Physico-Chemical and Ecotoxicological Evaluation of Marine Sediments Contamination: A Case Study of Rovinj Coastal Area, NE Adriatic Sea, Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment Sampling
2.2. Sediment Grain Size Analysis
2.3. Analyses of Contaminant Concentrations
2.3.1. PAHs
2.3.2. PCBs
2.3.3. Metals’ Concentrations
2.3.4. Evaluation of Sediment Contamination Based on French Sediment Quality Guidelines
2.3.5. Probability of Toxic Effects
2.3.6. Phytotoxicity Assay
2.4. Statistical Analysis
3. Results and Discussion
3.1. Sediment Grain Size
3.2. PAHs
3.3. Concentration of Metals
3.4. PCBs
3.5. Sediment Quality Evaluation
3.6. Phytotoxicity
3.7. Probability of Toxic Effects
3.8. National Sediment Quality Guidelines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mamindy-Pajany, Y.; Hamer, B.; Roméo, M.; Geret, F.; Galgani, F.; Durmiši, E.; Hurel, C.; Marmier, N. The Toxicity of Composted Sediments from Mediterranean Ports Evaluated by Several Bioassays. Chemosphere 2011, 82, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Onorati, F.; Mugnai, C.; Pulcini, M.; Gabellini, M. A Framework for the Integrated Assessment and Management of Dredged Materials in Italy: A Case Study Based on the Application of Local Sediment Quality Guidelines. J. Soils Sediments 2013, 13, 474–487. [Google Scholar] [CrossRef]
- Duran, R.; Bielen, A.; Paradžik, T.; Gassie, C.; Pustijanac, E.; Cagnon, C.; Hamer, B.; Vujaklija, D. Exploring Actinobacteria Assemblages in Coastal Marine Sediments under Contrasted Human Influences in the West Istria Sea, Croatia. Environ. Sci. Pollut. Res. 2015, 22, 15215–15229. [Google Scholar] [CrossRef]
- Mandić, J.; Pavela Vrančić, M. Concentrations and Origin of Polycyclic Aromatic Hydrocarbons in Sediments of the Middle Adriatic Sea. Acta Adriat. 2017, 58, 3–24. [Google Scholar] [CrossRef]
- Obhođaš, J.; Valković, V. Contamination of the Coastal Sea Sediments by Heavy Metals. Appl. Radiat. Isot. 2010, 68, 807–811. [Google Scholar] [CrossRef]
- NN 153/2014; Odluka o Donošenju Akcijskog Programa Strategije Upravljanja Morskim Okolišem i Obalnim Područjem: Sustav Praćenja i Promatranja Za Stalnu Procjenu Stanja Jadranskog Mora. Government of Croatia: Zagreb, Croatia, 2014.
- NN 28/2021; Odluka o Donošenju Akcijskog Programa Strategije Upravljanja Morskim Okolišem i Obalnim Područjem: Sustav Praćenja i Promatranja Za Stalnu Procjenu Stanja Jadranskog Mora (2021–2026). Government of Croatia: Zagreb, Croatia, 2021.
- Berto, D.; Formalewicz, M.; Giorgi, G.; Rampazzo, F.; Gion, C.; Trabucco, B.; Giani, M.; Lipizer, M.; Matijevic, S.; Kaberi, H.; et al. Challenges in Harmonized Assessment of Heavy Metals in the Adriatic and Ionian Seas. Front. Mar. Sci. 2020, 7, 717. [Google Scholar] [CrossRef]
- Berto, D.; Formalewicz, M.; Giorgi, G.; Manfra, L.; Lipizer, M.; Molina Jack, M.-E.; Giani, M.; Kralj, M.; Matijevic, S.; Ivankovic, D.; et al. HarmoNIA Methodological Proposal for Harmonizing Monitoring of Marine Contaminants and Sharing Data Quality Control Procedures; OGS: Sgonico, Italy, 2020; p. 40, 10.3 Mb. [Google Scholar] [CrossRef]
- Molina Jack, M.E.; Bakiu, R.; Castelli, A.; Čermelj, B.; Fafanđel, M.; Georgopoulou, C.; Giorgi, G.; Iona, A.; Ivankovic, D.; Kralj, M.; et al. Heavy Metals in the Adriatic-Ionian Seas: A Case Study to Illustrate the Challenges in Data Management When Dealing With Regional Datasets. Front. Mar. Sci. 2020, 7, 571365. [Google Scholar] [CrossRef]
- Chapman, P.M.; Hollert, H. Should the Sediment Quality Triad Become a Tetrad, a Pentad, or Possibly Even a Hexad? J. Soils Sediments 2006, 6, 4–8. [Google Scholar] [CrossRef]
