Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment
Abstract
:1. Introduction
2. Microorganisms Used in Bioremediation
2.1. Aerobic
2.2. Anaerobic
3. Factors Affecting Microbial Bioremediation
4. Principle of Bioremediation
5. Types of Bioremediations
5.1. Biopile
5.2. Windrows
5.3. Land Farming
5.4. Bioreactor
In Situ Bioremediation Techniques
- (a)
- Intrinsic in situ bioremediation:
- (b)
- Engineered in-situ bioremediation
5.5. Bioventing
5.6. Bioslurping
5.7. Biosparging
5.8. Phytoremediation
6. Bioremediation of Various Pollutants
6.1. Bioremediation for Organic Pollutants
6.2. Bioremediation for Inorganic Pollutants
7. Recent Advancement and Challenges in Bioremediation
7.1. Bioinformatics Approaches in Bioremediation
7.1.1. Bioremediation Tools Based on Omics
7.1.2. Genomics
7.1.3. Transcriptomics and Metatranscriptomics
7.1.4. Proteomics and Metabolomics
7.2. Bioremediation Using Nanotechnological Methods
7.2.1. Microbe and Nanotechnology
7.2.2. Engineered Polymeric Nanoparticles for Hydrophobic Contaminant Bioremediation
7.3. Genetic and Metabolic Engineering
7.4. Designing the Synthetic Microbial Communities
8. Advantages and Disadvantages
9. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masindi, V.; Osman, M.S.; Tekere, M. Mechanisms and Approaches for the Removal of Heavy Metals from Acid Mine Drainage and Other Industrial Effluents. In Water Pollution and Remediation: Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2021; pp. 513–537. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Rebello, S.; Sivaprasad, M.S.; Anoopkumar, A.N.; Jayakrishnan, L.; Aneesh, E.M. Cleaner technologies to combat heavy metal toxicity. J. Environ. Manag. 2021, 296, 113231. [Google Scholar] [CrossRef]
- Tripathi, M.; Singh, D.N.; Prasad, N.; Gaur, R. Advanced Bioremediation Strategies for Mitigation of Chromium and Organics Pollution in Tannery. In Rhizobiont in Bioremediation of Hazardous Waste; Kumar, V., Prasad, R., Kumar, M., Eds.; Springer: Singapore, 2021; pp. 195–215. [Google Scholar] [CrossRef]
- Tripathi, M.; Gaur, R. Bioactivity of soil microorganisms for agriculture development. In Microbes in Land Use Change Management; Singh, J.S., Tiwari, S., Singh, C., Singh, A.K., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2021; pp. 197–220. [Google Scholar] [CrossRef]
- Alaira, S.; Padilla, C.; Alcantara, E.; Aggangan, N. Social Acceptability of the Bioremediation Technology for the Rehabilita-tion of an Abandoned Mined-Out Area in Mogpog, Marinduque, Philippines. J. Environ. Sci. Manag. 2021, 24. [Google Scholar] [CrossRef]
- Krzmarzick, M.J.; Taylor, D.K.; Fu, X.; McCutchan, A.L. Diversity and niche of archaea in bioremediation. Archaea 2018, 2018, 3194108. [Google Scholar] [CrossRef] [PubMed]
- Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Singh, M.; Joshi, D. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. Environ. Sci. Pollut. Res. 2021, 28, 24917–24939. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Pandey, A.K.; Kim, S.H.; Singh, S.P.; Chaturvedi, P.; Varjani, S. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environ. Technol. Innov. 2021, 24, 101826. [Google Scholar] [CrossRef]
- Tripathi, M.; Vikram, S.; Jain, R.K.; Garg, S.K. Isolation and growth characteristics of chromium (VI) and penta-chlorophenol tolerant bacterial isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian J. Microbiol. 2011, 51, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.; Garg, S.K. Dechlorination of chloroorganics, decolorization and simultaneous bioremediation of Cr6+ from real tannery effluent employing indigenous Bacillus cereus isolate. Environ. Sci. Pollut. Res. 2014, 21, 5227–5241. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Rai, A.K.; Sharma, M.; Tripathi, M.; Prasad, R. Microbial biofilms: Recent advances and progress in envi-ronmental bioremediation. Sci. Total Environ. 2022, 824, 153843. [Google Scholar] [CrossRef]
- Soares, P.R.S.; Birolli, W.G.; Ferreira, I.M.; Porto, A.L.M. Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its poten-tial for methylation reactions of phenolic compounds. Mar. Pollut. Bull. 2021, 166, 112185. [Google Scholar] [CrossRef]
- Holanda, F.H.; Birolli, W.G.; Morais, E.D.S.; Sena, I.S.; Ferreira, A.M.; Faustino, S.M.M.; Solon, L.G.D.S.; Porto, A.L.; Ferreira, I.M. Study of biodegradation of chloramphenicol by endophytic fungi isolated from Bertholletia excelsa (Brazil nuts). Biocatal. Agric. Biotechnol. 2019, 20, 101200. [Google Scholar] [CrossRef]
- Ding, T.; Lin, K.; Yang, B.; Yang, M.; Li, J.; Li, W.; Gan, J. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour. Technol. 2017, 238, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, S.; Kushwaha, R. Bioremediation of hydrocarbons and xenobiotic compounds. In Bioremdiation: Challenges and Advancements; Tripathi, M., Singh, D.N., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2022; pp. 1–48. [Google Scholar] [CrossRef]
- Bhavya, G.; Belorkar, S.A.; Mythili, R.; Geetha, N.; Shetty, H.S.; Udikeri, S.S.; Jogaiah, S. Remediation of emerging environ-mental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials. Chemosphere 2021, 275, 129975. [Google Scholar] [CrossRef] [PubMed]
- Enerijiofi, K.E. Bioremediation of environmental contaminants: A sustainable alternative to environmental management. In Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 461–480. [Google Scholar] [CrossRef]
- Hussain, A.; Rehman, F.; Rafeeq, H.; Waqas, M.; Asghar, A.; Afsheen, N.; Rahdar, A.; Bilal, M.; Iqbal, H.M. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air—A review. Chemosphere 2022, 289, 133252. [Google Scholar] [CrossRef] [PubMed]
- Giri, B.S.; Geed, S.; Vikrant, K.; Lee, S.S.; Kim, K.H.; Kailasa, S.K.; Vithanage, M.; Chaturvedi, P.; Rai, B.N.; Singh, R.S. Progress in bioremediation of pesticide residues in the environment. Environ. Eng. Res. 2021, 26, 200446. [Google Scholar] [CrossRef]
- Tarekegn, M.M.; Salilih, F.Z.; Ishetu, A.I. Microbes used a tool for bioremediation of heavy metals from the environment. Cogent Food Agric. 2020, 6, 1783174. [Google Scholar] [CrossRef]
