Concurrent Assessment of Phthalates/HEXAMOLL® DINCH Exposure and Wechsler Intelligence Scale for Children Performance in Three European Cohorts of the HBM4EU Aligned Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Outcome
2.3. Exposure
2.4. Chemical Analysis
2.4.1. Phthalates
2.4.2. HEXAMOLL® DINCH
2.4.3. Creatinine
2.5. Potential Confounders
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Internal Consistency
4.2. External Consistency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aker, A.; Caron-Beaudoin, É.; Ayotte, P.; Ricard, S.; Gilbert, V.; Avard, E.; Lemire, M. Non-Persistent Exposures from Plasticizers or Plastic Constituents in Remote Arctic Communities: A Case for Further Research. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Calafat, A.M. Human Body Burdens of Chemicals Used in Plastic Manufacture. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2063–2078. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Barr, D.B.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Caudill, S.P.; Brock, J.W.; Needham, L.L.; Calafat, A.M. Urinary Levels of Seven Phthalate Metabolites in the U.S. Population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect. 2004, 112, 331–338. [Google Scholar] [CrossRef]
- den Hond, E.; Govarts, E.; Willems, H.; Smolders, R.; Casteleyn, L.; Kolossa-Gehring, M.; Schwedler, G.; Seiwert, M.; Fiddicke, U.; Castaño, A.; et al. First Steps toward Harmonized Human Biomonitoring in Europe: Demonstration Project to Perform Human Biomonitoring on a European Scale. Environ. Health Perspect. 2015, 123, 255–263. [Google Scholar] [CrossRef]
- Philippat, C.; Rolland, M.; Lyon-Caen, S.; Pin, I.; Sakhi, A.K.; Sabaredzovic, A.; Thomsen, C.; Slama, R. Pre- and Early Post-Natal Exposure to Phthalates and DINCH in a New Type of Mother-Child Cohort Relying on within-Subject Pools of Repeated Urine Samples. Environ. Pollut. 2021, 287, 117650. [Google Scholar] [CrossRef] [PubMed]
- Schwedler, G.; Conrad, A.; Rucic, E.; Koch, H.M.; Leng, G.; Schulz, C.; Schmied-Tobies, M.I.H.; Kolossa-Gehring, M. Hexamoll® DINCH and DPHP Metabolites in Urine of Children and Adolescents in Germany. Human Biomonitoring Results of the German Environmental Survey GerES V, 2014–2017. Int. J. Hyg. Environ. Health 2020, 229, 113397. [Google Scholar] [CrossRef]
- Schwedler, G.; Rucic, E.; Lange, R.; Conrad, A.; Koch, H.M.; Pälmke, C.; Brüning, T.; Schulz, C.; Schmied-Tobies, M.I.H.; Daniels, A.; et al. Phthalate Metabolites in Urine of Children and Adolescents in Germany. Human Biomonitoring Results of the German Environmental Survey GerES V, 2014–2017. Int. J. Hyg. Environ. Health 2020, 225, 113444. [Google Scholar] [CrossRef]
- Correia-Sá, L.; Schütze, A.; Norberto, S.; Calhau, C.; Domingues, V.F.; Koch, H.M. Exposure of Portuguese Children to the Novel Non-Phthalate Plasticizer Di-(Iso-Nonyl)-Cyclohexane-1,2-Dicarboxylate (DINCH). Environ. Int. 2017, 102, 79–86. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials Enzymes and Processing Aids (CEP); Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; et al. Update of the Risk Assessment of Di-Butylphthalate (DBP), Butyl-Benzyl-Phthalate (BBP), Bis(2-Ethylhexyl)Phthalate (DEHP), Di-Isononylphthalate (DINP) and Di-Isodecylphthalate (DIDP) for Use in Food Contact Materials. EFSA J. 2019, 17, 5838. [Google Scholar] [CrossRef]
- Kasper-Sonnenberg, M.; Koch, H.M.; Apel, P.; Rüther, M.; Pälmke, C.; Brüning, T.; Kolossa-Gehring, M. Time Trend of Exposure to the Phthalate Plasticizer Substitute DINCH in Germany from 1999 to 2017: Biomonitoring Data on Young Adults from the Environmental Specimen Bank (ESB). Int. J. Hyg. Environ. Health 2019, 222, 1084–1092. [Google Scholar] [CrossRef]
- Testai, E.; Hartemann, P.; Rastogi, S.C.; Bernauer, U.; Piersma, A.; de Jong, W.; Gulliksson, H.; Sharpe, R.; Schubert, D.; Rodríguez-Farre, E. The Safety of Medical Devices Containing DEHP Plasticized PVC or Other Plasticizers on Neonates and Other Groups Possibly at Risk (2015 Update). Regul. Toxicol. Pharmacol. 2016, 76, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Tasker, R.C.; Sharpe, R.M. Dealing with Phthalates in Medical Devices: A Case of Primum Non Nocere (First Do No Harm)? Intensive Care Med. 2016, 42, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Gyllenhammar, I.; Glynn, A.; Jönsson, B.A.G.; Lindh, C.H.; Darnerud, P.O.; Svensson, K.; Lignell, S. Diverging Temporal Trends of Human Exposure to Bisphenols and Plastizisers, Such as Phthalates, Caused by Substitution of Legacy EDCs? Environ. Res. 2017, 153, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lemke, N.; Murawski, A.; Lange, R.; Weber, T.; Apel, P.; Dębiak, M.; Koch, H.M.; Kolossa-Gehring, M. Substitutes Mimic the Exposure Behaviour of REACH Regulated Phthalates—A Review of the German HBM System on the Example of Plasticizers. Int. J. Hyg. Environ. Health 2021, 236, 113780. