Heavy Metals Accumulation in Tissues of Wild and Farmed Barramundi from the Northern Bay of Bengal Coast, and Its Estimated Human Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preservation
2.3. Sample Preparation, Analysis and Quality Control
2.4. Statistical Analysis
2.5. Assessment of Contamination Level
2.5.1. Contamination Factor (CF)
2.5.2. Pollution Load Index (PLI)
2.5.3. Metal Pollution Index (MPI)
2.6. Human Health Risk Assessment
2.6.1. Estimation of Daily Intake (EDI)
2.6.2. Targeted Hazard Quotient (THQ) for Non-Carcinogenic Risk
2.6.3. Hazard Index (HI)
2.6.4. Carcinogenic Risk (CR)
3. Results and Discussion
3.1. Concentrations of Metals in Cultured & Wild Barramundi
3.2. Environmental Risk Assessment
3.3. Human Health Risk Assessment
3.3.1. Estimated Daily Intake (EDI)
3.3.2. Non-Carcinogenic Health Risks (THQ, HI)
3.3.3. Carcinogenic Health Risk (CR)
3.4. Source Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medeiros, R.J.; dos Santos, L.M.G.; Freire, A.S.; Santelli, R.E.; Braga, A.M.C.; Krauss, T.M.; Jacob, S.d.C. Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil. Food Control 2012, 23, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hossain, M.B.; Matin, A.; Sarker, M.S.I. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere 2018, 202, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Noman, M.A.; Narale, D.D.; Feng, W.; Pujari, L.; Sun, J. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environ. Pollut. 2020, 264, 114791. [Google Scholar] [CrossRef]
- Sneddon, E.J.; Hardaway, C.J.; Sneddon, J.; Boggavarapu, K.; Tate, A.S.; Tidwell, S.L.; Douvris, C. Determination of selected metals in rice and cereal by inductively coupled plasma-optical emission spectrometry (ICP-OES). Microchem. J. 2017, 134, 9–12. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ. Chem. Lett. 2018, 16, 903–917. [Google Scholar] [CrossRef]
- Idriss, A.; Ahmad, A. Heavy metal concentrations in fishes from Juru River, estimation of the health risk. Bull. Environ. Contam. Toxicol. 2015, 94, 204–208. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Liu, Y.; Zhang, X.; Ravikumar, B.; Bai, G.; Li, X. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 2018, 191, 626–638. [Google Scholar] [CrossRef]
- Onsanit, S.; Ke, C.; Wang, X.; Wang, K.-J.; Wang, W.-X. Trace elements in two marine fish cultured in fish cages in Fujian province, China. Environ. Pollut. 2010, 158, 1334–1342. [Google Scholar] [CrossRef] [Green Version]
- Azaman, F.; Juahir, H.; Yunus, K.; Azid, A.; Kamarudin, M.K.A.; Toriman, M.E.; Mustafa, A.D.; Amran, M.A.; Hasnam, C.N.C.; Saudi, A.S.M. Heavy metal in fish: Analysis and human health—A review. J. Teknol. 2015, 77, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Masunaga, S. Metal speciation in sediment and their bioaccumulation in fish species of three urban rivers in Bangladesh. Arch. Environ. Contam. Toxicol. 2015, 68, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Makokha, V.A.; Qi, Y.; Shen, Y.; Wang, J. Concentrations, distribution, and ecological risk assessment of heavy metals in the East Dongting and Honghu Lake, China. Expo. Health 2016, 8, 31–41. [Google Scholar] [CrossRef]
- Ouattara, A.A.; Yao, K.M.; Soro, M.P.; Diaco, T.; Trokourey, A. Arsenic and trace metals in three West African rivers: Concentrations, partitioning, and distribution in particle-size fractions. Arch. Environ. Contam. Toxicol. 2018, 75, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Mgbakor, M.; Ochiaka, C.; Ugwu, J.; Okorie, A. Contributions of fish farming to poverty alleviation in Nigeria. Int. J. Agric. Sci. Vet. Med. 2014, 2, 75–82. [Google Scholar]