- Tegene, B.G.; Tenkegna, T.A. Mode of Action, Mechanism and Role of Microbes in Bioremediation Service for Environmental Pollution Management. J. Biotechnol. Bioinform. Res. 2020, 2, 1–18. [Google Scholar] [CrossRef]
- Garg, S.K.; Tripathi, M. Microbial strategies for discoloration and detoxification of azo dyes from textile effluents. Res. J. Microbiol. 2017, 12, 1–19. [Google Scholar] [CrossRef]
- Chen, B.Y.; Ma, C.M.; Han, K.; Yueh, P.L.; Qin, L.J.; Hsueh, C.C. Influence of textile dye and decolorized metabolites on mi-crobial fuel cell-assisted bioremediation. Bioresour. Technol. 2016, 200, 1033–1038. [Google Scholar] [CrossRef]
- Nannipieri, P.; Kandeler, E.; Ruggiero, P. Enzyme activities and microbiological and biochemical processes in soil. In Enzymes in the Environment; CRC Press: Boca Raton, FL, USA, 2002; pp. 1–33. [Google Scholar]
- Khalid, F.; Hashmi, M.Z.; Jamil, N.; Qadir, A.; Ali, M.I. Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: A review. Environ. Sci. Pollut. Res. 2021, 28, 10474–10487. [Google Scholar] [CrossRef]
- Garg, S.K.; Tripathi, M.; Srinath, T. Strategies for chromium bioremediation of tannery effluent. Rev. Environ. Contam. Toxicol. 2012, 217, 75–140. [Google Scholar] [CrossRef] [PubMed]
- Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Wassie, M. The role of microorganisms in bioremediation—A review. J. Environ. Biol. 2017, 2, 38–46. [Google Scholar] [CrossRef]
- Alvarez, A.; Saez, J.M.; Costa, J.S.D.; Colin, V.L.; Fuentes, M.S.; Cuozzo, S.A.; Benimeli, C.S.; Polti, M.A.; Amoroso, M.J. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017, 166, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Maier, R.M.; Gentry, T.J. Microorganisms and organic pollutants. In Environmental Microbiology; Academic Press: Cambridge, MA, USA, 2015; pp. 377–413. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Kumar, M.; Singh, D.K. Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies. J. Water Process. Eng. 2021, 39, 101858. [Google Scholar] [CrossRef]
- Mazumder, M.A.R.; Jubayer, M.F.; Ranganathan, T.V. Biodegradation of Plastics by Microorganisms. In Biotechnology for Zero Waste: Emerging Waste Management Techniques; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 123–141. [Google Scholar] [CrossRef]
- Jangir, C.K.; Kumar, S.; Meena, R.S. Significance of soil organic matter to soil quality and evaluation of sustainability. In Sustainable agriculture; Scientific Publisher: Jodhpur, India, 2019; pp. 357–381. [Google Scholar] [CrossRef]
- Kebede, G.; Tafese, T.; Abda, E.M.; Kamaraj, M.; Assefa, F. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. J. Chem. 2021, 2021, 9823362. [Google Scholar] [CrossRef]
- Mupambwa, H.A.; Mnkeni, P.N.S. Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: A review. Environ. Sci. Pollut. Res. 2018, 25, 10577–10595. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Wang, J. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste Manag. 2018, 72, 138–149. [Google Scholar] [CrossRef]
- Rajkumar, R.; Kurinjimalar, C. Microbes and plant mineral nutrition. In Microbiological Activity for Soil and Plant Health Management; Springer: Singapore, 2021; pp. 111–132. [Google Scholar] [CrossRef]
- Sangwan, S.; Dukare, A. Microbe-Mediated Bioremediation: An Eco-friendly Sustainable Approach for Environmental Clean-up. In Advances in Soil Microbiology: Recent Trends and Future Prospects; Springer Nature: Singapore, 2018; pp. 145–163. [Google Scholar] [CrossRef]
- Padhan, D.; Rout, P.P.; Kundu, R.; Adhikary, S.; Padhi, P.P. Bioremediation of heavy metals and other toxic substances by microorganisms. In Soil Bioremediation: An Approach Towards Sustainable Technology; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 285–329. [Google Scholar] [CrossRef]
- Boopathy, R. Factors limiting bioremediation technologies. Bioresour. Technol. 2000, 74, 63–67. [Google Scholar] [CrossRef]
- Malik, S.; Dhasmana, A.; Kishore, S.; Kumari, M. Microbes and Microbial Enzymes for Degradation of Pesticides. In Bioremediation and Phytoremediation Technologies in Sustainable Soil Management; Apple Academic Press: New York, NY, USA, 2022; pp. 95–127. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Das, S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 104686. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Ralph, P.J. Microalgal bioremediation of emerging contaminants-Opportunities and challenges. Water Res. 2019, 164, 114921. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Saxena, S.; Sutaria, D.; Sethi, J. Bioremediation: An ecofriendly approach for the treatment of oil spills. In Advances in Oil-Water Separation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 353–373. [Google Scholar] [CrossRef]
- Ojha, N.; Karn, R.; Abbas, S.; Bhugra, S. Bioremediation of Industrial Wastewater: A Review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Philadelphia, PA, USA, 2021; Volume 796, p. 012012. [Google Scholar] [CrossRef]
- Naeem, U.; Qazi, M.A. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ. Sci. Pollut. Res. 2020, 27, 27370–27382. [Google Scholar] [CrossRef] [PubMed]
- Jaain, R.; Patel, A. Bioremediation of Gurugram–Faridabad Dumpsite at Bandhwari. In Waste Valorisation and Recycling; Springer: Singapore, 2019; pp. 433–440. [Google Scholar] [CrossRef]
- Rayu, S.; Karpozas, D.G.; Singh, B.K. Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation 2012, 23, 917–926. [Google Scholar] [CrossRef]
- Yap, H.S.; Zakaria, N.N.; Zulkharnain, A.; Sabri, S.; Gomez-Fuentes, C.; Ahmad, S.A. Bibliometric analysis of hydrocarbon bioremediation in cold regions and a review on enhanced soil bioremediation. Biology 2021, 10, 354. [Google Scholar] [CrossRef]
- Sivashankar, R.; Sathya, A.B.; Vasantharaj, K.; Nithya, R.; Sivasubramanian, V. Biotechnology and Its Significance in Environmental Protection. In Bioprocess Engineering for a Green Environment; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–31. [Google Scholar] [CrossRef]
- Fortin Faubert, M.; Hijri, M.; Labrecque, M. Short rotation intensive culture of willow, spent mushroom substrate and ramial chipped wood for bioremediation of a contaminated site used for land farming activities of a former petrochemical plant. Plants 2021, 10, 520. [Google Scholar] [CrossRef]
