Assessment of Metal Contamination in Water of Freshwater Aquaculture Farms from a South Asian Tropical Coastal Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Water Sampling Method
2.2. Metal Concentration Assessment and Quality Control
2.3. Statistical Analysis
3. Results and Discussion
3.1. Water Quality Parameters
3.2. Metal Concentration in Water
3.3. Sources Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DoF. Yearbook of Fisheries Statistics of Bangladesh 2017–18; Fisheries Resource Survey System, Department of Fisheries: Dhaka, Bangladesh, 2018.
- Edwards, P. Aquaculture, Poverty Impacts and Livelihoods; Overseas Development Institute: London, UK, 2000. [Google Scholar]
- NACA; FAO. Quarterly Aquatic Animal Disease Report (Asia and Pacific Region); 2004/3; NACA: Bangkok, Thailand, 2004. [Google Scholar]
- Armitage, P.D.; Bowes, M.J.; Vincent, H.M. Long-term changes in macroinvertebrate communities of a heavy metal polluted stream: The River Nent (Cumbria, UK) after 28 years. River Res. Appl. 2007, 23, 997–1015. [Google Scholar] [CrossRef]
- Yuan, G.L.; Liu, C.; Chen, L.; Yang, Z. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. J. Hazard. Mater. 2011, 185, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Ukah, B.U.; Egbueri, J.C.; Unigwe, C.O.; Ubido, O.E. Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. Int. J. Energy Water Resour. 2019, 3, 291–303. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, M.; Hossain, M.B.; Ali, M.M.; Hossain, M.K.; Habib, A.; Semme, S.A.; Rakib, M.R.J.; Rahman, M.A.; Yu, J.; Al-Sadoon, M.K.; et al. Human health risk assessment for exposure to heavy metals in finfish and shellfish from a tropical estuary. J. King Saud Univ.-Sci. 2022, 34, 102035. [Google Scholar] [CrossRef]
- Hossain, M.B.; Tanjin, F.; Rahman, M.S.; Yu, J.; Akhter, S.; Noman, M.A.; Sun, J. Metals Bioaccumulation in 15 Commonly Consumed Fishes from the Lower Meghna River and Adjacent Areas of Bangladesh and Associated Human Health Hazards. Toxics 2022, 10, 139. [Google Scholar] [CrossRef]
- Sultana, S.; Hossain, M.B.; Choudhury, T.R.; Yu, J.; Rana, M.S.; Noman, M.A.; Hosen, M.M.; Paray, B.A.; Arai, T. Ecological and Human Health Risk Assessment of Heavy Metals in Cultured Shrimp and Aquaculture Sludge. Toxics 2022, 10, 175. [Google Scholar] [CrossRef]
- Hossain, M.B.; Ahmed, A.S.S.; Sarker, M.; Islam, S. Human health risks of Hg, As, Mn, and Cr through consumption of fish, Ticto barb (Puntius ticto) from a tropical river, Bangladesh. Environ. Sci. Pollut. Res. 2018, 25, 31727–31736. [Google Scholar] [CrossRef]
- Hossain, M.B.; Runu, U.H.; Sarker, M.; Hossain, M.; Parvin, A. Vertical distribution and contamination assessment of heavy metals in sediment cores of ship breaking area of Bangladesh. Environ. Geochem. Health 2021, 43, 4235–4249. [Google Scholar] [CrossRef]
- Dural, M.; Göksu, M.Z.L.; Özak, A.A. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem. 2007, 102, 415–421. [Google Scholar] [CrossRef]
- Caeiro, S.C. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- Tsuji, L.J.S.; Karagatzides, J.D. Chronic lead exposure, body condition, and testis mass in wild mallard ducks. Bull. Environ. Contam. Toxicol. 2001, 67, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Matusch, A.; Depboylu, C.; Palm, C.; Wu, B.; Höglinger, G.U.; Schäfer, M.K.H.; Becker, J.S. Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Am. Soc. Mass Spectr. 2010, 21, 161–171. [Google Scholar] [CrossRef]
- Altamura, S.; Muckenthaler, M.U. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J. Alzheimers Dis. 2009, 16, 879–895. [Google Scholar] [CrossRef]