- Dagnino, A.; Sforzini, S.; Dondero, F.; Fenoglio, S.; Bona, E.; Jensen, J.; Viarengo, A. A “Weight-of-Evidence” Approach for the Integration of Environmental “Triad” Data to Assess Ecological Risk and Biological Vulnerability. Integr. Environ. Assess. Manag. 2008, 4, 314–326. [Google Scholar] [CrossRef]
- Benedetti, M.; Ciaprini, F.; Piva, F.; Onorati, F.; Fattorini, D.; Notti, A.; Ausili, A.; Regoli, F. A Multidisciplinary Weight of Evidence Approach for Classifying Polluted Sediments: Integrating Sediment Chemistry, Bioavailability, Biomarkers Responses and Bioassays. Environ. Int. 2012, 38, 17–28. [Google Scholar] [CrossRef]
- Carere, M.; Depropris, L.; Funari, E.; Musmeci, L.; Onorati, F. Assessment and Management of Contaminated Sediments in Italian Marine Coastal Waters. Ann. Ist. Super. Sanita 2008, 44, 239–243. [Google Scholar] [PubMed]
- Long, E.R. Calculation and Uses of Mean Sediment Quality Guideline Quotients: A Critical Review. Environ. Sci. Technol. 2006, 40, 1726–1736. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Predicting Toxicity to Amphipods from Sediment Chemistry; US EPA, Office of Emergency and Remedial Response: Washington, DC, USA, 2005.
- Liao, J.; Cui, X.; Feng, H.; Yan, S. Environmental Background Values and Ecological Risk Assessment of Heavy Metals in Watershed Sediments: A Comparison of Assessment Methods. Water 2021, 14, 51. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manage. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Italian Ministry of Environment Decree (173/2016) Sediment Management. Official Gazette, 5 December 2016; Volume 173/2016.
- Pane, L.; Giacco, E.; Corrà, C.; Greco, G.; Mariottini, G.L.; Varisco, F.; Faimali, M. Ecotoxicological Evaluation of Harbour Sediments Using Marine Organisms from Different Trophic Levels. J. Soils Sediments 2008, 8, 74–79. [Google Scholar] [CrossRef]
- Onorati, F.; Pellegrini, D.; Mugnai, C. Sediment Quality Classification Based on Weight of Evidence Approach in the Recent Italian Regulation. In Proceedings of the 10th International SedNet Conference, Genova, Italy, 14–17 June 2017; SedNet: Dubrovnik, Croatia, 2017; Volume 19. [Google Scholar]
- Piva, F.; Ciaprini, F.; Onorati, F.; Benedetti, M.; Fattorini, D.; Ausili, A.; Regoli, F. Assessing Sediment Hazard through a Weight of Evidence Approach with Bioindicator Organisms: A Practical Model to Elaborate Data from Sediment Chemistry, Bioavailability, Biomarkers and Ecotoxicological Bioassays. Chemosphere 2011, 83, 475–485. [Google Scholar] [CrossRef]
- Avio, C.G.; Cardelli, L.R.; Gorbi, S.; Pellegrini, D.; Regoli, F. Microplastics Pollution after the Removal of the Costa Concordia Wreck: First Evidences from a Biomonitoring Case Study. Environ. Pollut. 2017, 227, 207–214. [Google Scholar] [CrossRef]
- Chapman, P. The Sediment Quality Triad Approach to Determining Pollution-Induced Degradation. Sci. Total Environ. 1990, 97–98, 815–825. [Google Scholar] [CrossRef]
- Hamer, B.; Pelikan, J.; Maurić, M.; Pavičić-Hamer, D.; Pustijanac, E.; Traven, L.; Duran, R.; Vujaklija, D.; Reifferscheid, G. Physico-Chemical and Ecotoxicological Evaluation of the Rovinj Coastal Area Sediments, NE Adriatic Sea, Croatia. In Proceedings of the Sediment as a Dynamic Natural Resource from Catchment to Open Sea, Dubrovnik, Croatia, 4 April 2019; SedNet: Dubrovnik, Croatia, 2019. [Google Scholar]
- Röper, H.; Netzband, A. Assessment Criteria for Dredged Material with Special Focus on the North Sea Region; Hamburg Port Authority: Hamburg, Germany, 2011; pp. 1–36. [Google Scholar]
- Alzieu, C.; Quiniou, F. Géodrisk—La démarche d’analyse des risques liés à l’immersion des boues de dragage des ports maritimes. In CD-ROM Geodrisk «Logiciel D’évaluation des Risques Liés à L’immersion des Déblais de Dragages des Ports Maritimes»; Coord, C.A., Ed.; Ifremer: Juin, France, 2001. [Google Scholar]
