Human Health Risks and Air Quality Changes Following Restrictions for the Control of the COVID-19 Pandemic in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Areas
- Metropolitan areas
- Suburban Area
- Industrial area
- Tourism area
2.2. Air Pollutant Concentration
2.3. Air Quality Index (AQI)
2.4. Health Risk Assessment
Exposure Factors | Symbol | BKK | CM | KK | RY | PK | Reference |
---|---|---|---|---|---|---|---|
Mean concentration (mg/m3) | |||||||
CO | CACO | 0.339 | N/A | 0.684 | 0.543 | 0.308 | This study |
NO2 | CANO2 | 0.013 | 0.015 | 0.018 | 0.013 | 0.014 | This study |
PM2.5 | CAPM2.5 | 0.020 | 0.028 | 0.028 | 0.016 | 0.019 | This study |
PM10 | CAPM10 | 0.035 | 0.044 | 0.052 | 0.028 | 0.038 | This study |
O3 | CAO3 | 0.036 | 0.054 | 0.061 | 0.045 | 0.043 | This study |
SO2 | CASO2 | 0.007 | 0.002 | 0.009 | 0.004 | 0.002 | This study |
Inhalation rate (m3/h) | IR | 0.89 | [21] | ||||
Exposure time (h/d) | ET | 24 | |||||
Exposure frequency (d/y) | EF | 365 | |||||
Exposure duration (y) | ED | 30 | [21,22] | ||||
Bodyweight (kg) | BW | 71.8 | [21,22] | ||||
Average time (d) | AT | 10,950 |
2.5. Clustering Analysis for Health Risk Assessment
3. Results and Discussion
3.1. Concentrations of Air Pollutants
3.2. Air Quality Index
3.3. Health Risk Assessment of Exposure to Air Pollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Coronavirus Disease (COVID-2019) Situation Reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 15 July 2022).
- Guo, Y.; Li, S.; Tawatsupa, B.; Punnasir, K.; Jaakkola, J.J.K.; Williams, G. The association between air pollution and mortality in Thailand. Sci. Rep. 2014, 4, 5509. [Google Scholar] [CrossRef] [PubMed]
- Pinichka, C.; Makka, N.; Sukkumnoed, D.; Chariyalertsak, S.; Inchai, P.; Bundhamcharoen, K. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach. PLoS ONE 2017, 12, e0189909. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, L.; Wang, J.; Mou, Y. Communicating air quality index information: Effects of different styles on individuals’ risk perception and precaution intention. Int. J. Environ. Res. Public Health 2021, 18, 10542. [Google Scholar] [CrossRef] [PubMed]
- Bhat, T.H.; Jiawen, G.; Farzaneh, H. Air pollution health risk assessment (AP-HRA), principles and applications. Int. J. Environ. Res. Public Health 2021, 18, 1935. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T. Air pollution impacts from COVID-19 pandemic control strategies in Malaysia. J. Clean. Prod. 2021, 291, 125992. [Google Scholar] [CrossRef]
- Rabin, M.H.; Wang, Q.; Kabir, M.H.; Wang, W. Pollution characteristics and risk assessment of potentially toxic elements of fine street dust during COVID-19 lockdown in Bangladesh. Environ. Sci. Pollut. Res. 2022, 1–23. [Google Scholar] [CrossRef]