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Nielsen, O.; Koch, H.M.; Skakkebaek, N.E.; Juul, A.; Jørgensen, N.; Andersson, A.M. Changes in Urinary Excretion of Phthalates, Phthalate Substitutes, Bisphenols and Other Polychlorinated and Phenolic Substances in Young Danish Men; 2009–2017. Int. J. Hyg. Environ. Health 2020, 223, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, A.; Shu, H.; Broeren, M.A.C.; Lindh, C.H.; Peeters, R.P.; Kortenkamp, A.; Demeneix, B.; Bornehag, C.G.; Korevaar, T.I.M. Association of Phthalate Exposure with Thyroid Function during Pregnancy. Environ. Int. 2021, 157, 106795. [Google Scholar] [CrossRef]
- Giovanoulis, G.; Alves, A.; Papadopoulou, E.; Cousins, A.P.; Schütze, A.; Koch, H.M.; Haug, L.S.; Covaci, A.; Magnér, J.; Voorspoels, S. Evaluation of Exposure to Phthalate Esters and DINCH in Urine and Nails from a Norwegian Study Population. Environ. Res. 2016, 151, 80–90. [Google Scholar] [CrossRef]
- Pacyga, D.C.; Sathyanarayana, S.; Strakovsky, R.S. Dietary Predictors of Phthalate and Bisphenol Exposures in Pregnant Women. Adv. Nutr. 2019, 10, 803–815. [Google Scholar] [CrossRef]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Brüning, T. Assessing Exposure to Phthalates—The Human Biomonitoring Approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef]
- Koch, H.M.; Lorber, M.; Christensen, K.L.Y.; Pälmke, C.; Koslitz, S.; Brüning, T. Identifying Sources of Phthalate Exposure with Human Biomonitoring: Results of a 48h Fasting Study with Urine Collection and Personal Activity Patterns. Int. J. Hyg. Environ. Health 2013, 216, 672–681. [Google Scholar] [CrossRef]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbühler, K. What Are the Sources of Exposure to Eight Frequently Used Phthalic Acid Esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.J.; Chang, Y.H.; Hu, A.; Chen, M.L.; Sun, C.W.; Situmorang, R.F.; Wu, M.T.; Wang, S.L. Personal Care Products Use and Phthalate Exposure Levels among Pregnant Women. Sci. Total Environ. 2019, 648, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Sakhi, A.K.; Sabaredzovic, A.; Cequier, E.; Thomsen, C. Phthalate Metabolites in Norwegian Mothers and Children: Levels, Diurnal Variation and Use of Personal Care Products. Sci. Total Environ. 2017, 599, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Giovanoulis, G.; Bui, T.; Xu, F.; Papadopoulou, E.; Padilla-Sanchez, J.A.; Covaci, A.; Haug, L.S.; Cousins, A.P.; Magnér, J.; Cousins, I.T.; et al. Multi-Pathway Human Exposure Assessment of Phthalate Esters and DINCH. Environ. Int. 2018, 112, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.; Ougier, E. 1st Substance-Group Specific Derivation of EU-Wide Health-Based Guidance Values; Deliverable Report D5.2 of the HBM4EU Project Co-Funded under H2020; HBM4EU, European Union: Dessau-Roßlau, Germany, 2017. [Google Scholar]
- Koch, H.M.; Schütze, A.; Pälmke, C.; Angerer, J.; Brüning, T. Metabolism of the Plasticizer and Phthalate Substitute Diisononyl- Cyclohexane-1,2-Dicarboxylate (DINCH®) in Humans after Single Oral Doses. Arch. Toxicol. 2013, 87, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Vorkamp, K.; Castaño, A.; Antignac, J.P.; Boada, L.D.; Cequier, E.; Covaci, A.; Esteban López, M.; Haug, L.S.; Kasper-Sonnenberg, M.; Koch, H.M.; et al. Biomarkers, Matrices and Analytical Methods Targeting Human Exposure to Chemicals Selected for a European Human Biomonitoring Initiative. Environ. Int. 2021, 146, 106082. [Google Scholar] [CrossRef]
- Larsson, K.; Ljung Björklund, K.; Palm, B.; Wennberg, M.; Kaj, L.; Lindh, C.H.; Jönsson, B.A.G.; Berglund, M. Exposure Determinants of Phthalates, Parabens, Bisphenol A and Triclosan in Swedish Mothers and Their Children. Environ. Int. 2014, 73, 323–333. [Google Scholar] [CrossRef]
- Hartmann, C.; Uhl, M.; Weiss, S.; Koch, H.M.; Scharf, S.; König, J. Human Biomonitoring of Phthalate Exposure in Austrian Children and Adults and Cumulative Risk Assessment. Int. J. Hyg. Environ. Health 2015, 218, 489–499. [Google Scholar] [CrossRef]
- Haug, L.S.; Sakhi, A.K.; Cequier, E.; Casas, M.; Maitre, L.; Basagana, X.; Andrusaityte, S.; Chalkiadaki, G.; Chatzi, L.; Coen, M.; et al. In-Utero and Childhood Chemical Exposome in Six European Mother-Child Cohorts. Environ. Int. 2018, 121, 751–763. [Google Scholar] [CrossRef]