- Perrodin, Y.; Babut, M.; Bedell, J.-P.; Bray, M.; Clement, B.; Delolme, C.; Devaux, A.; Durrieu, C.; Garric, J.; Montuelle, B. Assessment of Ecotoxicological Risks Related to Depositing Dredged Materials from Canals in Northern France on Soil. Environ. Int. 2006, 32, 804–814. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Folk, R.L. The Distinction between Grain Size and Mineral Composition in Sedimentary-Rock Nomenclature. J. Geol. 1954, 62, 344–359. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River Bar: A Study in the Significance of Grain Size Parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Alebic-Juretic, A. Polycyclic Aromatic Hydrocarbons in Marine Sediments from the Rijeka Bay Area, Northern Adriatic, Croatia, 1998–2006. Mar. Pollut. Bull. 2011, 62, 863–869. [Google Scholar] [CrossRef]
- Linsak, Z.; Tomic Linsak, D.; Glad, M.; Cenov, A.; Coklo, M.; Coklo, M.; Manestar, D.; Micovic, V. Ecotoxicological Characterization of Marine Sediment in Kostrena Coastal Area. Coll. Antropol. 2012, 36, 1401–1405. [Google Scholar]
- Field, L.J.; MacDonald, D.D.; Norton, S.B.; Ingersoll, C.G.; Severn, C.G.; Smorong, D.; Lindskoog, R. Predicting Amphipod Toxicity from Sediment Chemistry Using Logistic Regression Models. Environ. Toxicol. Chem. 2002, 21, 1993–2005. [Google Scholar] [CrossRef]
- XP X31-210. Available online: https://www.boutique.afnor.org/fr-fr/norme/xp-x31210/dechets-essai-de-lixiviation/fa047674/61472 (accessed on 5 May 2022).
- Fütterer, D.; Paul, J. Recent and Pleistocene Sediments off the Istrian Coast (Northern Adriatic, Yugoslavia). Senckenberg. Maritima 1976, 8, 1–21. [Google Scholar]
- Vdović, N.; Juračić, M. Sedimentological and Surface Characteristics of Hte Northern and Central Adriatic Sediments. Geol. Croat. 1993, 46, 157–163. [Google Scholar]
- Pikelj, K.; Žigić, V.; Juračić, M. Origin and Distribution of Surface Sediments in the Grgur Channel, Adriatic Sea, Croatia. Geol. Croat. 2009, 69, 95–105. [Google Scholar] [CrossRef]
- Pikelj, K. Composition and Origin of Seabed Sediments of the Eastern Part of the Adriatic Sea (in Croatian). Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 29 June 2010. [Google Scholar]
- Pikelj, K.; Jakšić, L.; Aščić, Š.; Juračić, M. Characterization of the Fine-Grained Fraction in the Surface Sediment of the Eastern Adriatic Channel Areas. Acta Adriat. 2016, 57, 195–208. [Google Scholar]
- Najdek, M.; Travizzi, A.; Bogner, D.; Blazina, M. Low Impact of Marine Fish Farming on Sediment and Meiofauna in Limski Channel (Northern Adriatic, Croatia). Fresenius Environ. Bull. 2007, 16, 784–791. [Google Scholar]
- Martinčić, D.; Kwokal, Ž.; Branica, M. Distribution of Zinc, Lead, Cadmium and Copper between Different Size Fractions of Sediments I. The Limski Kanal (North Adriatic Sea). Sci. Total Environ. 1990, 95, 201–215. [Google Scholar] [CrossRef]
- Bihari, N.; Fafand¯el, M.; Hamer, B.; Kralj-Bilen, B. PAH Content, Toxicity and Genotoxicity of Coastal Marine Sediments from the Rovinj Area, Northern Adriatic, Croatia. Sci. Total Environ. 2006, 366, 602–611. [Google Scholar] [CrossRef]
- Magi, E.; Bianco, R.; Ianni, C.; Di Carro, M. Distribution of Polycyclic Aromatic Hydrocarbons in the Sediments of the Adriatic Sea. Environ. Pollut. 2002, 119, 91–98. [Google Scholar] [CrossRef]
- Vane, C.H.; Kim, A.W.; Emmings, J.F.; Turner, G.H.; Moss-Hayes, V.; Lort, J.A.; Williams, P.J. Grain Size and Organic Carbon Controls Polyaromatic Hydrocarbons (PAH), Mercury (Hg) and Toxicity of Surface Sediments in the River Conwy Estuary, Wales, UK. Mar. Pollut. Bull. 2020, 158, 111412. [Google Scholar] [CrossRef]