- Janssen, D.B.; Stucki, G. Perspectives of genetically engineered microbes for groundwater bioremediation. Environ. Sci. Process. Impacts 2020, 22, 487–499. [Google Scholar] [CrossRef]
- Guerin, T.F. Prototyping of co-composting as a cost-effective treatment option for full-scale on-site remediation at a decommissioned refinery. J. Clean. Prod. 2021, 302, 127012. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Albarico, F.P.J.B.; Pandey, A.; Chen, C.W.; Dong, C.D. Organic wastes bioremediation and its changing prospects. Sci. Total Environ. 2022, 824, 153889. [Google Scholar] [CrossRef]
- Wang, L.; Rinklebe, J.; Tack, F.M.; Hou, D. A review of green remediation strategies for heavy metal contaminated soil. Soil Use Manag. 2021, 37, 936–963. [Google Scholar] [CrossRef]
- Gomes, H.I.; Dias-Ferreira, C.; Ribeiro, A.B. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci. Total Environ. 2013, 445, 237–260. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, S.M.; Miri, S.; Taheran, M.; Brar, S.K.; Galvez-Cloutier, R.; Martel, R. Bioremediation of unconventional oil contaminated ecosystems under natural and assisted conditions: A review. Environ. Sci. Technol. 2020, 54, 2054–2067. [Google Scholar] [CrossRef] [PubMed]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [PubMed]
- Tekere, M.; Jacob-Lopes, E.; Zepka, L.Q. Microbial bioremediation and different bioreactors designs applied. In Biotechnology and Bioengineering; IntechOpen: Rijeka, Croatia, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Gurkok, S. Important parameters necessary in the bioreactor for the mass production of biosurfactants. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 347–365. [Google Scholar] [CrossRef]
- Sharma, J. Advantages and limitations of in situ methods of bioremediation. Recent Adv. Biol. Med. 2019, 5, 10941. [Google Scholar] [CrossRef]
- Akubude, V.C.; Oyewusi, T.F.; Okafor, V.C.; Obumseli, P.C.; Igwe, A.O. Application of Nanomaterials in the Bioaugmentation of Heavily Polluted Environment. In Bioaugmentation Techniques and Applications in Remediation; CRC Press: Boca Raton, FL, USA, 2020; pp. 87–101. [Google Scholar] [CrossRef]
- Yadav, B.; Mathur, S.; Ch, S.; Yadav, B.K. Simulation-Optimization approach for the consideration of well clogging during cost estimation of in situ bioremediation system. J Hydrol. Eng. 2018, 23, 04018001. [Google Scholar] [CrossRef]
- Cecchin, I.; Reginatto, C.; Siveris, W.; Schnaid, F.; Thomé, A.; Reddy, K.R. Remediation of Hexavalent Chromium Contaminated Clay Soil by Injection of Nanoscale Zero Valent Iron (nZVI). Water Air Soil Pollut. 2021, 232, 268. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Akakuru, O.U.; Xu, X.; Wu, A. Research progress and mechanism of nanomaterials-mediated in-situ remediation of cadmium-contaminated soil: A critical review. J. Environ. Sci. 2021, 104, 351–364. [Google Scholar] [CrossRef]
- Kumar, V. Mechanism of microbial heavy metal accumulation from a polluted environment and bioremediation. In Microbial Cell Factories; CRC Press: Boca Raton, FL, USA, 2018; pp. 149–174. [Google Scholar] [CrossRef]
- da Silva, S.; Gonçalves, I.; Gomes de Almeida, F.C.; Padilha da Rocha e Silva, N.M.; Casazza, A.A.; Converti, A.; Asfora-Sarubbo, L. Soil bioremediation: Overview of technologies and trends. Energies 2020, 13, 4664. [Google Scholar] [CrossRef]
- Anekwe, I.M.S.; Isa, Y.M. Comparative evaluation of wastewater and bioventing system for the treatment of acid mine drainage contaminated soils. Water-Energy Nexus 2021, 4, 134–140. [Google Scholar] [CrossRef]
- Anekwe, I.M.; Isa, Y.M. Wastewater and Bioventing Treatment Systems for Acid Mine Drainage–Contaminated Soil. Soil Sediment Contam. Int. J. 2021, 30, 518–531. [Google Scholar] [CrossRef]
- Tong, W. Groundwater Hydrology, Soil and Groundwater Contamination Assessment and Monitoring. In Fundamentals of Environmental Site Assessment and Remediation; CRC Press: Boca Raton, FL, USA, 2018; pp. 70–99. [Google Scholar] [CrossRef]
- SookhakLari, K.; Rayner, J.L.; Davis, G.B. Toward optimizing LNAPL remediation. Water Resour. Res. 2019, 55, 923–936. [Google Scholar] [CrossRef]
- Beretta, G.; Mastorgio, A.F.; Pedrali, L.; Saponaro, S.; Sezenna, E. Support tool for identifying in situ remediation technology for sites contaminated by hexavalent chromium. Water 2018, 10, 1344. [Google Scholar] [CrossRef]
- Gautam, K.; Gaur, P.; Sharma, P. Bioremediation of Radioactive Contaminants/Radioactive Metals. In Bioremediation: Challenges and Advancements; Tripathi, M., Singh, D.S., Eds.; Bentham Science Publishers: Singapore, 2022; pp. 90–117. [Google Scholar]
- Philp, J.C.; Atlas, R.M. Bioremediation of contaminated soils and aquifers. In Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 139–236. [Google Scholar] [CrossRef]
- Maitra, S. In situ bioremediation—An overview. Res. J. Life Sci. Bioinfo. Pharmaceu. Chem. Sci. 2018, 4, 576–598. [Google Scholar] [CrossRef]
- Ahmadnezhad, Z.; Vaezihir, A.; Schüth, C.; Zarrini, G. Combination of zeolite barrier and bio sparging techniques to en-hance efficiency of organic hydrocarbon remediation in a model of shallow groundwater. Chemosphere 2021, 273, 128555. [Google Scholar] [CrossRef]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef]
- Odoh, C.K.; Zabbey, N.; Sam, K.; Eze, C.N. Status, progress and challenges of phytoremediation—An African Scenario. J. Environ. Manag. 2019, 237, 365–378. [Google Scholar] [CrossRef]
- Chakrabartty, M.; Harun-Or-Rashid, G.M. Feasibility Study of the Soil Remediation Technologies in the Natural Environment. Am. J. Civ. Eng. 2021, 9, 91–98. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavaş, İ.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Nkrumah, P.; Echevarria, G.; Erskine, P.; van der Ent, A. Phytomining: Using plants to extract valuable metals from mineralised wastes and uneconomic resources. In Extracting Innovations: Mining, Energy, and Technological Change in the Digital Age; CRC Press: Boca Raton, FL, USA, 2018; pp. 313–324. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, Z.; Cao, X.; Xiao, X.; Liu, Y.; Shi, L. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int. J. Phytoremediat. 2018, 20, 311–320. [Google Scholar] [CrossRef]