- Bawuro, A.; Voegborlo, R.; Adimado, A. Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State, Nigeria. J. Environ. Public Health 2018, 2018, 1854892. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Qin, D.; Gao, L.; Hao, Q.; Chen, Z.; Wang, P.; Tang, S.; Wu, S.; Jiang, H.; Qiu, W. Distribution, contents and health risk assessment of heavy metal(loid)s in fish from different water bodies in Northeast China. RSC Adv. 2019, 9, 33130–33139. [Google Scholar] [CrossRef] [Green Version]
- Arulkumar, A.; Paramasivam, S.; Rajaram, R. Toxic heavy metals in commercially important food fishes collected from Palk Bay, Southeastern India. Mar. Pollut. Bull. 2017, 119, 454–459. [Google Scholar] [CrossRef]
- Hossain, M.B.; Tanjin, F.; Rahman, M.S.; Yu, J.; Akhter, S.; Noman, M.A.; Sun, J. Metals Bioaccumulation in 15 Commonly Consumed Fishes from the Lower Meghna River and Adjacent Areas of Bangladesh and Associated Human Health Hazards. Toxics 2022, 10, 139. [Google Scholar] [CrossRef]
- Dadar, M.; Adel, M.; Nasrollahzadeh Saravi, H.; Fakhri, Y. Trace element concentration and its risk assessment in common kilka (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin Rev. 2017, 36, 222–227. [Google Scholar] [CrossRef]
- El-Moselhy, K.M.; Othman, A.I.; Abd El-Azem, H.; El-Metwally, M.E.A. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt. J. Basic Appl. Sci. 2014, 1, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Tanaka, A.; Allinson, G.; Laurenson, L.; Stagnitti, F.; Snow, E. A comparison of trace element concentrations in cultured and wild carp (Cyprinus carpio) of Lake Kasumigaura, Japan. Ecotoxicol. Environ. Saf. 2002, 53, 348–354. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.; Zubcov, E.; Shahidi, F.; Alexis, M. Differentiation of cultured and wild sea bass (Dicentrarchus labrax): Total lipid content, fatty acid and trace mineral composition. Food Chem. 2002, 79, 145–150. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, L.; Li, F.; Liu, C.; Qiu, Z.; Xiao, M.; Cai, Y. Comparison of toxic metal distribution characteristics and health risk between cultured and wild fish captured from Honghu City, China. Int. J. Environ. Res. Public Health 2018, 15, 334. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.; Wilson, J.; Harris, C.; Jeffrey, D. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Usero, J.; Gonzalez-Regalado, E.; Gracia, I. Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of Southern Spain. Environ. Int. 1997, 23, 291–298. [Google Scholar] [CrossRef]
- Usero, J.; Morillo, J.; Gracia, I. Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere 2005, 59, 1175–1181. [Google Scholar] [CrossRef]
- Traina, A.; Bono, G.; Bonsignore, M.; Falco, F.; Giuga, M.; Quinci, E.M.; Vitale, S.; Sprovieri, M. Heavy metals concentrations in some commercially key species from Sicilian coasts (Mediterranean Sea): Potential human health risk estimation. Ecotoxicol. Environ. Saf. 2019, 168, 466–478. [Google Scholar] [CrossRef]
- Rahman, M.; Abdullah-Al-Mamun, M.; Khatun, M.; Khan, A.S.; Sarkar, O.S.; Islam, O.K.; Islam, M. Contamination of Selected Toxic Elements in Integrated Chicken-Fish Farm Settings of Bangladesh and Associated Human Health Risk Assessments. Biol. Trace Elem. Res. 2022, 200, 1–13. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment and Fish Consumption Limits. In Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories; EPA: Washington, DC, USA, 2000; Volume 2. [Google Scholar]
- USEPA. Risk-Based Concentration Table; United States Environmental Protection Agency: Washington, DC, USA; Philadelphia, PA, USA, 2000; Volume 2, pp. 19–383.
- USEPA. Integrated Risk Information System; United States Environmental Protection Agency: Washington, DC, USA, 2008.
- USEPA. USEPA Regional Screening Level (RSL) Summary Table: November 2011; EPA: Washington, DC, USA, 2011.