- Bajt, O. Polycyclic Aromatic Hydrocarbons in Sediments of the Gulf of Trieste (Northern Adriatic) Distribution, Origin and Temporal Trends. Front. Mar. Sci. 2022, 9, 946618. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Zhang, X.L.; Tao, S.; Liu, W.X.; Yang, Y.; Zuo, Q.; Liu, S.Z. Source Diagnostics of Polycyclic Aromatic Hydrocarbons Based on Species Ratios: A Multimedia Approach. Environ. Sci. Technol. 2005, 39, 9109–9114. [Google Scholar] [CrossRef]
- Kim, D.; Kumfer, B.M.; Anastasio, C.; Kennedy, I.M.; Young, T.M. Environmental Aging of Polycyclic Aromatic Hydrocarbons on Soot and Its Effect on Source Identification. Chemosphere 2009, 76, 1075–1081. [Google Scholar] [CrossRef]
- Hwang, H.-M.; Wade, T.L.; Sericano, J.L. Concentrations and Source Characterization of Polycyclic Aromatic Hydrocarbons in Pine Needles from Korea, Mexico, and United States. Atmos. Environ. 2003, 37, 2259–2267. [Google Scholar] [CrossRef]
- Fadzil, M.F.; Naim, K.D.; Tahir, N.M.; Mohd, W.; Wan, K.; Zin, M. Concentration and Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in the Town of Kota Bharu. Malays. J. Anal. Sci. 2008, 12, 609–618. [Google Scholar]
- Kumar, B.; Tyagi, J.; Verma, V.; Gaur, R.; Sharma, C. Concentrations, Source Identification and Health Risk of Selected Priority Polycyclic Aromatic Hydrocarbons in Residential Street Soils. Adv. Appl. Sci. Res. 2014, 5, 130–139. [Google Scholar]
- Notar, M.; Leskovšek, H.; Faganeli, J. Composition, Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Sediments of the Gulf of Trieste, Northern Adriatic Sea. Mar. Pollut. Bull. 2001, 42, 36–44. [Google Scholar] [CrossRef]
- Frignani, M.; Bellucci, L.G.; Favotto, M.; Albertazzi, S. Polycyclic Aromatic Hydrocarbons in Sediments of the Venice Lagoon. Hydrobiologia 2003, 494, 283–290. [Google Scholar] [CrossRef]
- Bihari, N.; Fafanđel, M.; Piškur, V. Polycyclic Aromatic Hydrocarbons and Ecotoxicological Characterization of Seawater, Sediment, and Mussel Mytilus Galloprovincialis from the Gulf of Rijeka, the Adriatic Sea, Croatia. Arch. Environ. Contam. Toxicol. 2007, 52, 379–387. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Buccolieri, A.; Giandomenico, S.; Lopez, L.; Pizzulli, F.; Spada, L. Organic Pollutants (PAHs, PCBs) in Sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 2007, 55, 451–458. [Google Scholar] [CrossRef]
- Traven, L. Sources, Trends and Ecotoxicological Risks of PAH Pollution in Surface Sediments from the Northern Adriatic Sea (Croatia). Mar. Pollut. Bull. 2013, 77, 445–450. [Google Scholar] [CrossRef]
- Traven, L.; Žaja, R.; Lončar, J.; Smital, T.; Mićović, V. CYP1A Induction Potential and the Concentration of Priority Pollutants in Marine Sediment Samples—In Vitro Evaluation Using the PLHC-1 Fish Hepatoma Cell Line. Toxicol. Vitro 2008, 22, 1648–1656. [Google Scholar] [CrossRef]
- Hamer, B. Stress Proteins HSP70 in Blue Mussel Mytilus Galloprovincialis Lamarck, 1819 as Biomarkers of Sea Pollution. Ph.D Thesis, University of Zagreb, Zagreb, Croatia, 5 December 2002. [Google Scholar]
- Duran, R.; Cravo-Laureau, C. Role of Environmental Factors and Microorganisms in Determining the Fate of Polycyclic Aromatic Hydrocarbons in the Marine Environment. FEMS Microbiol. Rev. 2016, 40, 814–830. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and Evaluation of Sediment Quality Guidelines for Florida Coastal Waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef]
- Institut za oceanografiju i ribarstvo. Projekt Jadran: Godišnji Izvještaj Za 2004. Godinu; Institute for Oceanography and Fishery: Split, Croatia, 2005. [Google Scholar]
- Martinčič, D.; Kwokal, Ž.; Stoeppler, M.; Branica, M. Trace Metals in Sediments from the Adriatic Sea. Sci. Total Environ. 1989, 84, 135–147. [Google Scholar] [CrossRef]
- Bogner, D.; Ujevic, I. Barić Trace Metal (Cd, Pb, Cu, Zn and Cr) Distribution in Sediments along East Coast of the Adriatic Sea (Croatia). Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/454557 (accessed on 5 May 2022).