- Capuana, M. A review of the performance of woody and herbaceous ornamental plants for phytoremediation in urban areas. iForest-Biogeosci. For. 2020, 13, 139. [Google Scholar] [CrossRef]
- Oualha, M.; Al-Kaabi, N.; Al-Ghouti, M.; Zouari, N. Identification and overcome of limitations of weathered oil hydrocar-bons bioremediation by an adapted Bacillus sorensis strain. J. Environ. Manag. 2019, 250, 109455. [Google Scholar] [CrossRef] [PubMed]
- Cózar, A.; Aliani, S.; Basurko, O.C.; Arias, M.; Isobe, A.; Topouzelis, K.; Rubio, A.; Morales-Caselles, C. Marine litter windrows: A strategic target to understand and manage the ocean plastic pollution. Front. Mar. Sci. 2021, 8, 571796. [Google Scholar] [CrossRef]
- Deeb, M.; Groffman, P.M.; Blouin, M.; Egendorf, S.P.; Vergnes, A.; Vasenev, V.; Cao, D.L.; Walsh, D.; Morin, T.; Séré, G. Using constructed soils for green infrastructure–challenges and limitations. Soil 2020, 6, 413–434. [Google Scholar] [CrossRef]
- Kim, S.Y.; Garcia, H.A.; Lopez-Vazquez, C.M.; Milligan, C.; Livingston, D.; Herrera, A.; Matosic, M.; Curko, J.; Brdjanovic, D. Limitations imposed by conventional fine bubble diffusers on the design of a high-loaded membrane bioreactor (HL-MBR). Environ. Sci. Pollut. Res. 2019, 26, 34285–34300. [Google Scholar] [CrossRef]
- Kumar, V.; Shahi, S.K.; Singh, S. Bioremediation: An eco-sustainable approach for restoration of contaminated sites. In Microbial Bioprospecting for Sustainable Development; Springer: Singapore, 2018; pp. 115–136. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detox-ification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef]
- Bhatt, P.; Verma, A.; Gangola, S.; Bhandari, G.; Chen, S. Microbial glycoconjugates in organic pollutant bioremediation: Recent advances and applications. Microb. Cell Fact. 2021, 20, 72. [Google Scholar] [CrossRef]
- Leung, K.T.; Jiang, Z.H.; Almzene, N.; Nandakumar, K.; Sreekumari, K.; Trevors, J.T. Biodegradation and bioremediation of organic pollutants in soil. In Modern Soil Microbiology; CRC Press: Boca Raton, FL, USA, 2019; pp. 381–402. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Saxena, G.; Mulla, S.I. Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. In Bioremediation of Industrial Waste for Environmental Safety; Springer: Singapore, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Mbé, B.; Monga, O.; Pot, V.; Otten, W.; Hecht, F.; Raynaud, X.; Garnier, P. Scenario modelling of carbon mineralization in 3D soil architecture at the microscale: Toward an accessibility coefficient of organic matter for bacteria. Eur. J. Soil Sci. 2022, 73, e13144. [Google Scholar] [CrossRef]
- Hu, R.; Cao, Y.; Chen, X.; Zhan, J.; Luo, G.; Ngo, H.H.; Zhang, S. Progress on microalgae biomass production from wastewater phycoremediation: Metabolic mechanism, response behavior, improvement strategy and principle. J. Chem. Eng. 2022, 137187, in press. [Google Scholar] [CrossRef]
- Sharma, K.R.; Giri, R.; Sharma, R.K. Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int. J. Environ. Sci. Technol. 2022, 1–8. [Google Scholar] [CrossRef]
- Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 2017, 3, 1339841. [Google Scholar] [CrossRef]
- Joutey, N.T.; Bahafid, W.; Sayel, H.; El Ghachtouli, N. Biodegradation: Involved microorganisms and genetically engineered microorganisms. In Biodegradation—Life of Science; IntechOpen: London, UK, 2013; Volume 1, pp. 289–320. [Google Scholar] [CrossRef]
- Thakare, M.; Sarma, H.; Datar, S.; Roy, A.; Pawar, P.; Gupta, K.; Pandit, S.; Prasad, R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr. Res. Biotechnol. 2021, 3, 84–98. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Met. 2018, 10, 115–132. [Google Scholar] [CrossRef]
- Gałwa-Widera, M. Biochar—Production, Properties, and Service to Environmental Protection against Toxic Metals. In Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 53–75. [Google Scholar] [CrossRef]
- Anning, C.; Asare, M.O.; Wang, J.; Geng, Y.; Lyu, X. Effects of physicochemical properties of Au cyanidation tailings on cyanide microbial degradation. J. Environ. Sci. Health Part A 2021, 56, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Wu, S.; Zhou, Z.; Wang, G. Microbial Cd (II) and Cr (VI) resistance mechanisms and application in bioremediation. J. Hazard. Mater. 2021, 401, 123685. [Google Scholar] [CrossRef]
- Van der Veken, D.; Hollanders, C.; Verce, M.; Michiels, C.; Ballet, S.; Weckx, S.; Leroy, F. Genome-Based Characterization of a Plasmid-Associated Micrococcin P1 Biosynthetic Gene Cluster and Virulence Factors in Mammaliicoccus sciuri IM-DO-S72. Appl. Environ. Microbiol. 2022, 88, e0208821. [Google Scholar] [CrossRef]
- Kunze, M.; Zerlin, K.F.; Retzlaff, A.; Pohl, J.O.; Schmidt, E.; Janssen, D.B.; Reineke, W. Degradation of chloroaromatics by Pseudomonas putida GJ31: Assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome. Microbiology 2009, 155, 4069–4083. [Google Scholar] [CrossRef]
- Giriyan, A.L.; Berde, V.B.; Pereira, E.J.; Parulekar-Berde, C.V. Microbial Bioremediation of Heavy Metals: A Genetic and Omics Approach. In Handbook of Research on Microbial Remediation and Microbial Biotechnology for Sustainable Soil; IGI Global: Hershey, PA, USA, 2021; pp. 417–439. [Google Scholar] [CrossRef]
- Mohapatra, B.; Phale, P.S. Microbial degradation of naphthalene and substituted naphthalenes: Metabolic diversity and genomic insight for bioremediation. Front. Bioeng. Biotechnol. 2021, 9, 144. [Google Scholar] [CrossRef]
- Meehan, C.; Banat, I.M.; Mcmullan, G.; Nigam, P.; Smyth, F. Decolorization of REMAZOL BLACK-B using a thermotolerant yeast. Kluyveromyces marxianus IMB3. Environ. Int. 2000, 26, 75–79. [Google Scholar] [CrossRef]
- Tripathi, M.; Garg, S.K. Response surface modeling for co-remediation of Cr6+ and pentachlorophenol by Bacillus cereus RMLAU1: Bioreactor trial, structural and functional characterization by SEM-EDS and FT-IR analyses. Bioremediat. J. 2014, 18, 328–344. [Google Scholar] [CrossRef]
- Sen, S.K.; Patra, P.; Das, C.R.; Raut, S.; Raut, S. Pilot-scale evaluation of bio-decolorization and biodegradation of reactive textile wastewater: An impact on its use in irrigation of wheat crop. Water Resour. Ind. 2019, 21, 100106. [Google Scholar] [CrossRef]