- Tait, S.; Carli, F.; Busani, L.; Buzzigoli, E.; della Latta, V.; Deodati, A.; Fabbrizi, E.; Gaggini, M.; Maranghi, F.; Tassinari, R.; et al. Biomonitoring of Bis(2-Ethylhexyl)Phthalate (DEHP) in Italian Children and Adolescents: Data from LIFE PERSUADED Project. Environ. Res. 2020, 185, 109428. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, F.; Wang, Y.; Ning, Y.; Yang, J.Y.; Zhou, Y.K. Phthalate Levels and Related Factors in Children Aged 6–12 Years. Environ. Pollut. 2017, 220, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Luís, C.; Algarra, M.; Câmara, J.S.; Perestrelo, R. Comprehensive Insight from Phthalates Occurrence: From Health Outcomes to Emerging Analytical Approaches. Toxics 2021, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Nielsen, J.K.S.; Mørck, T.A.; Hansen, P.W.; Jensen, J.F.; Nielsen, O.; Andersson, A.M.; Knudsen, L.E. Urinary Excretion of Phthalate Metabolites, Phenols and Parabens in Rural and Urban Danish Mother-Child Pairs. Int. J. Hyg. Environ. Health 2013, 216, 772–783. [Google Scholar] [CrossRef]
- Heindel, J.J.; Balbus, J.; Birnbaum, L.; Brune-Drisse, M.N.; Grandjean, P.; Gray, K.; Landrigan, P.J.; Sly, P.D.; Suk, W.; Slechta, D.C.; et al. Developmental Origins of Health and Disease: Integrating Environmental Influences. Endocrinology 2015, 156, 3416–3421. [Google Scholar] [CrossRef]
- Baken, K.A.; Lambrechts, N.; Remy, S.; Mustieles, V.; Rodríguez-Carrillo, A.; Neophytou, C.M.; Olea, N.; Schoeters, G. A Strategy to Validate a Selection of Human Effect Biomarkers Using Adverse Outcome Pathways: Proof of Concept for Phthalates and Reproductive Effects. Environ. Res. 2019, 175, 235–256. [Google Scholar] [CrossRef]
- Mattila, T.; Santonen, T.; Andersen, H.R.; Katsonouri, A.; Szigeti, T.; Uhl, M.; Wąsowicz, W.; Lange, R.; Bocca, B.; Ruggieri, F.; et al. Scoping Review—the Association between Asthma and Environmental Chemicals. Int. J. Environ. Res. Public Health 2021, 18, 1323. [Google Scholar] [CrossRef]
- Philips, E.M.; Jaddoe, V.W.V.; Trasande, L. Effects of Early Exposure to Phthalates and Bisphenols on Cardiometabolic Outcomes in Pregnancy and Childhood. Reprod. Toxicol. 2017, 68, 105–118. [Google Scholar] [CrossRef]
- Bølling, A.K.; Sripada, K.; Becher, R.; Bekö, G. Phthalate Exposure and Allergic Diseases: Review of Epidemiological and Experimental Evidence. Environ. Int. 2020, 139, 105706. [Google Scholar] [CrossRef]
- Kim, K.N.; Kim, H.Y.; Lim, Y.H.; Shin, C.H.; Kim, J.I.; Kim, B.N.; Lee, Y.A.; Hong, Y.C. Prenatal and Early Childhood Phthalate Exposures and Thyroid Function among School-Age Children. Environ. Int. 2020, 141, 105782. [Google Scholar] [CrossRef]
- Jurewicz, J.; Hanke, W. Exposure to Phthalates: Reproductive Outcome and Children Health. A Review of Epidemiological Studies. Int. J. Occup. Med. Environ. Health 2011, 24, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Ejaredar, M.; Nyanza, E.C.; ten Eycke, K.; Dewey, D. Phthalate Exposure and Childrens Neurodevelopment: A Systematic Review. Environ. Res. 2015, 142, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, X.Z.; Huang, X.; Wang, M.; Wu, J. The Association between Prenatal Exposure to Phthalates and Cognition and Neurobehavior of Children-Evidence from Birth Cohorts. NeuroToxicology 2019, 73, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Minatoya, M.; Kishi, R. A Review of Recent Studies on Bisphenol a and Phthalate Exposures and Child Neurodevelopment. Int. J. Environ. Res. Public Health 2021, 18, 3585. [Google Scholar] [CrossRef] [PubMed]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Neurological Processes and Neural Health: A Literature Review. Pharmacol. Rep. 2021, 73, 386–404. [Google Scholar] [CrossRef]
- Lee, D.W.; Kim, M.S.; Lim, Y.H.; Lee, N.; Hong, Y.C. Prenatal and Postnatal Exposure to Di-(2-Ethylhexyl) Phthalate and Neurodevelopmental Outcomes: A Systematic Review and Meta-Analysis. Environ. Res. 2018, 167, 558–566. [Google Scholar] [CrossRef]
- Bryan, J.; Osendarp, S.; Hughes, D.; Calvaresi, E.; Baghurst, K.; van Klinken, J.W. Nutrients for Cognitive Development in School-Aged Children. Nutr. Rev. 2004, 62, 295–306. [Google Scholar] [CrossRef]
- Jankowska, A.; Nazareth, L.; Kaleta, D.; Polanska, K. Review of the Existing Evidence for Sex-Specific Relationships between Prenatal Phthalate Exposure and Children’s Neurodevelopment. Int. J. Environ. Res. Public Health 2021, 18, 13013. [Google Scholar] [CrossRef]
- HBM4EU. The European Human Biomonitoring Initiative (HBM4EU). Available online: https://www.hbm4eu.eu/ (accessed on 1 August 2022).