- Ujević, I.; Bogner, D.; Zvonarić, T.; Baric, A. Trace Metal Distribution in Coastal Sediment from the Adriatic Sea. Fresenius Environ. Bull. 1998, 7, 701–708. [Google Scholar]
- Mikac, N.; Roje, V.; Cukrov, N.; Foucher, D. Mercury in Aquatic Sediments and Soils from Croatia. Arh. Hig. Rada Toksikol. 2006, 57, 325–332. [Google Scholar]
- Ferrara, R.; Maserti, B.E. Mercury Concentration in the Water, Particulate Matter, Plankton and Sediment of the Adriatic Sea. Mar. Chem. 1992, 38, 237–249. [Google Scholar] [CrossRef]
- United Nationes Environment Program (UNEP). Assessment of the State of Pollution of the Mediterranean Sea by Zinc, Copper and Their Compounds and Proposed Measures; MAP Technical Report Series; MAP: Athens, Greece, 1996; p. 288. [Google Scholar]
- UNEP; FAO; WHO. Assessment of the State of Pollution of the Mediterranean Sea by Cadmium and Cadmium Compounds; MAP Technical Report Series; MAP: Athens, Greece, 1989; p. 175. [Google Scholar]
- UNEP, M. Monitoring Programme of the Eastern Adriatic Coastal Area; Technical Report Series No. 86; UNEP: Athens, Greece, 1994; pp. 135–142. [Google Scholar]
- United Nations Environment Program (UNEP). The State of the Marine and Coastal Environment in the Mediterranean Region; MAP Technical Report Series; UNEP: Athens, Greece, 1996; p. 142. [Google Scholar]
- Obhođaš, J.; Kutle, A.; Valković, V. Concentrations of Some Elements in the Coastal Sea Sediments: Bays with Marinas. J. Radioanal. Nucl. Chem. 2006, 270, 75–85. [Google Scholar] [CrossRef]
- Valković, V.; Obhođaš, J.; Črnjar, M. Concentration of Some Elements in the Adriatic Coastal Sea Sediments. Case Study: The Kvarner Bay. X-ray Spectrom. 2007, 36, 11–19. [Google Scholar] [CrossRef]
- Orešcanin, V.; Nad, K.; Valkovic, V.; Mikulic, N.; Meštrovic, O. Red Mud and Waste Base: Raw Materials for Coagulant Production. J. Trace Microprobe Tech. 2001, 19, 419–428. [Google Scholar] [CrossRef]
- Fowler, S.; Hamilton, T.; Coquery, M.; Villeneuve, J.; Horvat, P. Concentration of Selected Trace Elements and PCBs in Sediments from the Adriatic Sea. In The Adriatic Sea; Hopkins, T.S., Artegiani, A., Cauwet, G., Degobbis, D., Malej, A., Eds.; Lawrence Livermore National Lab.(LLNL): Livermore, CA, USA; European Commission (Preprint UCRL-JC-140907): Luxemburg, 2000; p. 19. [Google Scholar]
- Caricchia, A.M.; Chiavarini, S.; Cremisini, C.; Martini, F.; Morabito, R. PAHs, PCBs, and DDE in the Northern Adriatic Sea. Mar. Pollut. Bull. 1993, 26, 581–583. [Google Scholar] [CrossRef]
- Picer, M.; Picer, N. Long-Term Trends of DDTs and PCBs in Sediment Samples Collected from the Eastern Adriatic Coastal Waters. Bull. Environ. Contam. Toxicol. 1991, 47, 864–873. [Google Scholar] [CrossRef]
- Picer, M. DDTs and PCBs in the Adriatic Sea. Croat. Chem. Acta 2000, 73, 123–186. [Google Scholar]
- Albaigés, J. Persistent Organic Pollutants in the Mediterranean Sea. In The Mediterranean Sea; Saliot, A., Ed.; Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2005; pp. 89–149. ISBN 978-3-540-31492-9. [Google Scholar]
- Combi, T.; Miserocchi, S.; Langone, L.; Guerra, R. Polychlorinated Biphenyls (PCBs) in Sediments from the Western Adriatic Sea: Sources, Historical Trends and Inventories. Sci. Total Environ. 2016, 562, 580–587. [Google Scholar] [CrossRef]