- Baki, M.A.; Hossain, M.M.; Akter, J.; Quraishi, S.B.; Shojib, M.F.H.; Ullah, A.A.; Khan, M.F. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 2018, 159, 153–163. [Google Scholar] [CrossRef]
- Hossain, M.B.; Ahmed, A.S.S.; Sarker, M.; Islam, S. Human health risks of Hg, As, Mn, and Cr through consumption of fish, Ticto barb (Puntius ticto) from a tropical river, Bangladesh. Environ. Sci. Pollut. Res. 2018, 25, 31727–31736. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, X.; Jin, H.; Feng, H.; Shen, G.; Cao, Y.; Yu, C.; Lu, Z.; Zhang, Q. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011–2016). Chemosphere 2018, 212, 1163–1171. [Google Scholar] [CrossRef]
- USEPA. USEPA Region III Risk-Based Concentration Table: Technical Background Information; Unites States Environmental Protection Agency (EPA): Washington, DC, USA, 2006.
- Vu, C.T.; Lin, C.; Yeh, G.; Villanueva, M.C. Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: Assessment and possible human health implications. Environ. Sci. Pollut. Res. 2017, 24, 19422–19434. [Google Scholar] [CrossRef]
- Wang, W.-X.; Rainbow, P.S. Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 148, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Feng, C.; Quan, W.; Chen, X.; Niu, J.; Shen, Z. Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Mar. Pollut. Bull. 2012, 64, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Görür, F.K.; Keser, R.; Akçay, N.; Dizman, S. Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 2012, 87, 356–361. [Google Scholar] [CrossRef]
- Roesijadi, G. Metallothionein and its role in toxic metal regulation. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1996, 113, 117–123. [Google Scholar] [CrossRef]
- Amiard, J.-C.; Amiard-Triquet, C.; Barka, S.; Pellerin, J.; Rainbow, P. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 2006, 76, 160–202. [Google Scholar] [CrossRef]
- Eisler, R. Compendium of Trace Metals and Marine Biota: Volume 1: Plants and Invertebrates; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1. [Google Scholar]
- Qadir, A.; Malik, R.N. Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the River Chenab, Pakistan. Biol. Trace Elem. Res. 2011, 143, 1524–1540. [Google Scholar] [CrossRef]
- Dhaneesh, K.V.; Gopi, M.; Ganeshamurthy, R.; Kumar, T.T.A.; Balasubramanian, T. Bio-accumulation of metals on reef associated organisms of Lakshadweep Archipelago. Food Chem. 2012, 131, 985–991. [Google Scholar] [CrossRef]
- Moore, J.W.; Ramamoorthy, S. Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Rao, L.; Padmaja, G. Bioaccumulation of heavy metals in M. cyprinoids from the harbor waters of Visakhapatnam. Bull. Pure Appl. Sci. 2000, 19, 77–85. [Google Scholar]
- García-Lestón, J.; Méndez, J.; Pásaro, E.; Laffon, B. Genotoxic effects of lead: An updated review. Environ. Int. 2010, 36, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Fallah, A.A.; Saei-Dehkordi, S.S.; Nematollahi, A.; Jafari, T. Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem. J. 2011, 98, 275–279. [Google Scholar] [CrossRef]
- FAO; WHO Expert Committee on Food Additives; World Health Organization. Evaluation of Certain Food Additives and Contaminants: Twenty-Seventh Report of the Joint FAO; World Health Organization: Geneva, Switzerland, 1983. [Google Scholar]
- WHO. Heavy Metals-Environmental Aspects; Environment Health Criteria No. 85; WHO: Geneva, Switzerland, 1989. [Google Scholar]
- MAFF. Aquatic Environment Monitoring Report No. 52. Monitoring and Surveillance of Non-radioactive Contaminants in the Aquatic Environment and Activities Regulating the Disposal of Wastes at Sea, 1997; Center for Environment, Fisheries and Aquaculture Science: Lowestoft, UK, 2000.