- Ullah, A.A.; Maksud, M.A.; Khan, S.R.; Lutfa, L.N.; Quraishi, S.B. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicol. Rep. 2017, 4, 574–579. [Google Scholar] [CrossRef]
- Saha, N.; Mollah, M.Z.I.; Alam, M.F.; Rahman, M.S. Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 2016, 70, 110–118. [Google Scholar] [CrossRef]
- Saha, N.; Zaman, M.R. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environ. Monit. Assess. 2013, 185, 3867–3878. [Google Scholar] [CrossRef]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater, 19th ed.; APHA: Washington, DC, USA, 1995. [Google Scholar]
- Swingle, H.S. Relationship of pH of Pond Waters to Their Suitability for Fish Culture. In Proceedings—Pacific Science Congress; Pacific Science Association: Honolulu, HI, USA, 1961; Volume 9, pp. 72–75. [Google Scholar]
- Jamabo, N.A. Ecology of Tympanotonus fuscatus (Linnaeus, 1758) in the Mangrove Swamps of the Upper Bonny River, Niger Delta, Nigeria. Ph.D. Thesis, Rivers State University of Science and Technology, Port Harcourt, Nigeria, 2008; p. 231. [Google Scholar]
- Banerjea, S.M. Water quality and soil condition of fish ponds in some states of India in relation to fish production. Indian J. Fish. 1967, 14, 115–144. [Google Scholar]
- Sarkar, T.; Alam, M.M.; Parvin, N.; Fardous, Z.; Chowdhury, A.Z.; Hossain, S.; Haque, M.E.; Biswas, N. Assessment of heavy metals contamination and human health risk in shrimp collected from different farms and rivers at Khulna-Satkhira region, Bangladesh. Toxicol. Rep. 2016, 3, 346–350. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Ali, M.M.; Islam, M.S. Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2017, 8, 273–279. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017.
- EU. Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption; EU’s Drinking Water Standards; EU: Brussels, Belgium, 1998.
- Rahman, M.S.; Hossain, M.B.; Babu, S.O.F.; Rahman, M.; Ahmed, A.S.; Jolly, Y.N.; Choudhury, T.R.; Begum, B.A.; Kabir, J.; Akter, S. Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Mar. Pollut. Bull. 2019, 141, 137–146. [Google Scholar] [CrossRef]
- Elghobashy, H.; Zaghloul, K.; Metwally, M. Effect of some water pollutants on the nile tilapia, Oreochromis niloticus collected from the river nile and some Egyptian lakes. Egypt. J. Aquatic Biol. Fish. 2001, 5, 251–279. [Google Scholar] [CrossRef]
- EPA 440/5-86-001; Quality Criteria for Water. United States Environmental Protection Agency (USEPA), Office of Water Regulations and Standards: Washington, DC, USA, 1986.
- Kar, D.; Sur, P.; Mandai, S.K.; Saha, T.; Kole, R.K. Assessment of heavy metal pollution in surface water. Int. J. Environ. Sci. Technol. 2008, 5, 119–124. [Google Scholar] [CrossRef]
- Kükrer, S.; Seker, S.; Abacı, Z.T.; Kutlu, B. Ecological risk assessment of heavy metals in surface sediments of northern littoral zone of Lake Çıldır, Ardahan, Turkey. Environ. Monit. Assess. 2014, 186, 3847–3857. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.K.; Abessa, D.M.; Machado, E.C. Geochemical and ecotoxicological assessment for estuarine surface sediments from Southern Brazil. Mar. Environ. Res. 2013, 91, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Guo, J.; Chai, S.; Cai, J.; Xue, L.; Zhang, Q. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere 2015, 134, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, K.M.; Otomo, K.; Ogawa, Y.; Shikazono, N. Seasonal and spatial distribution of trace elements in the water and sediments of the Tsurumi River in Japan. Environ. Monit. Assess. 2012, 184, 265–279. [Google Scholar] [CrossRef] [PubMed]