- Piérard, C.; Budzinski, H.; Garrigues, P. Grain-Size Distribution of Polychlorobiphenyls in Coastal Sediments. Environ. Sci. Technol. 1996, 30, 2776–2783. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, B.; Qin, Y.; Jiao, L.; Zhang, L. Grain Size Effect on PBDE and PCB Concentrations in Sediments from the Intertidal Zone of Bohai Bay, China. Chemosphere 2010, 81, 1022–1026. [Google Scholar] [CrossRef]
- Mandalakis, M.; Polymenakou, P.N.; Tselepides, A.; Lampadariou, N. Distribution of Aliphatic Hydrocarbons, Polycyclic Aromatic Hydrocarbons and Organochlorinated Pollutants in Deep-Sea Sediments of the Southern Cretan Margin, Eastern Mediterranean Sea: A Baseline Assessment. Chemosphere 2014, 106, 28–35. [Google Scholar] [CrossRef]
- Eljarrat, E.; De La Cal, A.; Larrazabal, D.; Fabrellas, B.; Fernandez-Alba, A.R.; Borrull, F.; Marce, R.M.; Barcelo, D. Occurrence of Polybrominated Diphenylethers, Polychlorinated Dibenzo-p-Dioxins, Dibenzofurans and Biphenyls in Coastal Sediments from Spain. Environ. Pollut. 2005, 136, 493–501. [Google Scholar] [CrossRef]
- Solé, M.; Manzanera, M.; Bartolomé, A.; Tort, L.; Caixach, J. Persistent Organic Pollutants (POPs) in Sediments from Fishing Grounds in the NW Mediterranean: Ecotoxicological Implications for the Benthic Fish Solea Sp. Mar. Pollut. Bull. 2013, 67, 158–165. [Google Scholar] [CrossRef]
- De Lazzari, A.; Rampazzo, G.; Pavoni, B. Geochemistry of Sediments in the Northern and Central Adriatic Sea. Estuar. Coast. Shelf Sci. 2004, 59, 429–440. [Google Scholar] [CrossRef]
- Yang, S.; Yang, Q.; Song, X.; Liu, S.; Qu, K.; Sun, Y. A Novel Approach to Evaluate Potential Risk of Organic Enrichment in Marine Aquaculture Farms: A Case Study in Sanggou Bay. Environ. Sci. Pollut. Res. 2018, 25, 16842–16851. [Google Scholar] [CrossRef]
- Li, R.; Liu, S.; Zhang, J.; Jiang, Z.; Fang, J. Sources and Export of Nutrients Associated with Integrated Multi-Trophic Aquaculture in Sanggou Bay, China. Aquac. Environ. Interact. 2016, 8, 285–309. [Google Scholar] [CrossRef]
- Sobek, A.; Sundqvist, K.L.; Assefa, A.T.; Wiberg, K. Baltic Sea Sediment Records: Unlikely near-Future Declines in PCBs and HCB. Sci. Total Environ. 2015, 518–519, 8–15. [Google Scholar] [CrossRef]
- Ben Salem, F.; Ben Said, O.; Mahmoudi, E.; Duran, R.; Monperrus, M. Distribution of Organic Contamination of Sediments from Ichkeul Lake and Bizerte Lagoon, Tunisia. Mar. Pollut. Bull. 2017, 123, 329–338. [Google Scholar] [CrossRef]
- Perugini, M.; Giammarino, A.; Olivieri, V.; Di Nardo, W.; Amorena, M. Assessment of Edible Marine Species in the Adriatic Sea for Contamination from Polychlorinated Biphenyls and Organochlorine Insecticides. J. Food Prot. 2006, 69, 1144–1149. [Google Scholar] [CrossRef]
- Adam, G.; Duncan, H. Influence of Diesel Fuel on Seed Germination. Environ. Pollut. 2002, 120, 363–370. [Google Scholar] [CrossRef]
- NN 77/1998; Uredba o Klasifikaciji Voda. Government of Croatia: Zagreb, Croatia, 1998.
- NN 137/2008; Uredba o Izmjenama i Dopunama Uredbe o Klasifikaciji Voda. Government of Croatia: Zagreb, Croatia, 2008.
- Law, No. 2006-1772 of 30 December 2006 on Water and Aquatic Environments; Government of France: Paris, France, 2006.