- Ahmed, M.K.; Shaheen, N.; Islam, M.S.; Habibullah-al-Mamun, M.; Islam, S.; Mohiduzzaman, M.; Bhattacharjee, L. Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 2015, 128, 284–292. [Google Scholar] [CrossRef]
- Rahman, M.S.; Molla, A.H.; Saha, N.; Rahman, A. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chem. 2012, 134, 1847–1854. [Google Scholar] [CrossRef]
- WHO. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- MOFL. Bangladesh Gazette, SRO No. 233/Ayen; Bangladesh Ministry of Fisheries and Livestock: Dhaka, Bangladesh, 2014. [Google Scholar]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef]
- FEPA (Federal Environmental Protection Agency). Guidelines and Standards for Environmental Pollution Control in Nigeria; FEPA: Washington, DC, USA, 2003; p. 238. [Google Scholar]
- Moreno, M.; Moreno, A. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Hortic. 2008, 116, 256–263. [Google Scholar] [CrossRef]
- EC. Commission Regulation (EC) No 1881/2006, Setting Maximum Levels for Certain Contaminants in Foodstuffs. Eur. Union Comm. Off. J. Eur. Communities L 2006, 364, 5–24. [Google Scholar]
- Resma, N.S.; Meaze, A.M.H.; Hossain, S.; Khandaker, M.U.; Kamal, M.; Deb, N. The presence of toxic metals in popular farmed fish species and estimation of health risks through their consumption. Phys. Open 2020, 5, 100052. [Google Scholar] [CrossRef]
- Ibrahim, N.K.; El-Regal, M.A.A. Heavy metals accumulation in marine edible molluscs, Timsah Lake, Suez Canal, Egypt. ARPN J. Sci. Technol. 2014, 4, 282–288. [Google Scholar]
- Abdel-Salam, H.A.; Hamdi, S.A. Heavy metals monitoring using commercially important crustaceans and mollusks collected from Egyptian and Saudi Arabia coasts. Anim. Vet. Sci. 2014, 2, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.; Mohamadein, L.I.; Saad, E.M.; Reda, F.; Mahmoud, S.A. Assessment of heavy metals pollution using sediments and bivalve Brachidontes variabilis as bioindicator in the Gulf of Suez, Egypt. Int. J. Mar. Sci. 2016, 6, 1–13. [Google Scholar]
- USEPA. Region 9, Regional Screening Level (RSL) Summery Table (TR = 1E-6, HQ = 1.0); EPA: Washington, DC, USA, 2014.
- WHO. WHO Technical Report Series. Evaluation of Certain Food Additives and Contaminants. Fifty-third Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Available online: http://www.Who.Int/foodsafety/publications/jecfa-reports/en/ (accessed on 20 April 2020).
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Y.; Shou, L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Mar. Pollut. Bull. 2018, 131, 356–364. [Google Scholar] [CrossRef]
- Javed, M.; Usmani, N. Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. SpringerPlus 2016, 5, 776. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual; US Environmental Protection Agency: Washington, DC, USA, 1989.