- Basu, S.; Rabara, R.C.; Negi, S.; Shukla, P. Engineering PGPMOs through gene editing and systems biology: A solution for phytoremediation? Trends Biotechnol. 2018, 36, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Gaur, N.; Narasimhulu, K.; PydiSetty, Y. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J. Clean. Prod. 2018, 198, 1602–1631. [Google Scholar] [CrossRef]
- Bustard, M.; McMullan, G.; McHale, A.P. Biosorption of textile dyes by biomass derived from Kluyveromyces marxianus IMB3. Bioprocess Eng. 1998, 19, 427–430. [Google Scholar] [CrossRef]
- Halak, S.; Basta, T.; Bürger, S.; Contzen, M.; Stolz, A. Characterization of the genes encoding the 3-carboxy-cis, cis-muconate-lactonizing enzymes from the 4-sulfocatechol degradative pathways of Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. Microbiology 2006, 152, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shao, B.; Zeng, G.; Chen, M.; Li, Z.; Liu, Y.; Yan, M. Effects of rhamnolipids on the removal of 2, 4, 2, 4-tetrabrominated biphenyl ether (BDE-47) by Phanerochaete chrysosporium analyzed with a combined approach of experiments and molecular docking. Chemosphere 2018, 210, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Raquel, S.; Natalia, G.; Luis Fernando, B.; Maria Carmen, M. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiol. Ecol. 2013, 83, 438–449. [Google Scholar] [CrossRef]
- Sangkharak, K.; Choonut, A.; Rakkan, T.; Prasertsan, P. The degradation of phenanthrene, pyrene, and fluoranthene and its conversion into medium-chain-length polyhydroxyalkanoate by novel polycyclic aromatic hydrocarbon-degrading bacteria. Curr. Microbiol. 2020, 77, 897–909. [Google Scholar] [CrossRef]
- Phulpoto, A.H.; Qazi, M.A.; Mangi, S.; Ahmed, S.; Kanhar, N.A. Biodegradation of oil-based paint by Bacillus species monocultures isolated from the paint warehouses. Int. J. Environ. Sci. Technol. 2016, 13, 125–134. [Google Scholar] [CrossRef]
- Krab-Hüsken, L. Production of Catechols: Microbiology and Technology. Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Miri, S.; Rasooli, A.; Brar, S.K.; Rouissi, T.; Martel, R. Biodegradation of p-xylene—A comparison of three psychrophilic Pseudomonas strains through the lens of gene expression. Environ. Sci. Pollut. Res. 2022, 29, 21465–21479. [Google Scholar] [CrossRef]
- Pande, V.; Pandey, S.C.; Sati, D.; Pande, V.; Samant, M. Bioremediation: An emerging effective approach towards environment restoration. Environ. Sustain. 2020, 3, 91–103. [Google Scholar] [CrossRef]
- Duc, H.D.; Hung, N.V.; Oanh, N.T. Anaerobic Degradation of Endosulfans by a Mixed Culture of Pseudomonas sp. and Staphylococcus sp. Appl. Biochem. Microbiol. 2021, 57, 327–334. [Google Scholar] [CrossRef]
- Garg, S.K.; Tripathi, M.; Singh, S.K.; Singh, A. Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): Characterization of PCP dechlorination products, bacterial structure and functional groups. Environ. Sci. Pollut. Res. 2013, 20, 2288–2304. [Google Scholar] [CrossRef] [PubMed]
- Kharangate-Lad, A.; D’Souza, N.C. Current Approaches in Bioremediation of Toxic Contaminants by Application of Microbial Cells; Biosurfactants and Bioemulsifiers of Microbial Origin. In Rhizobiont in Bioremediation of Hazardous Waste; Springer: Singapore, 2021; pp. 217–263. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Falade, A.O.; Aladekoyi, O.J. Applications of microbial laccases in bioremediation of environmental pollutants: Potential issues, challenges, and prospects. In Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 519–540. [Google Scholar] [CrossRef]
- Gaur, V.K.; Tripathi, V.; Manickam, N. Bacterial-and fungal-mediated biodegradation of petroleum hydrocarbons in soil. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 407–427. [Google Scholar] [CrossRef]
- Sravya, K.; Sangeetha, S. Feasibility study on bioremediation techniques to contaminated soils. Mater. Today Proc. 2022, 51, 2556–2560. [Google Scholar] [CrossRef]
- Shah, H.; Jain, S. Bioremediation: An approach for environmental pollutants detoxification. In Waste to Energy: Prospects and Applications; Springer: Singapore, 2020; pp. 121–142. [Google Scholar] [CrossRef]
- Geetha, N.; Bhavya, G.; Abhijith, P.; Shekhar, R.; Dayananda, K.; Jogaiah, S. Insights into nanomycoremediation: Secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification. J. Hazard. Mater. 2021, 409, 124541. [Google Scholar] [CrossRef] [PubMed]
- Aregbesola, O.A.; Kumar, A.; Mokoena, M.P.; Olaniran, A.O. Cloning, overexpression, purification, characterization and structural modelling of a metabolically active Fe2+ dependent 2, 6-dichloro-p-hydroquinone 1, 2-dioxygenase (CpsA) from Bacillus cereus strain AOA-CPS_1. Int. J. Biol. Macromol. 2020, 161, 247–257. [Google Scholar] [CrossRef]
- Song, J.; Zhang, S.; Xie, Y.; Li, Q. Purification and characteristics of an aflatoxin B1 degradation enzyme isolated from Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2019, 366, fnz034. [Google Scholar] [CrossRef]
- Yergeau, E.; Sanschagrin, S.; Beaumier, D.; Greer, C.W. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high Arctic soils. PLoS ONE 2012, 7, e30058. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Long, H.; Zhao, X.; Jia, K.; Li, J.; Zhang, D. bifA regulates biofilm development of Pseudomonas putida MnB1 as a primary response to H2O2 and Mn2+. Front. Microbiol. 2018, 9, 1490. [Google Scholar] [CrossRef]
- Vega-Páez, J.D.; Rivas, R.E.; Dussán-Garzón, J. High Efficiency Mercury Sorption by Dead Biomass of Lysinibacillussphaercus—New Insights into the Treatment of Contaminated Water. Materials 2019, 12, 1296. [Google Scholar] [CrossRef]
- Sar, P.; Islam, E. Metagenomic Approaches in Microbial Bioremediation of Metals and Radionuclides. In Microrganisms in Environmental Management; Springer: Dordrecht, The Netherlands, 2012; pp. 525–546. [Google Scholar] [CrossRef]
- Villegas-Plazas, M.; Sanabria, J.; Junca, H. A composite taxonomical and functional framework of microbiomes under acid mine drainage bioremediation systems. J. Env. Manag. 2019, 251, 109581. [Google Scholar] [CrossRef]