- Bakke, T.; Källqvist, T.; Ruus, A.; Breedveld, G.D.; Hylland, K. Development of Sediment Quality Criteria in Norway. J. Soils Sediments 2010, 10, 172–178. [Google Scholar] [CrossRef]
- Herut, B.; Sandler, A. Normalization Methods for Pollutants in Marine Sediments: Review and Recommendations for the Mediterranean; Israel Oceanographic & Limnological Research 2; Geological Survey of Israel: Haifa, Israel, 2006; p. 23. [Google Scholar]
- Terzic, S.; Ahel, M. Organic Contaminants in Croatian Municipal Wastewaters. Arh. Hig. Rada Toksikol. 2006, 57, 297–306. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Union: Luxembourg, 2000; Volume 327. [Google Scholar]
- Crane, M. Proposed Development of Sediment Quality Guidelines under the European Water Framework Directive: A Critique. Toxicol. Lett. 2003, 142, 195–206. [Google Scholar] [CrossRef]
- Förstner, U.; Heise, S. Assessing and Managing Contaminated Sediments: Requirements on Data Quality—From Molecular to River Basin Scale. Croat. Chem. Acta 2006, 79, 5–14. [Google Scholar]
- Heise, S.; Babut, M.; Casado, C.; Feiler, U.; Ferrari, B.J.D.; Marziali, L. Ecotoxicological Testing of Sediments and Dredged Material: An Overlooked Opportunity? J. Soils Sediments 2020, 20, 4218–4228. [Google Scholar] [CrossRef]
- Europaen Commission. Consolidated Text: Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive) (Text with EEA Relevance); European Union: Luxembourg, 2017. [Google Scholar]
- OSPAR Commission Convention for the Protection of the Marine Environment of the North-East Atlantic. Available online: https://www.ospar.org/convention (accessed on 26 May 2022).
- International Maritime Organisation The London Protocol—What It Is and Why It Is Needed: 1996–2016. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/London%20Protocol%20Why%20it%20is%20needed%2020%20years.pdf (accessed on 26 May 2022).
- Bergesen, H.O.; Parmann, G.; Thommessen, Ø.B. (Eds.) Convention on the Protection and Use of Transboundary Watercourses and International Lakes. In Yearbook of International Cooperation on Environment and Development 1998–1999; Routledge: London, UK, 2018; pp. 176–177. ISBN 978-1-315-06654-7. [Google Scholar]
- Brils, J. Sediment Monitoring and the European Water Framework Directive. Ann. Ist. Super. Sanita 2008, 44, 218–223. [Google Scholar]
PAHs | Sampling Sites | ERL | ERM | |||||
---|---|---|---|---|---|---|---|---|
(µg/kg d.w.) | (Rings) | S1 | S2 | S3 | S4 | S5 | ||
Fluorene | 3 | 121.0 * | 73.5 * | 205.8 * | 0.2 | 0.7 | 19.0 | 540 |
Phenanthrene (Phe) | 3 | 976.9 * | 808.3 * | 773.3 * | 3.0 | 15.3 | 240 | 1500 |
Anthracene (Ant) | 3 | 196.7 * | 162.7 * | 156.7 * | 0.4 | 3.2 | 85 | 1100 |
Fluoranthene (Flt) | 4 | 3015.7 * | 2444.5 * | 1080.8 * | 6.7 | 23.7 | 600 | 5100 |
Pyrene (Pyr) | 4 | 1135.5 * | 1071.7 * | 668.5 * | 6.1 | 19.6 | 665 | 2600 |
Benzo(a)anthracene | 4 | 774.1 * | 729.7 * | 366.5 * | 1.3 | 4.4 | 261 | 1600 |
Chrysene | 4 | 707.6 * | 633.9 * | 290.0 | 2.6 | 12.7 | 384 | 2800 |
Benzo(b)fluoranthene | 5 | 1088.7 * | 1076.2 * | 406.3 * | 3.1 | 6.6 | 320 | 1880 |