- Sarower-E-Mahfuj, M.; Hossain, M.B.; Minar, M.H. Biochemical composition of an endangered fish, Labeo bata (Hamilton, 1822) from Bangladesh Waters. Am. J. Food Technol. 2012, 7, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Sultana, S.; Hossain, M.B.; Choudhury, T.R.; Yu, J.; Rana, M.S.; Noman, M.A.; Arai, T. Ecological and Human Health Risk Assessment of Heavy Metals in Cultured Shrimp and Aquaculture Sludge. Toxics 2022, 10, 175. [Google Scholar] [CrossRef]
- Rahman, M.M.; Asaduzzaman, M.; Naidu, R. Arsenic exposure from rice and water sources in the Noakhali district of Bangladesh. Water Qual. Expo. Health 2011, 3, 1–10. [Google Scholar] [CrossRef]
- Üstün, G.E. Occurrence and removal of metals in urban wastewater treatment plants. J. Hazard. Mater. 2009, 172, 833–838. [Google Scholar] [CrossRef]
- Simukoko, C.K.; Mwakalapa, E.B.; Bwalya, P.; Muzandu, K.; Berg, V.; Mutoloki, S.; Polder, A.; Lyche, J.L. Assessment of heavy metals in wild and farmed tilapia (Oreochromis niloticus) on Lake Kariba, Zambia: Implications for human and fish health. Food Addit. Contam. Part A 2022, 39, 74–91. [Google Scholar] [CrossRef] [PubMed]
Cultured | Wild | |||||
---|---|---|---|---|---|---|
Liver | Max | Min | Mean ± SD | Max | Min | Mean ± SD |
Metals | ||||||
Pb | 4.70 | 1.54 | 3.40 ± 1.25 a | 7.71 | 3.50 | 5.5 ± 1.69 b |
Cd | 0.11 | 0.03 | 0.10 ± 0.04 | 0.04 | 0.01 | 0.02 ± 0.02 |
Cr | 0.12 | 0.10 | 0.10 ± 0.03 a | 0.57 | 0.01 | 0.22 ± 0.21 a |
As | 0.03 | 0.01 | 0.03 ± 0.01a | 0.02 | 0.01 | 0.01 ± 0.01b |
Mn | 1.84 | 0.32 | 0.90 ± 0.7 a | 3.34 | 0.86 | 2.20 ± 0.91 b |
Cu | 29.96 | 3.80 | 13.23 ± 10.5 a | 7.50 | 2.20 | 4.50 ± 1.98 b |
Zn | 19.40 | 12.50 | 15.28 ± 2.64a | 19.40 | 10.95 | 15.80 ± 1.9a |
Gill | ||||||
Pb | 5.21 | 1.84 | 2.80 ± 1.42 a | 3.82 | 2.32 | 3.00 ± 0.60 a |
Cd | 0.05 | 0.02 | 0.04 ± 0.01 a | 0.02 | 0.03 | 0.01 ± 0.01a |
Cr | 9.23 | 0.80 | 4.26 ± 4.023 a | 2.27 | 0.26 | 1.23 ± 0.76 b |
As | 0.03 | 0.02 | 0.02 ± 0.03a | 0.10 | 0.02 | 0.03 ± 0.02 a |
Mn | 3.80 | 0.94 | 1.94 ± 1.09 a | 5.33 | 0.24 | 2.90 ± 1.81 a |
Cu | 5.50 | 0.37 | 2.50 ± 1.90 a | 2.40 | 0.13 | 1.40 ± 0.84 a |
Zn | 24.80 | 11.60 | 20.22 ± 5.13a | 24.61 | 18.36 | 20.62 ± 2.37a |
Muscle | ||||||
Pb | 1.89 | 1.26 | 1.22 ± 0.25 a | 1.73 | 0.98 | 1.33 ± 0.30 a |
Cd | 0.03 | 0.07 | 0.02 ± 0.01 a | 0.01 | 0.02 | 0.05 ± 0.03 a |
Cr | 1.61 | 0.10 | 0.52 ± 0.63 a | 0.80 | 0.03 | 0.42 ± 0.32 a |
As | 0.02 | 0.01 | 0.01 ± 0.04a | 0.03 | 0.02 | 0.02 ± 0.05b |
Mn | 0.44 | 0.12 | 0.26 ± 0.15 a | 0.72 | 0.18 | 0.43 ± 0.3 b |
Cu | 0.65 | 0.42 | 0.54 ± 0.10 a | 0.65 | 0.330 | 0.50 ± 0.12 a |
Zn | 4.90 | 2.43 | 3.40 ± 1.0a | 2.91 | 1.88 | 2.40 ± 0.40a |
Competent Organization | Metal Concentration (mg/kg wet wt.) | References | ||||||