- Shen, F.; Hegglin, M.I.; Luo, Y.; Yuan, Y.; Wang, B.; Flemming, J.; Wang, J.; Zhang, Y.; Chen, M.; Yang, Q.; et al. Disentangling drivers of air pollutant and health risk changes during the COVID-19 lockdown in China. NPJ Clim. Atmos. Sci. 2022, 5, 54. [Google Scholar] [CrossRef]
- Abdullah, S.; Mansor, A.A.; Napi, N.N.L.M.; Mansor, W.N.W.; Ahmed, A.N.; Ismail, M.; Ramly, Z.T.A. Air quality status during 2020 Malaysia movement control order (MCO) due to 2019 novel coronavirus (2019-nCoV) pandemic. Sci. Total Environ. 2020, 729, 139022. [Google Scholar] [CrossRef]
- Addas, A.; Maghrabi, A. The impact of COVID-19 lockdowns on air quality—A global review. Sustainability 2021, 13, 10212. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; Franca, B.B.; Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef]
- Kaewrat, J.; Janta, R. Effect of COVID-19 prevention measures on air quality in Thailand. Aerosol Air Qual. Res. 2020, 21, 200344. [Google Scholar] [CrossRef]
- Wetchayont, P. Investigation on the impacts of COVID-19 lockdown and influencing factors on air quality in greater Bangkok, Thailand. Adv. Meteorol. 2021, 2021, 6697707. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Sheng, L.; Huang, S.; Li, J. Influence of boundary layer structure and low-level jet on PM2.5 pollution in Beijing: A case study. Int. J. Environ. Res. Public Health 2019, 16, 616. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, N.R.; Klein, P.M.; Moore, B. The impact of meteorological parameters on urban air quality. Atmos. Environ. 2014, 86, 58–67. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, X.; Qiao, L.; Gong, D.; Kim, S.-J.; Wang, Y.; Mao, R. Numerical simulations of the effects of regional topography on haze pollution in Beijing. Sci. Rep. 2018, 8, 5504. [Google Scholar] [CrossRef]
- Lina, N.D.; Engelbrecht, J.C.; Wright, C.Y.; Osthuizen, M.A. Human health risks posed by exposure to PM10 for four life stages in a low socio: Economic community in South Africa. Pan Afr. Med. J. 2014, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Concepts, Methods, and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document (Final Report, 2008). Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&dirEntryId=190187 (accessed on 15 June 2022).
- ATSDR. Public Health Assessment Guidance Manual; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2005; pp. 1–357. [Google Scholar]
- Gruszecka-Kosowska, A. Assessment of the Krakow inhabitants’ health risk caused by the exposure to inhalation of outdoor air contaminants. Stoch. Environ. Res. Risk Assess. 2018, 32, 485–499. [Google Scholar] [CrossRef]
- Morakinyo, O.M.; Mukhola, M.S.; Mokgobu, M.I. Ambient gaseous pollutants in an urban area in South Africa: Levels and potential human health risk. Atmosphere 2020, 11, 751. [Google Scholar] [CrossRef]
- Morakinyo, O.M.; Adebowale, A.S.; Mokgobu, M.I.; Mokgobu, M.S. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: An ecological study. BMJ Open 2017, 7, e013941. [Google Scholar] [CrossRef]