- Jaiswal, S.; Singh, D.K.; Shukla, P. Gene editing and systems biology tools for pesticide bioremediation: A review. Front. Microbiol. 2019, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Hakeem, K.R.; Bhat, R.A.; Qadri, H. Bioremediation and Biotechnology; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Rodríguez, A.; Castrejón-Godínez, M.L.; Sánchez-Salinas, E.; Mussali-Galante, P.; Tovar-Sánchez, E.; Ortiz-Hernández, M. Pesticide Bioremediation: OMICs Technologies for Understanding the Processes. In Pesticides Bioremediation; Springer: Cham, Switzerland, 2022; pp. 197–242. [Google Scholar] [CrossRef]
- Gupta, K.; Biswas, R.; Sarkar, A. Advancement of omics: Prospects for bioremediation of contaminated soils. In Microbial Bioremediation & Biodegradation; Springer: Singapore, 2020; pp. 113–142. [Google Scholar] [CrossRef]
- Yunusa, Y.R.; Umar, Z.D. Effective microbial bioremediation via the multi-omics approach: An overview of trends, problems and prospects. UMYU J. Microbiol. Res. 2021, 6, 127–145. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Iqbal, H.M.; Tong, Y.W. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environ. Res. 2022, 211, 113102. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Geat, N.; Mehriya, M.; Rajawat, M.V.S.; Prasanna, R.; Kumar, A.; Kumari, G.; Jha, M.N. Omics (genomics, proteomics, metabolomics, etc.) tools to study the environmental microbiome and bioremediation. In Waste to Energy: Prospects and Applications; Springer: Singapore, 2020; pp. 235–260. [Google Scholar] [CrossRef]
- Haque, S.; Srivastava, N.; Pal, D.B.; Alkhanani, M.F.; Almalki, A.H.; Areeshi, M.Y.; Naidu, R.; Gupta, V.K. Functional micro-biome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. Sci. Total Environ. 2022, 833, 155222. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.; Huber, W.; Pages, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; Carey, V.J. Software for computing and an-notating genomic ranges. PLoS Comput. Biol. 2013, 9, e1003118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, F.; Nie, L. Integrating multiple ‘omics’ analysis for microbial biology: Application and methodologies. Microbiology 2010, 156, 287–301. [Google Scholar] [CrossRef]
- Tripathi, M.; Singh, D.N.; Vikram, S.; Singh, V.S.; Kumar, S. Metagenomic approach towards bioprospection of novel biomolecule(s) and environmental bioremediation. Ann. Res. Rev. Biol. 2018, 22, 1–12. [Google Scholar] [CrossRef]
- Gaur, V.K.; Gautam, K.; Sharma, P.; Gupta, P.; Dwivedi, S.; Srivastava, J.K.; Varjani, S.; Ngo, H.H.; Kim, S.H.; Chang, J.S.; et al. Sustainable strategies for combating hydrocarbon pollution: Special emphasis on mobil oil bioremediation. Sci. Total Environ. 2022, 832, 155083. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Purchase, D.; Saxena, G.; Mulla, S.I. Applications of metagenomics in microbial bioremediation of pollutants: From genomics to environmental cleanup. In Microbial Diversity in the Genomic Era; Academic Press: Cambridge, MA, USA, 2019; pp. 459–477. [Google Scholar] [CrossRef]
- Sanghvi, G.; Thanki, A.; Pandey, S.; Singh, N.K. Engineered bacteria for bioremediation. In Bioremediation of Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 359–374. [Google Scholar] [CrossRef]
- Vázquez-Núñez, E.; Molina-Guerrero, C.E.; Peña-Castro, J.M.; Fernández-Luqueño, F.; de la Rosa-Álvarez, M. Use of nano-technology for the bioremediation of contaminants: A review. Processes 2020, 8, 826. [Google Scholar] [CrossRef]
- Shukla, P. Microbial nanotechnology for bioremediation of industrial wastewater. Front. Microbiol. 2020, 11, 590631. [Google Scholar] [CrossRef]
- Ramos, M.M.; dos Morais, E.; da Sena, I.; Lima, A.L.; de Oliveira, F.R.; de Freitas, C.M.; Fernandes, C.P.; de Carvalho, J.C.T.; Ferreira, I.M. Silver nanoparticle from whole cells of the fungi Trichoderma spp. isolated from Brazilian Amazon. Biotechnol. Lett. 2020, 42, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Sanjeevi, R.; Anuradha, J.; Chauhan, D.S.; Rathoure, A.K. Nano-Bioremediation: Nanotechnology and Bioremediation. In Research Anthology on Emerging Techniques in Environmental Remediation; IGI Global: Hershey, PA, USA, 2022; pp. 135–149. [Google Scholar] [CrossRef]
- Nwuche, C.O.; Igbokwe, V.C.; Ajagbe, D.D.; Onwosi, C.O. Nanoparticles, Biosurfactants and Microbes in Bioremediation. In Rhizomicrobiome Dynamics in Bioremediation; CRC Press: Boca Raton, FL, USA, 2021; pp. 162–179. [Google Scholar] [CrossRef]
- Dangi, A.K.; Sharma, B.; Hill, R.T.; Shukla, P. Bioremediation through microbes: Systems biology and metabolic engineering approach. Crit. Rev. Biotechnol. 2019, 39, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Sharma, S.; Mazumder, S.; Negi, R.K. Application of “OMICs” Approaches in Bioremediation. In Bioremediation: Challenges and Advancements; Tripathi, M., Singh, D.S., Eds.; Bentham Science Publisher: Singapore, 2022; Volume 69, pp. 191–223. [Google Scholar] [CrossRef]
- Phale, P.S.; Mohapatra, B.; Malhotra, H.; Shah, B.A. Eco-physiological portrait of a novel Pseudomonas sp. CSV86: An ideal host/candidate for metabolic engineering and bioremediation. Environ. Microbiol. 2022, 24, 2797–2816. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, B.; Malhotra, H.; Saha, B.K.; Dhamale, T.; Phale, P.S. Microbial metabolism of aromatic pollutants: High-throughput OMICS and metabolic engineering for efficient bioremediation. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 151–199. [Google Scholar] [CrossRef]
- Techtmann, S.M.; Hazen, T.C. Metagenomics applications in environmental monitoring and bioremediation. J. Ind. Microbiol. Biotechnol. 2016, 43, 1345–1354. [Google Scholar] [CrossRef]
- Jaiswal, S.; Shukla, P. Alternative strategies for microbial remediation of pollutants via synthetic biology. Front. Microbiol. 2020, 11, 808. [Google Scholar] [CrossRef]
- Chen, S.; Zhan, H. Biodegradation of synthetic pyrethroid insecticides. In Microbial Metabolism of Xenobiotic Compounds; Springer: Singapore, 2019; pp. 229–244. [Google Scholar] [CrossRef]
- Wang, C.; Sun, H.; Li, J.; Li, Y.; Zhang, Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 2009, 77, 733–738. [Google Scholar] [CrossRef]