- Ougier, E.; Ganzleben, C.; Lecoq, P.; Bessems, J.; David, M.; Schoeters, G.; Lange, R.; Meslin, M.; Uhl, M.; Kolossa-Gehring, M.; et al. Chemical Prioritisation Strategy in the European Human Biomonitoring Initiative (HBM4EU)—Development and Results. Int. J. Hyg. Environ. Health 2021, 236, 113778. [Google Scholar] [CrossRef]
- Gilles, L.; Govarts, E.; Rambaud, L.; Vogel, N.; Castaño, A.; Esteban López, M.; Rodriguez Martin, L.; Koppen, G.; Remy, S.; Vrijheid, M.; et al. HBM4EU Combines and Harmonises Human Biomonitoring Data across the EU, Building on Existing Capacity—The HBM4EU Survey. Int. J. Hyg. Environ. Health 2021, 237, 113809. [Google Scholar] [CrossRef]
- Gilles, L.; Govarts, E.; Rodriguez Martin, L.; Andersson, A.-M.; Appenzeller, B.M.R.; Barbone, F.; Castaño, A.; Coertjens, D.; den Hond, E.; Dzhedzheia, V.; et al. Harmonization of Human Biomonitoring Studies in Europe: Characteristics of the HBM4EU-Aligned Studies Participants. Int. J. Environ. Res. Public Health 2022, 19, 6787. [Google Scholar] [CrossRef] [PubMed]
- Vecchi Brumatti, L.; Rosolen, V.; Mariuz, M.; Piscianz, E.; Valencic, E.; Bin, M.; Athanasakis, E.; D’adamo, P.; Fragkiadoulaki, E.; Calamandrei, G.; et al. Impact of Methylmercury and Other Heavy Metals Exposure on Neurocognitive Function in Children Aged 7 Years: Study Protocol of the Follow-Up. J. Epidemiol. 2021, 31, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Valent, F.; Horvat, M.; Sofianou-Katsoulis, A.; Spiric, Z.; Mazej, D.; Little, D.; Prasouli, A.; Mariuz, M.; Tamburlini, G.; Nakou, S.; et al. Neurodevelopmental Effects of Low-Level Prenatal Mercury Exposure from Maternal Fish Consumption in a Mediterranean Cohort: Study Rationale and Design. J. Epidemiol. 2013, 23, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Kyhl, H.B.; Jensen, T.K.; Barington, T.; Buhl, S.; Norberg, L.A.; Jørgensen, J.S.; Jensen, D.F.G.; Christesen, H.T.; Lamont, R.F.; Husby, S. The Odense Child Cohort: Aims, Design, and Cohort Profile. Paediatr. Perinat. Epidemiol. 2015, 29, 250–258. [Google Scholar] [CrossRef]
- Beck, I.H.; Bilenberg, N.; Davidsen, K.A.; Rasmussen, A.A.; Boye, H.; Jensen, T.K. Prenatal and Early Childhood Predictors of Intelligence Quotient (IQ) in 7-Year-Old Danish Children from the Odense Child Cohort. Scand. J. Public Health 2022, 14034948221077463. [Google Scholar] [CrossRef]
- Hertz-Picciotto, I.; Trnovec, T.; Kočan, A.; Charles, M.J.; Čižnar, P.; Langer, P.; Sovčikova, E.; James, R. PCBs and Early Childhood Development in Slovakia: Study Design and Background. Fresenius Environ. Bull. 2003, 12, 208–214. [Google Scholar]
- Simeone, R.M.; Howards, P.P.; Anderson, E.; Jusko, T.A.; Drobná, B.; Kočan, A.; Čonka, K.; Fabišiková, A.; Murínová, Ľ.P.; Canfield, R.L.; et al. Pre- and Postnatal Polychlorinated Biphenyl Exposure and Cognitive and Behavioral Development at Age 45 Months in a Cohort of Slovak Children. Chemosphere 2022, 287, 132375. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children; The Psychological Corporation: New York, NY, USA, 1949. [Google Scholar]
- Dočkal, V.; Kretová, E.; Kundrátová, B.; Sedlačková, B.; Tesař, M. WISC-III-Wechsler Intelligence Scale for Children Adapted Slovak Version; Testcentrum-Hogrefe: Prague, Slovakia, 2006. [Google Scholar]
- Orsini, A.; Pezzuti, L.; Picone, L. WISC-IV: Contributo Alla Taratura Italiana; [WISC-IV Italian Edition]; Giunti O.S.: Florence, Italy, 2012. [Google Scholar]
- Wechsler, D. WISC-V Wechsler Intelligence Scale for Children, 5th ed.; Vejledning Del 1 Dansk Version, 1st ed.; NCS Pearson, Inc.: Bloomington, MN, USA, 2017. [Google Scholar]
- Esteban López, M.; Göen, T.; Mol, H.; Nübler, S.; Haji-Abbas-Zarrabi, K.; Koch, H.M.; Kasper-Sonnenberg, M.; Dvorakova, D.; Hajslova, J.; Antignac, J.P.; et al. The European Human Biomonitoring Platform—Design and Implementation of a Laboratory Quality Assurance/Quality Control (QA/QC) Programme for Selected Priority Chemicals. Int. J. Hyg. Environ. Health 2021, 234, 113740. [Google Scholar] [CrossRef]