- Kaewrat, J.; Janta, R.; Sichum, S.; Kanabkaew, T. Indoor air quality and human health risk assessment in the open-air classroom. Sustainability 2021, 21, 8302. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Kaewrat, J.; Janta, R. Health risk assessment of residents in a tourist city: A case study of Nakhon Si Thammarat province. Walailak J. Sci. Technol. 2021, 18, 11510.26. [Google Scholar] [CrossRef]
- Phairuang, W. Biomass burning and their impacts on air quality in Thailand. In Biomass Burning in South and Southeast Asia Impacts on the Biosphere; CRC Press: Boca Raton, FL, USA, 2021; Volume 2, pp. 21–38. [Google Scholar]
- Aman, N.; Manomaiphiboon, K.; Pala-En, N.; Kokoaew, E.; Boonyoo, T.; Pattaramunikul, S.; Devkota, B.; Chtamonsak, C. Evolution of urban haze in greater Bangkok and association with local meteorological and synoptic characteristics during two recent haze episodes. Int. J. Environ. Res. Public Health 2020, 17, 9499. [Google Scholar] [CrossRef] [PubMed]
- Khamkaew, C.; Chantara, S.; Janta, R.; Pani, S.K.; Prapamontol, T.; Kawichai, S.; Wiriya, W.; Lin, N.-H. Investigation of biomass burning chemical components over Northern Southeast Asia during 7-SEAS/BASELInE 2014 campaign. Aerosol Air Qual. Res. 2016, 16, 2655–2670. [Google Scholar] [CrossRef]
- Chuersuwan, N.; Nimrat, S.; Lekphet, S.; Kerdkumrai, T. Levels and major sources of PM2.5 and PM10 in Bangkok metropolitan region. Environ. Int. 2008, 34, 671–677. [Google Scholar] [CrossRef]
- Kanchanasuta, S.; Sooktawee, S.; Patpai, A.; Vatanasomboon, P. Temporal variations and potential source areas of fine particulate matter in Bangkok, Thailand. Air Soil Water Res. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Kanjanasiranont, N.; Butburee, T.; Peerakiatkhajohn, P. Characteristics of PM10 levels monitored in Bangkok and its vicinity areas, Thailand. Atmosphere 2022, 13, 239. [Google Scholar] [CrossRef]
- Pongsakchat, V.; Kidpholjaroen, P. The statistical distributions of PM2.5 in Rayong and Chonburi provinces, Thailand. Asian J. Appl. Sci. 2020, 8, 172–177. [Google Scholar] [CrossRef]
- Muenmee, S.; Boodee, S. Health risk assessment of exposure PM2.5 from industrial area in Pluak Daeng district Rayong province. Naresuan Phayao J. 2021, 14, 95–110. (In Thai) [Google Scholar]
- Pinthong, N.; Thepanondh, S.; Kultan, V.; Keawboonchu, J. Characteristics and impact of VOCs on ozone formation potential in a petrochemical industrial area, Thailand. Atmosphere 2022, 13, 732. [Google Scholar] [CrossRef]
- Prabamroong, T.; Manomaiphiboon, K.; Octaviani, M. A Trajectory-based analysis of surface ozone for Rayong, Thailand. In Proceedings of the Second Environment Asia International Conference on “Human Vulnerability and Global Environmental Change”, Chonburi, Thailand, 15–17 May 2013. [Google Scholar]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Bherwani, H.; Kumar, S.; Musugu, K.; Nair, M.; Gautam, S.; Gupta, A.; Ho, C.-H.; Anshul, A.; Kumar, R. Assessment and valuation of health impacts of fine particulate matter during COVID-19 lockdown: A comprehensive study of tropical and sub-tropical countries. Environ. Sci. Pollut. Res. 2021, 28, 44522–44537. [Google Scholar] [CrossRef] [PubMed]