- Baker, P.; Tiroumalechetty, A.; Mohan, R. Fungal enzymes for bioremediation of xenobiotic compounds. In Recent Advancement in White Biotechnology through Fungi; Springer: Cham, Switzerland, 2019; pp. 463–489. [Google Scholar] [CrossRef]
- Ahsan, Z.; Kalsoom, U.; Bhatti, H.N.; Aftab, K.; Khalid, N.; Bilal, M. Enzyme-assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation. J. Basic Microbiol. 2021, 61, 960–981. [Google Scholar] [CrossRef]
- Bosco, F.; Mollea, C. Mycoremediation in soil. In Environmental Chemistry and Recent Pollution Control Approaches; IntechOpen: London, UK, 2019; p. 173. [Google Scholar] [CrossRef]
- Gong, T.; Xu, X.; Dang, Y.; Kong, A.; Wu, Y.; Liang, P.; Wang, S.; Yu, H.; Xu, P.; Yang, C. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. Sci. Total Environ. 2018, 628, 1258–1265. [Google Scholar] [CrossRef]
- Siddavattam, D.; Yakkala, H.; Samantarrai, D. Lateral transfer of organophosphate degradation (opd) genes among soil bacteria: Mode of transfer and contributions to organismal fitness. J. Genet. 2019, 98, 23. [Google Scholar] [CrossRef]
- Sharma, B.; Shukla, P. Designing synthetic microbial communities for effectual bioremediation: A review. Biocatal. Biotransformation. 2020, 38, 405–414. [Google Scholar] [CrossRef]
- Sharma, B.; Shukla, P. Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnol. Appl. Biochem. 2022, 69, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.; Gallego, D.; Blaz, J.; Lechuga, A.; Martínez, J.F.; Barajas, H.R.; Hayano-Kanashiro, C.; Peimbert, M.; Cruz-Ortega, R.; Molina-Freaner, F.E.; et al. Rhizosphere metagenomics of mine tailings colonizing plants: Assembling and selecting synthetic bacterial communities to enhance in situ bioremediation. bioRxiv 2019, 664805. [Google Scholar] [CrossRef]
- Che, S.; Men, Y. Synthetic microbial consortia for biosynthesis and biodegradation: Promises and challenges. J. Ind. Microbiol. Biotechnol. 2019, 46, 1343–1358. [Google Scholar] [CrossRef] [PubMed]
- Nikel, P.I.; de Lorenzo, V. Metabolic engineering for large-scale environmental bioremediation. Metab. Eng 2021, 13, 859–890. [Google Scholar] [CrossRef]
- Sharma, N.; Sodhi, K.K.; Kumar, M.; Singh, D.K. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100388. [Google Scholar] [CrossRef]
- Sharma, I. Bioremediation techniques for polluted environment: Concept, advantages, limitations, and prospects. In Trace Metals in the Environment—New Approaches and Recent Advances; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Dar, A.; Naseer, A. Recent Applications of Bioremediation and Its Impact. In Hazardous Waste Management; IntechOpen: London, UK, 2022; p. 49. [Google Scholar] [CrossRef]
- Lee, H.; Jun, Z.; Zahra, Z. Phytoremediation: The sustainable strategy for improving indoor and outdoor air quality. Environments 2021, 8, 118. [Google Scholar] [CrossRef]
- Kadosaki, M.; Terasawa, T.; Tanino, K.; Tatuyama, C. Exploration of highly sensitive oxide semiconductor materials to in-door-air pollutants. IEEJ Trans. Sens. Micromach. 1999, 119, 383–389. [Google Scholar] [CrossRef]
- Khasawneh, O.F.S.; Palaniandy, P. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Saf. Environ. Prot. 2021, 150, 532–556. [Google Scholar] [CrossRef]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Eng. Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Prasad, M.N.V. (Ed.) Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Kumar, R.S.; Singh, D.; Bose, S.K.; Trivedi, P.K. Biodegradation of environmental pollutant through pathways engineering and genetically modified organisms approaches. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 137–165. [Google Scholar] [CrossRef]
Factors | Remarks | References |
---|---|---|
Biological factors | Soil microorganisms compete for carbon sources, or bacteriophages and protozoa prey on each other, all of which can affect organic compound degradation. Derivatization rates are influenced by contaminants and catalyst levels. Expressed enzymes can speed up or slow contaminant degradation. Enzymes must also be involved in contaminant metabolism to have an affinity for the contaminant and availability. The major biological factors: interaction (competition, predation, and succession), population size, and composition. | [31,32] |
Oxygen | Biodegradation rates can be improved by using organisms that don’t require oxygen. Anaerobic decomposition occurs as most living organisms need oxygen to survive. In most cases, hydrocarbon metabolism can be boosted by the addition of oxygen. | [33] |
Moisture content | Microorganisms require a sufficient amount of water to achieve their growth goals. When the soil is too wet, the biodegradation agents don’t work as well. | [34] |
Nutrients | Nutrients can influence microbial growth and reproduction, as well as biodegradation rate and effectiveness. Optimizing the bacterial C:N:P ratio can improve biodegradation efficiency, especially when essential nutrients like N and P are supplied. Carbon, phosphorous, and nitrogen are just a few of the nutrients microorganisms need to survive. In low concentrations, hydrocarbon degradation is also limited. Adding nutrients to cold environments can increase microorganisms’ metabolic activity and thus the biodegradation rate. Aquatic biodegradation is limited by nutrient availability. Oil-eating microbes require nutrients to thrive. These essential nutrients are found in small amounts in nature. | [35,36] |
Temperature | The most important physical factor influencing microorganism survival and hydrocarbon composition is temperature. In cold climates like the Arctic, natural oil degradation is slow, putting more pressure on microbes to clean up spilled oil. Here, the sub-zero water freezes the microbial transport channels, rendering them unable to perform their metabolic functions.Temperature affects the metabolic turnover of enzymes involved in degradation. Also, each compound’s degradation requires a specific temperature. Temperature affects microbial physiological properties and thus speeds up or slows down bioremediation. Increased microbial activity occurs at higher temperatures. It started to drop suddenly as the temperature increased or decreased, and theneventually stopped. | [37,38] |