Benzo(k)fluoranthene | 5 | 327.5 * | 331.0 * | 114.9 | 1.2 | 3.2 | 280 | 1620 |
Benzo(a)pyrene | 5 | 874.1 * | 865.3 * | 278.4 | 2.0 | 6.9 | 430 | 1600 |
Dibenzo(a,h)anthracene | 5 | 113.3 * | 121.1 * | 25.5 | 0.3 | 0.9 | 63 | 260 |
Benzo(g,h,i)perylene | 6 | 516.3 * | 673.6 * | 110.3 * | 0.9 | 3.2 | 85 | 1600 |
Indeno(1,2,3-c,d)pyrene | 6 | 761.9 * | 875.6 * | 78.9 | 0.5 | 2.4 | 240 | 950 |
∑PAHs | 10,609.2 * | 9867.1 * | 4555.9 * | 28.2 | 103.0 | 3672 | 23,150 | |
Ant/(Ant+Phe) | 3 | 0.17 | 0.17 | 0.17 | 0.12 | 0.17 | - | - |
Flt/(Flt + Pyr) | 4 | 0.73 | 0.70 | 0.62 | 0.52 | 0.55 | - | - |
Phe/Ant | 3 | 4.97 | 4.97 | 4.93 | 7.04 | 4.74 | - | - |
Flt/Pyr | 4 | 2.66 | 2.28 | 1.62 | 1.10 | 1.21 | - | - |
Parameters (Units) | Sampling Sites | N1 | N2 | ||||
---|---|---|---|---|---|---|---|
S1 Harbour | S2 Shipyard | S3 Lim Out | S4 Lim Middle | S5 Open Sea | Legal Level | Legal Level | |
As/(mg/kg d.w.) | 9.223 | 23.440 | 8.126 | 13.850 | 3.985 | 25 | 50 |
Cd/(mg/kg d.w.) | 0.265 | 0.092 | 0.083 | 0.091 | 0.073 | 1.2 | 2.4 |
Cu/(mg/kg d.w.) | 69.95 * | 30.590 | 13.770 | 18.450 | 4.770 | 45 | 90 |
Ni/(mg/kg d.w.) | 7.930 | 14.150 | 28.59 | 41.160 * | 8.490 | 37 | 74 |
Pb/(mg/kg d.w.) | 24.380 | 6.950 | 1.830 | 1.350 | 3.690 | 100 | 200 |
Zn/(mg/kg d.w.) | 115.60 | 50.66 | 71.75 | 88.000 | 31.870 | 276 | 552 |
Hg/(mg/kg d.w.) | 0.838 *,** | 0.266 | 0.129 | 0.138 | 0.038 | 0.4 | 0.8 |
Cr/(mg/kg d.w.) | 22.490 | 26.31 | 76.11 | 98.14 * | 22.390 | 90 | 180 |
ΣPAHs/(mg/kg d.w.) | 10.609 * | 9.867 * | 4.555 * | 0.028 | 0.103 | 1.5 | 15 |
ΣPCBs/(mg/kg d.w.) | 0.278 | 0.170 | 0.058 | 0.021 | <0.010 | 0.5 | 1.0 |
ΣQN1 | 12.99 | 10.20 | 6.07 | 3.98 | 1.12 | - | - |
QPECm | 1.30 | 1.02 | 0.61 | 0.40 | 0.11 | - | - |
Pavg | 0.81 | 0.73 | 0.62 | 0.24 | 0.18 | - | - |
Pmax | 0.51 | 0.48 | 0.47 | 0.35 | 0.15 | - | - |
Phytotoxicity (PI%) | 32.76 | 34.87 | 42.00 | 14.99 | 6.06 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelikan, J.; Majnarić, N.; Maurić Maljković, M.; Pikelj, K.; Hamer, B. Physico-Chemical and Ecotoxicological Evaluation of Marine Sediments Contamination: A Case Study of Rovinj Coastal Area, NE Adriatic Sea, Croatia. Toxics 2022, 10, 478. https://doi.org/10.3390/toxics10080478
Pelikan J, Majnarić N, Maurić Maljković M, Pikelj K, Hamer B. Physico-Chemical and Ecotoxicological Evaluation of Marine Sediments Contamination: A Case Study of Rovinj Coastal Area, NE Adriatic Sea, Croatia. Toxics. 2022; 10(8):478. https://doi.org/10.3390/toxics10080478
Chicago/Turabian StylePelikan, Jadranka, Nina Majnarić, Maja Maurić Maljković, Kristina Pikelj, and Bojan Hamer. 2022. "Physico-Chemical and Ecotoxicological Evaluation of Marine Sediments Contamination: A Case Study of Rovinj Coastal Area, NE Adriatic Sea, Croatia" Toxics 10, no. 8: 478. https://doi.org/10.3390/toxics10080478
APA StylePelikan, J., Majnarić, N., Maurić Maljković, M., Pikelj, K., & Hamer, B. (2022). Physico-Chemical and Ecotoxicological Evaluation of Marine Sediments Contamination: A Case Study of Rovinj Coastal Area, NE Adriatic Sea, Croatia. Toxics, 10(8), 478. https://doi.org/10.3390/toxics10080478