---|---|---|---|---|---|---|---|---|
Pb | Cd | Cr | As | Mn | Cu | Zn | ||
Cultured Wild | 1.22 | 0.022 | 0.522 | 0.011 | 0.262 | 0.543 | 3.35 | Present Study |
1.33 | 0.005 | 0.42 | 0.002 | 0.429 | 0.502 | 2.40 | ||
FAO (1983) | 0.5 | 0.05 | - | 1 | - | 30 | 30 | [51] |
WHO (1989) | 2 | 1 | - | - | - | 30 | 40 | [52] |
WHO (1985) | 2 | - | 0.15 | 0.01 | 0.5 | 3 | 10–75 | [56] |
MAFF (2000) | 2 | 0.2 | - | - | - | 20 | 50 | [53] |
EU (2008) | - | 0.05–0.1 | 0.5 | - | - | 0.5–1 | 30 | [61] |
FEPA (2003) | 2 | - | 0.15 | - | 0.5 | 1.3 | 75 | [59] |
Bangladesh Fish | 0.30 | 0.25 | 1 | 5 | 5 | [57] |
River, Location | Nature of Species | Tissues | Pb | Cd | Cr | As | Mn | Cu | Zn | References |
---|---|---|---|---|---|---|---|---|---|---|
Noakhali, Bangladesh | Cultured | Muscle | 1.22 | 0.022 | 0.522 | 0.011 | 0.262 | 0.543 | 3.35 | Present Study |
Wild | Liver | 1.33 | 0.005 | 0.42 | 0.002 | 0.429 | 0.502 | 2.40 | ||
Honghu Lake, China | Cultured | Muscle | 0.21 | 0 | 0.284 | 0 | N/A | 0.85 | 18.94 | [23] |
Wild | liver | 0.053 | 0.006 | 1.95 | 0 | N/A | 0.42 | 16.30 | ||
Bangladesh | Cultured | 0.090 | 0.003 | 1.274 | 1.486 | 2.512 | 1.138 | 1.850 | [54] | |
Bangladesh | Cultured | - | 0.004 | 0.590 | 0.042 | - | 0.874 | 16.205 | [62] | |
T. nilotica | ||||||||||
Bangladesh | Cultured | Muscle | - | 0.006 | 0.577 | 0.045 | - | 1.035 | 20.324 | [62] |
P. pangasius | liver | |||||||||
Bangladesh | Cultured | Muscle | - | 0.004 | 0.623 | 0.035 | - | 0.953 | 2.270 | [62] |
L. rohita | liver | |||||||||
Kasumigaura, Japan | Cultured | 0.032 | 0.0074 | 0.076 | 0.18 | 0.177 | 0.332 | 5.45 | [21] | |
Wild | 0.030 | 0.01 | 0.067 | 0.095 | 0.31 | 0.25 | 5.43 | |||
Aegean Sea | Cultured | Muscle | 1.03 | 0.27 | 0.17 | N/A | 7.25 | 3.87 | 45.1 | [22] |
Wild | liver | 0.84 | 0.17 | 0.15 | N/A | 6.53 | 2.96 | 43.6 | ||
Iran | Cultured | Muscle | 1.11 | 0.097 | 0.57 | 0.934 | 6.262 | 21.813 | 20.973 | [50] |
Wild | liver | 1.20 | 0.13 | 0.63 | 0.179 | 13.932 | 8.398 | 46.742 |
Metals | Cultured | Wild | ||||
---|---|---|---|---|---|---|
Liver | CF | PLI | MPI | CF | PLI | MPI |
Pb | 0.17 | 0.25 | ||||
Cd | 0.20 | 0.062 | ||||
Cr | 0.001 | 0.002 | ||||
As | 0.002 | 0.022 | 0.692 | 0.001 | 0.021 | 0.640 |
Mn | 0.001 | 0.003 | ||||
Cu | 0.294 | 0.099 | ||||
Zn | 0.161 | 0.17 | ||||
Gill | ||||||
Pb | 0.14 | 0.150 | ||||
Cd | 0.113 | 0.023 | ||||
Cr | 0.05 | 0.014 | ||||
As | 0.002 | 0.032 | 0.970 | 0.002 | 0.021 | 0.681 |
Mn | 0.002 | 0.003 | ||||
Cu | 0.055 | 0.031 | ||||
Zn | 0.213 | 0.217 | ||||
Muscle | ||||||
Pb | 0.1 | 0.07 | ||||
Cd | 0.072 | 0.02 | ||||
Cr | 0.006 | 0.005 | ||||
As | 0.001 | 0.012 | 0.26 | 0.0002 | 0.006 | 0.162 |
Mn | 0.003 | 0.0005 | ||||
Cu | 0.012 | 0.011 | ||||
Zn | 0.04 | 0.03 |
