Bandopadhyay, R.; Singh, P.K.; Mishra, P.S.; Sharma, N.; Khurana, N. Neuroinflammation in Neurological Disorders: Pharmacotherapeutic Targets from Bench to Bedside; Springer: Berlin/Heidelberg, Germany, 2021; Volume 36, ISBN 0123456789. [Google Scholar]
- Perry, S.W.; Dewhurst, S.; Bellizzi, M.J.; Gelbard, H.A. Tumor Necrosis Factor-Alpha in Normal and Diseased Brain: Conflicting Effects via Intraneuronal Receptor Crosstalk? J. Neurovirol. 2002, 8, 611–624. [Google Scholar] [CrossRef]
- Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The Role of Interleukin-6 Signaling in Nervous Tissue. Biochim. Biophys. Acta-Mol. Cell Res. 2016, 1863, 1218–1227. [Google Scholar] [CrossRef]
- Picón-Pagès, P.; Garcia-Buendia, J.; Muñoz, F.J. Functions and Dysfunctions of Nitric Oxide in Brain. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1949–1967. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Du, Q.; Shen, J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front. Physiol. 2020, 11, 433. [Google Scholar] [CrossRef]
Treatment Dose/Grouping | Cognitive Deficits | Locomotor Impairment | ||
---|---|---|---|---|
Correct Alternations (%) a | Discrimination Index a | Spontaneous Motor Activity (Horizontal Beam Breaks/5 min) a | Discrimination Index (Vertical Beam Breaks/5 min) a | |
Control (2 mL of sunflower oil) | 82.56 ± 2.11 | 77.34 ± 1.30 | 622.06 ± 10.30 | 50.77 ± 1.30 |
DDVP (8.8 mg/kg) + Sunflower oil | 44.67 ± 1.12 † | 40.56 ± 0.30 † | 301.78 ± 10.23 † | 26.77 ± 1.22 † |
Q3G-RF (100 mg/kg) | 93.78 ± 2.23 ‡ | 89.86 ± 2.10 ‡ | 631.98 ± 10.12 ‡ | 54.27 ± 2.30 ‡ |
DDVP (8.8 mg/kg) + Q3G-RF (50 mg/kg) | 67.78 ± 1.14 ‡‡ | 60.78 ± 1.90 ‡‡ | 568.00 ± 11.60 ‡ | 43.33 ± 1.33 ‡‡ |
DDVP (8.8 mg/kg) + Q3G-RF (100 mg/kg) | 78.89 ± 1.23 ‡ | 75.67 ± 1.99 ‡ | 599.98 ± 14.50 ‡ | 48.43 ± 1.80 ‡ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunro, O.B.; Salawu, A.O.; Alotaibi, S.S.; Albogami, S.M.; Batiha, G.E.-S.; Waard, M.D. Quercetin-3-O-β-D-Glucopyranoside-Rich Fraction from Spondias mombin Leaves Halted Responses from Oxidative Stress, Neuroinflammation, Apoptosis, and Lipid Peroxidation in the Brain of Dichlorvos-Treated Wistar Rats. Toxics 2022, 10, 477. https://doi.org/10.3390/toxics10080477
Ogunro OB, Salawu AO, Alotaibi SS, Albogami SM, Batiha GE-S, Waard MD. Quercetin-3-O-β-D-Glucopyranoside-Rich Fraction from Spondias mombin Leaves Halted Responses from Oxidative Stress, Neuroinflammation, Apoptosis, and Lipid Peroxidation in the Brain of Dichlorvos-Treated Wistar Rats. Toxics. 2022; 10(8):477. https://doi.org/10.3390/toxics10080477
Chicago/Turabian StyleOgunro, Olalekan Bukunmi, Akeem Oni Salawu, Saqer S. Alotaibi, Sarah M. Albogami, Gaber El-Saber Batiha, and Michel De Waard. 2022. "Quercetin-3-O-β-D-Glucopyranoside-Rich Fraction from Spondias mombin Leaves Halted Responses from Oxidative Stress, Neuroinflammation, Apoptosis, and Lipid Peroxidation in the Brain of Dichlorvos-Treated Wistar Rats" Toxics 10, no. 8: 477. https://doi.org/10.3390/toxics10080477
APA StyleOgunro, O. B., Salawu, A. O., Alotaibi, S. S., Albogami, S. M., Batiha, G. E. -S., & Waard, M. D. (2022). Quercetin-3-O-β-D-Glucopyranoside-Rich Fraction from Spondias mombin Leaves Halted Responses from Oxidative Stress, Neuroinflammation, Apoptosis, and Lipid Peroxidation in the Brain of Dichlorvos-Treated Wistar Rats. Toxics, 10(8), 477. https://doi.org/10.3390/toxics10080477