- Sakunkoo, P.; Thonglua, T.; Sangkham, S.; Jirapornkul, C.; Limmongkon, Y.; Daduang, S.; Tessiri, T.; Rayubkul, J.; Thongtip, S.; Maneenin, N.; et al. Human health risk assessment of PM2.5-bound heavy metal of anthropogenic sources in the Khon Kaen Province of Northeast Thailand. Heliyon 2022, 8, e09572. [Google Scholar] [CrossRef] [PubMed]
- Thongthammachart, T.; Jinsart, W. Estimating PM2.5 concentrations with statistical distribution techniques for health risk assessment in Bangkok. Hum. Ecol. Risk Assess. Int. J. 2019, 26, 1848–1863. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N.; Limsakul, A. Health risk assessment of exposure near-future PM2.5 in Northern Thailand. Air Qual. Atmos. Health 2022. [Google Scholar] [CrossRef]
Grade | AQI Value | Air Quality Level | Color |
---|---|---|---|
I | 0–25 | Excellent | |
II | 26–50 | Satisfactory | |
III | 51–100 | Moderate | |
IV | 101–200 | Unhealthy | |
V | >200 | Very unhealthy |
Pollutants | Concentration of Pollutants | |||||
---|---|---|---|---|---|---|
BKK | CM | KK | RY | PK | ||
CO | Average | 0.4 | N/A | 0.7 | 0.6 | 0.4 |
(mg/m3) | Min–Max | 0.1–1.0 | 0.1–1.5 | 0.5–0.6 | 0–0.7 | |
NO2 | Average | 14.3 | 13.7 | 16.7 | 12.2 | 13.5 |
(µg/m3) | Min–Max | 0.4–61.1 | 0.9–5.1 | 1.1–61.7 | 0.8–33.5 | 2.6–27.1 |
SO2 | Average | 6.6 | 1.8 | 7.9 | 3.9 | 2.1 |
(µg/m3) | Min–Max | 0–13.6 | 0–6.0 | 0–13.4 | 0–11.8 | 0–11.0 |
O3 | Average | 38.2 | 50.2 | 64.7 | 44.5 | 31.8 |
(µg/m3) | Min–Max | 8.6–100 | 1.2–125.2 | 20.6–118 | 11.6–110.2 | 7.6–103.7 |
PM10 | Average | 39.8 | 40.1 | 49.8 | 26.7 | 32.7 |
(µg/m3) | Min–Max | 12.8–152.8 | 16.2–168.2 | 19.3–137.8 | 8.6–90.8 | 18.4–92.0 |
PM2.5 | Average | 22.4 | 24.5 | 25.9 | 14.8 | 16.5 |
(µg/m3) | Min–Max | 5.1–100.8 | 8.8–131.2 | 9.0–87.5 | 3.4–67.7 | 5.7–61.3 |
Provinces | HQ Value of Pollutants | ||||||
---|---|---|---|---|---|---|---|
HQCO | HQNO2 | HQPM2.5 | HQPM10 | HQO3 | HQSO2 | ||
BKK | before COVID | 0.07 | 0.7 | 1.1 | 1.0 | 0.2 | 0.03 |
after COVID | 0.04 | 0.3 | 0.9 | 0.8 | 0.2 | 0.07 | |
CM | before COVID | N/A | 0.3 | 1.5 | 1.2 | 0.3 | 0.02 |
after COVID | N/A | 0.2 | 0.9 | 0.8 | 0.3 | 0.02 | |
RY | before COVID | 0.09 | 0.4 | 0.7 | 0.7 | 0.3 | 0.04 |
after COVID | 0.05 | 0.2 | 0.6 | 0.5 | 0.2 | 0.04 | |
KK | before COVID | 0.06 | 0.3 | 1.4 | 1.2 | 0.3 | 0.04 |
after COVID | 0.06 | 0.3 | 1.0 | 1.0 | 0.3 | 0.08 | |
PK | before COVID | 0.05 | 0.3 | 0.5 | 0.6 | 0.2 | 0.02 |
after COVID | 0.03 | 0.2 | 0.6 | 0.6 | 0.2 | 0.02 |
Provinces | Concentration/ Exposure Frequency (EF) | Concentration | |||
---|---|---|---|---|---|