pH | A compound’s acidity, alkalinity, and basicity affect microbial metabolism and the removal process. Microbial growth can be predicted by the soil’s pH. Even minor pH shifts have a significant impact on metabolic processes. | [39] |
Sitecharacterization and selection | Before proposing a bioremediation remedy, it is necessary to conduct adequate remedial investigation work to characterize the extent of the contamination. Site selection procedures include determining the horizontal and vertical extent of contamination, defining parameters and sampling locations, and describing sampling and analysis methods. | [40] |
Metal ions | Metals are essential for bacteria and fungi, but excessive amounts inhibit cell metabolism. Degradation rates are influenced by metal compounds on both a direct and indirect basis. | [41] |
Microorganisms | High concentrations of some toxic compounds can harm microorganisms and slow decontamination process. Toxicity varies with the toxicant, concentration, and microorganisms exposed. | [42] |
Methods | Limitation | Reference |
---|---|---|
Biopile | The extent of weathering can change the chemical make-up by making the materials more hydrophobic, which limits the potential of the biopiling method for biodegradation. | [86] |
Windrows | The major limitation in studying windrows in situ is probably knowing where and when they will emerge. Although it is possible to forecast some sub-mesoscale convergences, it is still difficult to predict where and when litter windrows would form because of the additional uncertainty brought on by the dependency on litter loading. | [87] |
Land Farming | This method has the drawback that the objectives specified in the constraint set must be strictly upheld; if they are not, the issue will appear to be insurmountable. Fresh organic waste can be troublesome since it can occasionally lead to anoxic conditions, which are hazardous to plant development. To preserve the quality of pre-existing soils, it is advisable to refrain from adding more organic material over years. | [88] |
Bioreactor | The primary limitation to employing membrane bioreactors (MBR) at such high concentrations of mixed liquid suspended solids (MLSS) appears to be very low to zero oxygen transfer efficiency reported when using traditional diffused aeration systems (such as fine and coarse bubble diffusers). This suggests that a deeper understanding is required of the constraints imposed by traditional bubble diffusers (measured in terms of the alpha factor) under that specific combination of operational parameters (high MLSS). | [89] |
Intrinsic in situ bioremediation | The site has to have very permeable soil for in situ bioremediation, which is the main limitation of in situ bioremediation. | [90] |
Bioventing | This technique’s disadvantage is that it only works at the deepest levels of the contaminated soil ecosystem. | [91] |
Phytoremediation | Phytoremediation, such as phytoextraction and rhizodegradation, is used to remediate the polluted soil in the superficial layers of the soil. This approach could be time-consuming and may not be able to eliminate all the contaminants. | [85] |
Substrate | Compound | Microorganisms | References |
---|---|---|---|
Organic substrate | Chlorobenzenes | P. putida (GJ31) | [106] |
N, N-dimethyl-pphenylenediamine | Klebsiella pneumonia (RS-13) | [107] | |
Polycyclic aromatic hydrocarbons | Burkholderia sp., Myceliophthorathermophila | [108] | |
Remazol Black B | Kluyveromyces marxianus (IMB3) | [109] | |
Sulfonate benzene | A. radiobacter (S2) | [110] | |
4,4 dibromodiphenyl ether | Phanerochaete chrysosporium | [111] | |
Aromatic hydrocarbons | Acinetobacter sp., Microbacterium sp., Pseudomonas sp. and Ralstonia sp. | [112] | |
Phenol | Alcaligenes odorans, Corynebacterium propinquum, B. subtilis, and P. aeruginosa | [113] | |
Toluene and its derivatives | P. putida (F1), Penicillium chrysogenum | [114] | |
Methyl parathion and chlorpyrifos | Acinetobactor sp., Pseudomonas sp., Enterobacter sp. and Photobacterium sp. | [115] | |
Endosulfan | Bacillus, Staphylococcus | [116] | |
Azo dyes effluents | Exiguobacterium indicum, B. cereus, E. aurantiacums and A. baumanii | [117] | |
Vat dyes | B. firmus, Staphylococcus aureus, B. macerans, and K. oxytoca | [118] | |
Oil-based based paints | B. subtilis strain NAP1, NAP2, NAP4 | [119] | |
Crude oil | Aspergillus niger, Candida krusei, C. glabrata, and Saccharomyces cerevisiae | [120] | |
Diesel oil | P. cepacia, B. coagulans, B. cereus, B. cereus A and Serratia ficaria | [121] | |
Oils | Alcaligenes odorans, Corynebacterium propinquum, P. aeruginosa and Fusarium sp. | [122] | |
Inorganic substrate | Heavy metals, mercury nickel and lead | Saccharomyces cerevisiae and, Cunninghamella elegans | [123] |
Cr6+ | Pseudomonas putida | [124] | |
Cobalt, chromium, copper, and lead | Lysinibacillus sphaericus CBAM5 | [125] | |
Cadmium | A. versicolor, Paecilomyces sp., A. fumigatus, Paecilomyces sp., Terichoderma sp. and Cladosporium sp. | [126] | |
Uranium, copper, nickel, chromium | P. aeruginosa, Aeromonas sp. | [127] | |
Lead, chromium, and cadmium | Aerococcus sp., Rhodopseudomonas palustris | [128] | |
Hg2+ | Cyclotella cryptica, Chlamydomonas reinhardtii, Pseudochlorococcum typicum, Spirogyra hyaline | [129] | |
Cr2O722 | Chlorella spp. Spirulina sp. (HD-104) | [130] | |
Cr51 | Spirulina sp., Ulothrix tenuissima and C. reinhardtii | [131] | |
Pb21 | Oscillatoria laete-virens, Arthrospira platensis, Pseudochlorococcum typicum and Spirogyra insignis | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. https://doi.org/10.3390/toxics10080484
Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics. 2022; 10(8):484. https://doi.org/10.3390/toxics10080484
Chicago/Turabian StyleBala, Saroj, Diksha Garg, Banjagere Veerabhadrappa Thirumalesh, Minaxi Sharma, Kandi Sridhar, Baskaran Stephen Inbaraj, and Manikant Tripathi. 2022. "Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment" Toxics 10, no. 8: 484. https://doi.org/10.3390/toxics10080484
APA StyleBala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics, 10(8), 484. https://doi.org/10.3390/toxics10080484