- Mol, H.G.J.; Elbers, I.; Pälmke, C.; Bury, D.; Göen, T.; López, M.E.; Nübler, S.; Vaccher, V.; Antignac, J.P.; Dvořáková, D.; et al. Proficiency and Interlaboratory Variability in the Determination of Phthalate and DINCH Biomarkers in Human Urine: Results from the HBM4EU Project. Toxics 2022, 10, 57. [Google Scholar] [CrossRef]
- Servaes, K.; Voorspoels, S.; Lievens, J.; Noten, B.; Allaerts, K.; van de Weghe, H.; Vanermen, G. Direct Analysis of Phthalate Ester Biomarkers in Urine without Preconcentration: Method Validation and Monitoring. J. Chromatogr. A 2013, 1294, 25–32. [Google Scholar] [CrossRef]
- UNESCO Institute for Statistics. International Standard Classification of Education ISCED 2011; UNESCO Institute for Statistics: Montreal, QC, Canada, 2012; Volume 88. [Google Scholar]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.J.M.; Grande, S.W.; Talsness, C.E.; Grote, K.; Chahoud, I. A Dose-Response Study Following in Utero and Lactational Exposure to Di-(2-Ethylhexyl)-Phthalate (DEHP): Non-Monotonic Dose-Response and Low Dose Effects on Rat Brain Aromatase Activity. Toxicology 2006, 227, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Do, R.P.; Stahlhut, R.W.; Ponzi, D.; vom Saal, F.S.; Taylor, J.A. Non-Monotonic Dose Effects of in Utero Exposure to Di(2-Ethylhexyl) Phthalate (DEHP) on Testicular and Serum Testosterone and Anogenital Distance in Male Mouse Fetuses. Reprod. Toxicol. 2012, 34, 614–621. [Google Scholar] [CrossRef]
- Gao, N.; Hu, R.; Huang, Y.; Dao, L.; Zhang, C.; Liu, Y.; Wu, L.; Wang, X.; Yin, W.; Gore, A.C.; et al. Specific Effects of Prenatal DEHP Exposure on Neuroendocrine Gene Expression in the Developing Hypothalamus of Male Rats. Arch. Toxicol. 2018, 92, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Kwon, H.J.; Hong, S.; Lim, W.R.; Kim, H.; Kim, J.; Kim, C.; Kim, K.S. Potential Nonmonotonous Association between Di(2-Ethylhexyl) Phthalate Exposure and Atopic Dermatitis in Korean Children. Br. J. Dermatol. 2014, 171, 854–860. [Google Scholar] [CrossRef]
- Govarts, E.; Gilles, L.; Rambaud, L.; Vogel, N.; Montazeri, P.; Rodriguez Martin, L.; Schoeters, G.; Berglund, M.; Tägt, J.; Santonen, T.; et al. Update Statistical Analysis Plan for the Co-Funded Studies of WP8. Deliverable Report D 10.12 of the HBM4EU Project Co-Funded under H2020; HBM4EU, European Union: Dessau-Roßlau, Germany, 2021. [Google Scholar]
- Serrano, S.E.; Braun, J.; Trasande, L.; Dills, R.; Sathyanarayana, S. Phthalates and Diet: A Review of the Food Monitoring and Epidemiology Data. Environ. Health A Glob. Access Sci. Source 2014, 13, 43. [Google Scholar] [CrossRef]
- Malin, A.J.; Busgang, S.A.; Cantoral, A.J.; Svensson, K.; Orjuela, M.A.; Pantic, I.; Schnaas, L.; Oken, E.; Baccarelli, A.A.; Téllez-Rojo, M.M.; et al. Quality of Prenatal and Childhood Diet Predicts Neurodevelopmental Outcomes among Children in Mexico City. Nutrients 2018, 10, 1093. [Google Scholar] [CrossRef]
- Manyanga, T.; Tremblay, M.S.; Chaput, J.P.; Katzmarzyk, P.T.; Fogelholm, M.; Hu, G.; Kuriyan, R.; Kurpad, A.; Lambert, E.V.; Maher, C.; et al. Socioeconomic Status and Dietary Patterns in Children from around the World: Different Associations by Levels of Country Human Development? BMC Public Health 2017, 17, 457. [Google Scholar] [CrossRef]
- Kobrosly, R.W.; Parlett, L.E.; Stahlhut, R.W.; Barrett, E.S.; Swan, S.H. Socioeconomic Factors and Phthalate Metabolite Concentrations among United States Women of Reproductive Age. Environ. Res. 2012, 115, 11–17. [Google Scholar] [CrossRef]
- James-Todd, T.M.; Meeker, J.D.; Huang, T.; Hauser, R.; Seely, E.W.; Ferguson, K.K.; Rich-Edwards, J.W.; McElrath, T.F. Racial and Ethnic Variations in Phthalate Metabolite Concentration Changes across Full-Term Pregnancies. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 160–166. [Google Scholar] [CrossRef]
- Rippin, H.L.; Hutchinson, J.; Jewell, J.; Breda, J.J.; Cade, J.E. Child and Adolescent Nutrient Intakes from Current National Dietary Surveys of European Populations. Nutr. Res. Rev. 2019, 32, 38–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority (EFSA). Food Consumption Data. Available online: https://www.efsa.europa.eu/it/data-report/food-consumption-data (accessed on 1 August 2022).