Cluster 1 | Cluster 2 | Cluster 3 | Overall | ||
BKK | CO (mg/m3) | 0.3 | 0.7 | 0.3 | 0.4 |
NO2 (µg/m3) | 12.6 | 28.8 | 6.5 | 14.2 | |
PM2.5 (µg/m3) | 20.2 | 30.7 | 13.8 | 22.4 | |
PM10 (µg/m3) | 35.3 | 54.0 | 27.0 | 39.8 | |
O3 (µg/m3) | 36.0 | 47.8 | 23.9 | 38.1 | |
SO2 (µg/m3) | 7.1 | 3.7 | 8.4 | 6.5 | |
Number of trajectories | 567 | 344 | 185 | 1096 | |
EF (d/y) | 189 | 115 | 62 | 365 | |
CM | CO (mg/m3) | N/A | N/A | N/A | N/A |
NO2 (µg/m3) | 14.8 | 14.0 | 12.6 | 13.7 | |
PM2.5 (µg/m3) | 27.6 | 24.1 | 23.2 | 24.5 | |
PM10 (µg/m3) | 44.4 | 39.0 | 38.7 | 40.1 | |
O3 (µg/m3) | 54.1 | 48.0 | 49.6 | 50.1 | |
SO2 (µg/m3) | 1.7 | 2.0 | 1.5 | 1.7 | |
Number of trajectories | 257 | 383 | 456 | 1096 | |
EF (d/y) | 86 | 128 | 152 | 365 | |
KK | CO (mg/m3) | 0.7 | 0.4 | 0.8 | 0.7 |
NO2 (µg/m3) | 18.5 | 12.3 | 20.7 | 16.8 | |
PM2.5 (µg/m3) | 28.2 | 20.8 | 28.4 | 25.9 | |
PM10 (µg/m3) | 52.1 | 41.6 | 55.6 | 49.8 | |
O3 (µg/m3) | 60.7 | 65.9 | 68.7 | 64.8 | |
SO2 (µg/m3) | 0.7 | 0.4 | 0.8 | 0.7 | |
Number of trajectories | 446 | 340 | 310 | 1096 | |
EF (d/y) | 149 | 113 | 103 | 365 | |
RY | CO (mg/m3) | 0.5 | N/A | 0.6 | 0.5 |
NO2 (µg/m3) | 13.1 | 16.2 | 8.1 | 12.3 | |
PM2.5 (µg/m3) | 16.4 | 19.6 | 8.2 | 14.8 | |
PM10 (µg/m3) | 28.4 | 34.1 | 18.1 | 26.7 | |
O3 (µg/m3) | 45.2 | 53.2 | 37.1 | 44.5 | |
SO2 (µg/m3) | 3.7 | 3.6 | 4.3 | 3.9 | |
Number of trajectories | 605 | 199 | 292 | 1096 | |
EF (d/y) | 201 | 66 | 97 | 365 | |
PK | CO (mg/m3) | 0.3 | 0.3 | 0.3 | |
NO2 (µg/m3) | 13.9 | 13.1 | 13.5 | ||
PM2.5 (µg/m3) | 19.3 | 14.0 | 16.5 | ||
PM10 (µg/m3) | 37.5 | 28.6 | 32.7 | ||
O3 (µg/m3) | 42.6 | 22.7 | 31.8 | ||
SO2 (µg/m3) | 2.1 | 2.3 | 2.2 | ||
Number of trajectories | 504 | 592 | 1096 | ||
EF (d/y) | 168 | 197 | 365 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaewrat, J.; Janta, R.; Sichum, S.; Rattikansukha, C.; Tala, W.; Kanabkaew, T. Human Health Risks and Air Quality Changes Following Restrictions for the Control of the COVID-19 Pandemic in Thailand. Toxics 2022, 10, 520. https://doi.org/10.3390/toxics10090520
Kaewrat J, Janta R, Sichum S, Rattikansukha C, Tala W, Kanabkaew T. Human Health Risks and Air Quality Changes Following Restrictions for the Control of the COVID-19 Pandemic in Thailand. Toxics. 2022; 10(9):520. https://doi.org/10.3390/toxics10090520
Chicago/Turabian StyleKaewrat, Jenjira, Rungruang Janta, Surasak Sichum, Chuthamat Rattikansukha, Wittaya Tala, and Thongchai Kanabkaew. 2022. "Human Health Risks and Air Quality Changes Following Restrictions for the Control of the COVID-19 Pandemic in Thailand" Toxics 10, no. 9: 520. https://doi.org/10.3390/toxics10090520
APA StyleKaewrat, J., Janta, R., Sichum, S., Rattikansukha, C., Tala, W., & Kanabkaew, T. (2022). Human Health Risks and Air Quality Changes Following Restrictions for the Control of the COVID-19 Pandemic in Thailand. Toxics, 10(9), 520. https://doi.org/10.3390/toxics10090520