St. No. | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | Mean ± SD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 7.6 | 8.7 | 8.3 | 8.8 | 8.9 | 8.5 | 8.23 | 8.40 | 8.25 | 8.48 | 7.90 | 8.30 | 8.36 ± 0.36 |
Salinity | 0.9 | 1.7 | 0.9 | 1.2 | 0.6 | 0.7 | 1.0 | 1.1 | 1.2 | 0.9 | 0.6 | 0.5 | 0.94 ± 0.33 |
DO | 3.55 | 3.67 | 4.78 | 4.80 | 4.05 | 3.50 | 5.39 | 4.85 | 5.12 | 5.30 | 5.09 | 5.14 | 4.60 ± 0.71 |
St. | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | 0.043 ± 0.003 | 0.033 ± 0.003 | 0.085 ± 0.013 | 0.077 ± 0.01 | 0.075 ± 0.018 | 0.055 ± 0.012 | 0.065 ± 0.01 | 0.05 ± 0.007 | 0.038 ± 0.001 | 0.04 ± 0.009 | 0.028 ± 0.005 | 0.033 ± 0.005 |
Zn | 0.113 ± 0.009 | 0.022 ± 0.005 | 0.042 ± 0.005 | 0.015 ± 0.01 | 0.025 ± 0.008 | 0.013 ± 0.002 | 0.033 ± 0.013 | 0.033 ± 0.004 | 0.325 ± 0.005 | 0.033 ± 0.006 | 0.05 ± 0.008 | 0.022 ± 0.002 |
Mn | 0.235 ± 0.008 | 0.133 ± 0.01 | 0.107 ± 0.002 | 0.252 ± 0.006 | 0.19 ± 0.010 | 0.098 ± 0.007 | 0.097 ± 0.01 | 0.41 ± 0.100 | 0.253 ± 0.013 | 0.128 ± 0.009 | 0.057 ± 0.009 | 0.148 ± 0.003 |
Sampling Sites | Cu | Zn | Pb | Cd | Cr | Ni | Mn | References |
---|---|---|---|---|---|---|---|---|
Paikgacha (farm) | - | - | 0.013 | 0.002 | 0.010 | - | - | [26] |
Botiaghata (farm) | - | - | 0.010 | 0.002 | 0.030 | - | - | [26] |
Rupsha river | - | - | 0.011 | 0.001 | 0.021 | - | - | [26] |
Gangli (farm) | - | - | 0.014 | 0.001 | 0.010 | - | - | [26] |
Bhairab river | - | - | 0.010 | 0.001 | 0.013 | - | - | [26] |
Satkhira (farm) | - | - | 0.018 | 0.001 | 0.017 | - | - | [26] |
Meghna river | 0.027 | 0.04 | 0.01 | 0.018 | 0.02 | 0.3 | 0.5 | [27] |
Edku lake, Egypt | 0.17 | 0.08 | 0.21 | 0.01 | - | - | - | [31] |
Greater Noakhali (farm) | 0.052 | 0.06 | BDL | BDL | BDL | BDL | 0.176 | Present study |
WHO | 1.0 | 3.0 | 0.01 | 0.003 | 0.05 | - | 0.1 | [28] |
USEPA | 1.0 | 1.0 | 0.05 | 0.005 | 0.1 | - | 0.05 | [32] |
pH | Salinity | DO | Cu | Zn | Mn | |
---|---|---|---|---|---|---|
pH | 1 | |||||
Salinity | 0.251 | 1 | ||||
DO | −0.076 | −0.145 | 1 | |||
Cu | 0.423 | −0.052 | −0.037 | 1 | ||
Zn | −0.343 | 0.204 | 0.153 | −0.279 | 1 | |
Mn | 0.092 | 0.302 | −0.015 | 0.066 | 0.270 | 1 |
Variables | PC1 | PC2 |
---|---|---|
Cu | −0.571 | 0.717 |
Zn | 0.858 | 0.006 |
Mn | 0.544 | 0.743 |
Eigenvalues | 1.357 | 1.066 |
Variance (%) | 45.229 | 35.527 |
Cumulative of Variance (%) | 45.229 | 80.756 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.B.; Miazie, M.R.; Nur, A.-A.U.; Paul, S.K.; Bakar, M.A.; Paray, B.A.; Arai, T. Assessment of Metal Contamination in Water of Freshwater Aquaculture Farms from a South Asian Tropical Coastal Area. Toxics 2022, 10, 536. https://doi.org/10.3390/toxics10090536
Hossain MB, Miazie MR, Nur A-AU, Paul SK, Bakar MA, Paray BA, Arai T. Assessment of Metal Contamination in Water of Freshwater Aquaculture Farms from a South Asian Tropical Coastal Area. Toxics. 2022; 10(9):536. https://doi.org/10.3390/toxics10090536
Chicago/Turabian StyleHossain, Mohammad Belal, Md. Robel Miazie, As-Ad Ujjaman Nur, Shyamal Kumar Paul, Muhammad Abu Bakar, Bilal Ahamad Paray, and Takaomi Arai. 2022. "Assessment of Metal Contamination in Water of Freshwater Aquaculture Farms from a South Asian Tropical Coastal Area" Toxics 10, no. 9: 536. https://doi.org/10.3390/toxics10090536
APA StyleHossain, M. B., Miazie, M. R., Nur, A. -A. U., Paul, S. K., Bakar, M. A., Paray, B. A., & Arai, T. (2022). Assessment of Metal Contamination in Water of Freshwater Aquaculture Farms from a South Asian Tropical Coastal Area. Toxics, 10(9), 536. https://doi.org/10.3390/toxics10090536