Nature of Species | Elements | Mean Concentration (mg/kg) | Recommended Daily Allowance (mg/kg/ Person) [67] | EDIs (mg/day/ Person) |
---|---|---|---|---|
Adult/Child | ||||
Pb | 1.22 | 0.25 | 0.0010/0.0043 | |
Cd | 0.022 | 0.07 | 0.00002/0.0001 | |
Cr | 0.522 | 0.23 | 0.0004/0.002 | |
Cultured | As | 0.011 | 0.15 | 0.00001/0.00004 |
Mn | 0.262 | 5 | 0.0002/0.001 | |
Cu | 0.543 | 35 | 0.0004/0.002 | |
Zn | 3.4 | 0.003/0.012 | ||
Adult/Child | ||||
Pb | 1.33 | 0.25 | 0.0011/0.0047 | |
Cd | 0.005 | 0.07 | 0.000004/0.00002 | |
Wild | Cr | 0.42 | 0.23 | 0.0003/0.001 |
As | 0.002 | 0.15 | 0.000002/0.00001 | |
Mn | 0.43 | 5 | 0.0003/0.002 | |
Cu | 0.50 | 35 | 0.0004/0.002 | |
Zn | 2.40 | 0.0019/0.008 |
Metals | Cultured | Wild | ||||
---|---|---|---|---|---|---|
THQ | HI | CR | THQ | HI | CR | |
Pb | 0.001 | 8.22 × 10−5 | 5.3 × 10−4 | 8.96 × 10−9 | ||
Cd | 2 × 10−5 | 1.1 × 10−7 | 3.96 × 10−6 | 2.5 × 10−8 | ||
Cr | 1. × 10−3 | 2.07 × 10−7 | 1.1 × 10−4 | 1.67 × 10−7 | ||
As | 3.33 × 10−5 | 7.07 × 10−4 | 1.31 × 10−8 | 5.29 × 10−6 | 6.66 × 10−4 | 2.38 × 10−9 |
Mn | 1.43 × 10−6 | 0 | 2.44 × 10−6 | |||
Cu | 1 × 10−5 | 0 | 9.9 × 10−6 | |||
Zn | 1 × 10−5 | 0 | 6.34 × 10−6 |
Pb | Cd | Cr | As | Mn | Cu | Zn | |
Cultured Barramundi | |||||||
Muscle | |||||||
Pb | 1 | ||||||
Cd | 0.21 | 1 | |||||
Cr | −0.41 | −0.17 | −0.20 | ||||
As | −0.06 | −0.02 | 0.55 | 1 | |||
Mn | −0.41 | 0.31 | −0.29 | 0.56 | 1 | ||
Cu | 0.17 | −0.87 | −0.29 | 0.15 | −0.55 | 1 | |
Zn | 0.29 | −0.62 | −0.20 | 0.64 | −0.11 | 0.82 | 1 |
Liver | |||||||
Pb | 1 | ||||||
Cd | 0.82 | 1 | |||||
Cr | 0.89 * | 0.61 | 1 | ||||
As | 1.00 * | 0.83 | 0.87 | 1 | |||
Mn | 0.75 | 0.56 | 0.48 | 0.79 | 1 | ||
Cu | 0.65 | 0.86 | 0.65 | 0.67 | 0.26 | 1 | |
Zn | 0.60 | 0.50 | 0.53 | 0.66 | 0.76 | 0.54 | 1 |
Gill | |||||||
Pb | 1 | ||||||
Cd | −0.02 | 1 | |||||
Cr | −0.70 | 0.06 | 1 | ||||
As | −0.43 | −0.32 | −0.30 | 1 | |||
Mn | 0.07 | 0.86 | −0.30 | −0.03 | 1 | ||
Cu | 0.76 | 0.49 | −0.77 | −0.16 | 0.57 | 1 | |
Zn | 0.33 | 0.59 | −0.49 | 0.10 | 0.50 | 0.82 | 1 |
Wild Barramundi | |||||||
Muscle | |||||||
Pb | 1 | ||||||
Cd | −0.33 | 1 | |||||
Cr | 0.68 | 0.39 | 1 | ||||
As | −0.32 | 0.75 | 0.42 | 1 | |||
Mn | 0.87 | −0.45 | 0.50 | −0.22 | 1 | ||
Cu | 0.93 * | 0.01 | 0.78 | −0.18 | 0.74 | 1 | |
Zn | 0.56 | −0.07 | 0.28 | −0.18 | 0.74 | 0.65 | 1 |
Liver | |||||||
Pb | 1 | ||||||
Cd | −0.29 | 1 | |||||
Cr | −0.23 | 0.70 | 1 | ||||
As | 0.37 | −0.57 | −0.35 | 1 | |||
Mn | −0.25 | 0.52 | 0.97 * | −0.29 | 1 | ||
Cu | 0.36 | 0.52 | −0.05 | −0.52 | −0.25 | 1 | |
Zn | −0.39 | 0.87 | 0.92 * | −0.66 | 0.84 | 0.21 | 1 |
Gill | |||||||
Pb | 1 | ||||||
Cd | 0.18 | 1 | |||||
Cr | 0.55 | 0.02 | 1 | ||||
As | −0.44 | −0.27 | −0.14 | 1 | |||
Mn | 0.66 | 0.38 | 0.85 | 0.02 | 1 | ||
Cu | 0.86 | 0.36 | 0.81 | −0.21 | 0.95 * | 1 | |