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Sezaki, A.; Imai, T.; Miyamoto, K.; Kawase, F.; Shirai, Y.; Abe, C.; Sanada, M.; Inden, A.; Rato, T.; Sugihara, N.; et al. Association between the Mediterranean Diet Score and Healthy Life Expectancy: A Global Comparative Study. J. Nutr. Health Aging 2022, 26, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Grassi, T.; Bagordo, F.; Panico, A.; de Giorgi, M.; Idolo, A.; Serio, F.; Tumolo, M.R.; de Donno, A. Adherence to Mediterranean Diet of Children Living in Small Southern Italian Villages. Int. J. Food Sci. Nutr. 2020, 71, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Pribisalić, A.; Popović, R.; Salvatore, F.P.; Vatavuk, M.; Mašanović, M.; Hayward, C.; Polašek, O.; Kolčić, I. The Role of Socioeconomic Status in Adherence to the Mediterranean Diet and Body Mass Index Change: A Follow-up Study in the General Population of Southern Croatia. Nutrients 2021, 13, 3802. [Google Scholar] [CrossRef]
- Mendonça, N.; Gregório, M.J.; Salvador, C.; Henriques, A.R.; Canhão, H.; Rodrigues, A.M. Low Adherence to the Mediterranean Diet Is Associated with Poor Socioeconomic Status and Younger Age: A Cross-Sectional Analysis of the EpiDoC Cohort. Nutrients 2022, 14, 1239. [Google Scholar] [CrossRef] [PubMed]
- Granziera, F.; Guzzardi, M.A.; Iozzo, P. Associations between the Mediterranean Diet Pattern and Weight Status and Cognitive Development in Preschool Children. Nutrients 2021, 13, 3723. [Google Scholar] [CrossRef]
- Montazeri, P.; Thomsen, C.; Casas, M.; de Bont, J.; Haug, L.S.; Maitre, L.; Papadopoulou, E.; Sakhi, A.K.; Slama, R.; Saulnier, P.J.; et al. Socioeconomic Position and Exposure to Multiple Environmental Chemical Contaminants in Six European Mother-Child Cohorts. Int. J. Hyg. Environ. Health 2019, 222, 864–872. [Google Scholar] [CrossRef]
- Casas, M.; Valvi, D.; Luque, N.; Ballesteros-Gomez, A.; Carsin, A.E.; Fernandez, M.F.; Koch, H.M.; Mendez, M.A.; Sunyer, J.; Rubio, S.; et al. Dietary and Sociodemographic Determinants of Bisphenol A Urine Concentrations in Pregnant Women and Children. Environ. Int. 2013, 56, 10–18. [Google Scholar] [CrossRef]
- Tyrrell, J.; Melzer, D.; Henley, W.; Galloway, T.S.; Osborne, N.J. Associations between Socioeconomic Status and Environmental Toxicant Concentrations in Adults in the USA: NHANES 2001–2010. Environ. Int. 2013, 59, 328–335. [Google Scholar] [CrossRef]
- Perrier, F.; Giorgis-Allemand, L.; Slama, R.; Philippat, C. Within-Subject Pooling of Biological Samples to Reduce Exposure Misclassification in Biomarker-Based Studies. Epidemiology 2016, 27, 378–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernet, C.; Philippat, C.; Agier, L.; Calafat, A.M.; Ye, X.; Lyon-Caen, S.; Hainaut, P.; Siroux, V.; Schisterman, E.F.; Slama, R. An Empirical Validation of the Within-Subject Biospecimens Pooling Approach to Minimize Exposure Misclassification in Biomarker-Based Studies. Epidemiology 2019, 30, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Guilbert, A.; Rolland, M.; Pin, I.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Slama, R.; Guichardet, K.; Philippat, C. Associations between a Mixture of Phenols and Phthalates and Child Behaviour in a French Mother–Child Cohort with Repeated Assessment of Exposure. Environ. Int. 2021, 156, 106697. [Google Scholar] [CrossRef] [PubMed]
- Hyland, C.; Mora, A.M.; Kogut, K.; Calafat, A.M.; Harley, K.; Deardorff, J.; Holland, N.; Eskenazi, B.; Sagiv, S.K. Prenatal Exposure to Phthalates and Neurodevelopment in the CHAMACOS Cohort. Environ. Health Perspect. 2019, 127, 107010. [Google Scholar] [CrossRef]
- Jankowska, A.; Polańska, K.; Hanke, W.; Wesołowska, E.; Ligocka, D.; Waszkowska, M.; Stańczak, A.; Tartaglione, A.M.; Mirabella, F.; Chiarotti, F.; et al. Prenatal and Early Postnatal Phthalate Exposure and Child Neurodevelopment at Age of 7 Years—Polish Mother and Child Cohort. Environ. Res. 2019, 177, 108626. [Google Scholar] [CrossRef]
- Kim, J.I.; Hong, Y.C.; Shin, C.H.; Lee, Y.A.; Lim, Y.H.; Kim, B.N. The Effects of Maternal and Children Phthalate Exposure on the Neurocognitive Function of 6-Year-Old Children. Environ. Res. 2017, 156, 519–525. [Google Scholar] [CrossRef]
- Li, N.; Papandonatos, G.D.; Calafat, A.M.; Yolton, K.; Lanphear, B.P.; Chen, A.; Braun, J.M. Identifying Periods of Susceptibility to the Impact of Phthalates on Children’s Cognitive Abilities. Environ. Res. 2019, 172, 604–614. [Google Scholar] [CrossRef]
- Huang, H.B.; Chen, H.Y.; Su, P.H.; Huang, P.C.; Sun, C.W.; Wang, C.J.; Chen, H.Y.; Hsiung, C.A.; Wang, S.L. Fetal and Childhood Exposure to Phthalate Diesters and Cognitive Function in Children up to 12 Years of Age: Taiwanese Maternal and Infant Cohort Study. PLoS ONE 2015, 10, e0131910. [Google Scholar] [CrossRef]
- Radke, E.G.; Braun, J.M.; Nachman, R.M.; Cooper, G.S. Phthalate Exposure and Neurodevelopment: A Systematic Review and Meta-Analysis of Human Epidemiological Evidence. Environ. Int. 2020, 137, 105408. [Google Scholar]
- Lange, R.; Apel, P.; Rousselle, C.; Charles, S.; Sissoko, F.; Kolossa-Gehring, M.; Ougier, E. The European Human Biomonitoring Initiative (HBM4EU): Human Biomonitoring Guidance Values for Selected Phthalates and a Substitute Plasticizer. Int. J. Hyg. Environ. Health 2021, 234, 113722. [Google Scholar] [CrossRef]
Characteristics | NAC-II | OCC | PCB Cohort |
---|---|---|---|
Child’s Sex, N (%): | |||
Male | 150 (50.0) | 165 (55.0) | 133 (44.3) |
Female | 150 (50.0) | 135 (45.0) | 167 (55.7) |
Highest education level of the household of the child, N (%): | |||
Low education (ISCED 0–2) | 26 (8.7) | 41 (13.7) | 16 (5.3) |
Medium education (ISCED 3–4) | 139 (46.3) | 154 (51.3) | 222 (74.0) |
High education (ISCED ≥5) | 132 (44.0) | 105 (35.0) | 45 (15.0) |
Missing | 3 (1.0) | 0 (0.0) | 17 (5.7) |
Child’s BMI z-score, mean ± SD (N): | 0.7 ± 1.2 (275) | −0.1 ± 1.0 (294) | 0.7 ± 1.3 (298) |
Biomarkers of Exposure | N | Geometric Mean (95% CI) | 25th Percentile | Median | 75th Percentile | 90th Percentile |
---|---|---|---|---|---|---|
Phthalates (µg/L) | ||||||
MiBP: | ||||||
NAC-II | 299 | 29.6 (26.9–32.4) | 18.6 | 31.9 | 49.8 | 74.1 |
OCC | 300 | 12.2 (11.1–13.4) | 7.2 | 12.4 | 19.2 | 37.4 |
PCB cohort | 295 | 59.7 (53.6–66.4) | 32.4 | 59.1 | 110.1 | 183.4 |
MnBP: | ||||||
NAC-II | 297 | 19.0 (17.2–21.0) | 11.0 | 19.1 | 32.1 | 57 |
OCC | 300 | 12.1 (11.1–13.3) | 7.2 | 12.7 | 20.0 | 29.6 |
PCB cohort | 296 | 75.3 (68.9–82.3) | 45.0 | 74.8 | 128.1 | 213.0 |
MBzP: | ||||||
NAC-II | 299 | 5.6 (5.0–6.3) | 2.8 | 5.9 | 10.8 | 21.3 |
OCC | 297 | 1.3 (1.1–1.4) | 0.6 | 1.2 | 2.6 | 5.1 |
PCB cohort | 287 | 3.5 (3.0–4.1) | 1.0 | 5.0 | 10.1 | 13.8 |
MEP: | ||||||
NAC-II | 300 | 59.1 (52.0–67.2) | 27.8 | 55.5 | 115.5 | 222.2 |
OCC | 294 | 7.2 (6.5–7.9) | 4.2 | 6.7 | 11.8 | 19.3 |
PCB cohort | 295 | 34.6 (30.4–39.4) | 14.8 | 30.3 | 67.4 | 154.2 |
5OH-MEHP: | ||||||
NAC-II | 299 | 17.3 (15.8–18.9) | 10.6 | 17.4 | 27.1 | 46.3 |
OCC | 300 | 4.8 (4.3–5.3) | 2.9 | 5.0 | 7.6 | 12.4 |
PCB cohort c | 296 | 24.9 (23.0–26.9) | 17.0 | 25.3 | 38.6 | 57.4 |
5cx-MEPP: | ||||||
NAC-II | 299 | 21.3 (19.4–23.3) | 12.4 | 21.7 | 38.3 | 53.1 |
OCC | 300 | 6.9 (6.3–7.5) | 4.3 | 6.6 | 10.8 | 37.4 |