Zn | −0.52 | −0.22 | −0.91 * | −0.15 | −0.97 * | −0.87 | 1 |
PC 1 | PC 2 | PC 3 | PC 4 | PC 5 | PC 6 | PC 7 | |
---|---|---|---|---|---|---|---|
1 | −2.3475 | −0.8181 | −0.2565 | −0.17335 | −1.3231 | −0.69377 | −0.4862 |
2 | 0.2175 | −1.5861 | 0.6601 | 1.1443 | 0.49778 | 2.0035 | −0.62232 |
3 | 0.11952 | −1.1878 | 0.78617 | 0.6952 | −0.33164 | 0.22519 | −0.13874 |
4 | −0.12468 | −1.2071 | 0.53131 | −1.6902 | 0.86054 | −0.93909 | 0.57079 |
5 | 0.21705 | −1.2411 | 0.37336 | −0.94002 | −0.29796 | 0.081791 | 0.88353 |
6 | −2.3104 | 1.4381 | −0.33613 | −0.3772 | 0.60962 | 0.87572 | −0.16499 |
7 | 0.50843 | 0.52725 | 0.39175 | 0.033328 | −0.90721 | −1.2461 | 0.58149 |
8 | 0.026057 | 0.99566 | 0.314 | 0.58778 | 0.30979 | 1.2507 | 1.5251 |
9 | 0.20131 | 0.89526 | 0.83414 | −0.11634 | 1.4347 | −0.3482 | 1.4285 |
10 | 0.15533 | 0.9525 | 1.6299 | 1.2301 | 0.11953 | −1.0061 | −1.8325 |
11 | 0.082446 | −0.59466 | −2.6017 | 1.7433 | 1.0272 | −0.93055 | 0.37858 |
12 | 0.89262 | 0.64168 | −1.077 | −1.012 | −1.5426 | 1.4946 | −0.32344 |
13 | 0.93056 | 0.13045 | −0.70893 | −0.59126 | −0.07717 | −0.54195 | −0.6027 |
14 | 0.7807 | 0.41904 | −0.55634 | −1.2326 | 1.257 | 0.14176 | −1.7887 |
15 | 0.65111 | 0.63482 | 0.015851 | 0.69903 | −1.6366 | −0.36747 | 0.5916 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahity, T.; Islam, M.R.U.; Bhuiyan, N.Z.; Choudhury, T.R.; Yu, J.; Noman, M.A.; Hosen, M.M.; Quraishi, S.B.; Paray, B.A.; Arai, T.; et al. Heavy Metals Accumulation in Tissues of Wild and Farmed Barramundi from the Northern Bay of Bengal Coast, and Its Estimated Human Health Risks. Toxics 2022, 10, 410. https://doi.org/10.3390/toxics10080410
Tahity T, Islam MRU, Bhuiyan NZ, Choudhury TR, Yu J, Noman MA, Hosen MM, Quraishi SB, Paray BA, Arai T, et al. Heavy Metals Accumulation in Tissues of Wild and Farmed Barramundi from the Northern Bay of Bengal Coast, and Its Estimated Human Health Risks. Toxics. 2022; 10(8):410. https://doi.org/10.3390/toxics10080410
Chicago/Turabian StyleTahity, Tanha, Md. Rakeb Ul Islam, Nurer Zaman Bhuiyan, Tasrina Rabia Choudhury, Jimmy Yu, Md. Abu Noman, Mohammad Mozammal Hosen, Shamshad B. Quraishi, Bilal Ahamad Paray, Takaomi Arai, and et al. 2022. "Heavy Metals Accumulation in Tissues of Wild and Farmed Barramundi from the Northern Bay of Bengal Coast, and Its Estimated Human Health Risks" Toxics 10, no. 8: 410. https://doi.org/10.3390/toxics10080410
APA StyleTahity, T., Islam, M. R. U., Bhuiyan, N. Z., Choudhury, T. R., Yu, J., Noman, M. A., Hosen, M. M., Quraishi, S. B., Paray, B. A., Arai, T., & Hossain, M. B. (2022). Heavy Metals Accumulation in Tissues of Wild and Farmed Barramundi from the Northern Bay of Bengal Coast, and Its Estimated Human Health Risks. Toxics, 10(8), 410. https://doi.org/10.3390/toxics10080410