PCB cohort | 296 | 34.4 (31.7–37.3) | 22.4 | 35.0 | 53.8 | 81.2 |
5oxo-MEHP: | ||||||
NAC-II | 299 | 8.8 (8.0–9.6) | 5.4 | 8.9 | 14.6 | 23.7 |
OCC | 300 | 3.3 (3.0–3.7) | 2.0 | 3.4 | 5.5 | 8.8 |
PCB cohort | 296 | 21.5 (20.0–23.3) | 15.1 | 21.3 | 32.8 | 46.8 |
5OH-MEHP+5oxo-MEHP: | ||||||
NAC-II | 299 | 26.5 (24.3–28.9) | 15.9 | 27.0 | 42.2 | 65.4 |
OCC | 300 | 8.1 (7.4–8.9) | 5.0 | 8.5 | 12.8 | 21.6 |
PCB cohort | 296 | 46.8 (43.4–50.5) | 31.5 | 47.6 | 70.4 | 102.0 |
5OH-MEHP+5cx-MEPP: | ||||||
NAC-II | 299 | 39.5 (36.1–43.1) | 23.2 | 40.3 | 64.4 | 95.1 |
OCC | 300 | 11.8 (10.8–12.9) | 7.5 | 11.6 | 18.0 | 28.3 |
PCB cohort | 296 | 59.8 (55.3–64.7) | 39.4 | 61.4 | 94.2 | 142.1 |
HEXAMOLL® DINCH (µg/L) | ||||||
OH-MINCH: | ||||||
NAC-II | 300 | 3.6 (3.2–4.1) | 1.8 | 3.3 | 6.1 | 15.8 |
OCC | 300 | 3.2 (2.8–3.7) | 1.5 | 3.0 | 6.5 | 13.0 |
PCB cohort | 300 | 2.3 (2.0–2.6) | 1.2 | 2.0 | 4.1 | 9.0 |
cx-MINCH: | ||||||
NAC-II | 300 | 2.3 (2.0–2.6) | 1.1 | 2.0 | 3.8 | 8.8 |
OCC | 300 | 2.1 (1.9–2.4) | 1.1 | 1.7 | 4.1 | 9.4 |
PCB cohort | 299 | 1.1 (1.0–1.3) | 0.5 | 1.1 | 2.0 | 4.4 |
OH-MINCH+cx-MINCH: | ||||||
NAC-II | 300 | 6.0 (5.3–6.8) | 3.0 | 5.3 | 9.9 | 25.2 |
OCC | 300 | 5.5 (4.8–6.2) | 2.7 | 4.9 | 10.4 | 22.8 |
PCB cohort | 300 | 3.4 (3.0–3.9) | 1.8 | 3.1 | 6.0 | 14.2 |
FSIQ Score | ||||||
---|---|---|---|---|---|---|
Characteristics | NAC-II | p-Value | OCC | p-Value | PCB Cohort | p-Value |
Highest education level of the household of child, mean ± SD: | ||||||
Low education (ISCED 0–2) | 103 ± 10 | <0.01 a | 95 ± 14 | 0.19 a | 56 ± 9 | <0.01 a |
Medium education (ISCED 3–4) | 108 ± 11 | 98 ± 12 | 81 ± 13 | |||
High education (ISCED ≥5) | 112 ± 10 | 100 ± 11 | 91 ± 16 | |||
Child’s sex, mean ± SD: | ||||||
Male | 109 ± 11 | 0.77 a | 97 ± 12 | 0.06 a | 79 ± 16 | 0.09 a |
Female | 109 ± 10 | 100 ± 12 | 82 ± 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosolen, V.; Giordani, E.; Mariuz, M.; Parpinel, M.; Ronfani, L.; Vecchi Brumatti, L.; Bin, M.; Calamandrei, G.; Mustieles, V.; Gilles, L.; et al. Concurrent Assessment of Phthalates/HEXAMOLL® DINCH Exposure and Wechsler Intelligence Scale for Children Performance in Three European Cohorts of the HBM4EU Aligned Studies. Toxics 2022, 10, 538. https://doi.org/10.3390/toxics10090538
Rosolen V, Giordani E, Mariuz M, Parpinel M, Ronfani L, Vecchi Brumatti L, Bin M, Calamandrei G, Mustieles V, Gilles L, et al. Concurrent Assessment of Phthalates/HEXAMOLL® DINCH Exposure and Wechsler Intelligence Scale for Children Performance in Three European Cohorts of the HBM4EU Aligned Studies. Toxics. 2022; 10(9):538. https://doi.org/10.3390/toxics10090538
Chicago/Turabian StyleRosolen, Valentina, Elisa Giordani, Marika Mariuz, Maria Parpinel, Luca Ronfani, Liza Vecchi Brumatti, Maura Bin, Gemma Calamandrei, Vicente Mustieles, Liese Gilles, and et al. 2022. "Concurrent Assessment of Phthalates/HEXAMOLL® DINCH Exposure and Wechsler Intelligence Scale for Children Performance in Three European Cohorts of the HBM4EU Aligned Studies" Toxics 10, no. 9: 538. https://doi.org/10.3390/toxics10090538
APA StyleRosolen, V., Giordani, E., Mariuz, M., Parpinel, M., Ronfani, L., Vecchi Brumatti, L., Bin, M., Calamandrei, G., Mustieles, V., Gilles, L., Govarts, E., Baken, K., Rodriguez Martin, L., Schoeters, G., Sepai, O., Sovcikova, E., Fabelova, L., Šidlovská, M., Kolena, B., ... Barbone, F. (2022). Concurrent Assessment of Phthalates/HEXAMOLL® DINCH Exposure and Wechsler Intelligence Scale for Children Performance in Three European Cohorts of the HBM4EU Aligned Studies. Toxics, 10(9), 538. https://doi.org/10.3390/toxics10090538