Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review
Abstract
:1. Introduction
2. Photocatalysis in Wastewater Treatment: Fundamental Aspects
- Transfer of molecules to the photocatalyst’s surface;
- Adsorption of molecules on the surface;
- Activation of the catalyst and decomposition of adsorbed molecules;
- Desorption of the products;
- Removal of reaction products from the photocatalyst’s surface.
3. Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters
3.1. Homogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters
3.2. Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters
3.3. Hybrid Systems for the Treatment of Pharmaceutical Industry Wastewaters
3.4. Cost Estimation/Operational Costs
4. Conclusions and Prospects for Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konstantinou, I.K.; Albanis, T.A. TiO-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Lalwani, J.; Gupta, A.; Thatikonda, S.; Subrahmanyam, C. An industrial insight on treatment strategies of the pharmaceutical industry effluent with varying qualitative characteristics. J. Environ. Chem. Eng. 2020, 8, 104190. [Google Scholar] [CrossRef]
- Kumari, V.; Tripathi, A.K. Characterization of pharmaceuticals industrial effluent using GC–MS and FT-IR analyses and defining its toxicity. Appl. Water Sci. 2019, 9, 185. [Google Scholar] [CrossRef]
- Nachiappan, S.; Gopinath, K.P. Treatment of pharmaceutical effluent using novel heterogeneous fly ash activated persulfate system. J. Environ. Chem. Eng. 2015, 3, 2229–2235. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Gadipelly, C.; Pérez-González, A.; Yadav, G.D.; Ortiz, I.; Ibáñez, R.; Rathod, V.K.; Marathe, K.V. Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse. Ind. Eng. Chem. Res. 2014, 53, 11571–11592. [Google Scholar] [CrossRef]
- Changotra, R.; Rajput, H.; Dhir, A. Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment. J. Photochem. Photobiol. A Chem. 2019, 376, 175–184. [Google Scholar] [CrossRef]
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef]
- Izário Filho, H.J.; Aguiar, L.G.; Siqueira, A.F.; Kondracki Alcântara, M.A.; Molgero Da Rós, P.C.; Silva Rocha, R.; Santos Napoleão, D.A.; Brandão, J.J. Degradation of Organic Carbon in Pharmaceutical Wastewater: A Kinetic Approach. Water Air Soil Pollut. 2021, 232, 85. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater treatment by advanced oxidation process and their worldwide research trends. Int. J. Environ. Res. Public Health 2020, 17, 170. [Google Scholar] [CrossRef] [Green Version]
- Rueda-Marquez, J.J.; Levchuk, I.; Fernández Ibañez, P.; Sillanpää, M.A. critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Phoon, B.L.; Ong, C.C.; Mohamed Saheed, M.S.; Show, P.L.; Chang, J.S.; Ling, T.C.; Lam, S.S.; Juan, J.C. Conventional and emerging technologies for removal of antibiotics from wastewater. J. Haz. Mat. 2020, 400, 122961. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, M.; Kosma, C.; Albanis, T.; Konstantinou, I. An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale. Sci. Total Environ. 2021, 765, 144163. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Ma, D.; Li, J.; Liu, A.; Chen, C. Carbon Gels-Modified TiO2: Promising Materials for Photocatalysis Applications. Materials 2020, 13, 1734. [Google Scholar] [CrossRef]
- Monteagudo, J.M.; Durán, A.; Culebradas, R.; San Martín, I.; Carnicer, A. Optimization of pharmaceutical wastewater treatment by solar/ferrioxalate photo-catalysis. J. Environ. Manag. 2013, 128, 210–219. [Google Scholar] [CrossRef]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—A review. Chemosphere 2017, 174, 665–688. [Google Scholar] [CrossRef]
- Ribeiro, J.P.; Nunes, M.I. Recent trends and developments in Fenton processes for industrial wastewater treatment—A critical review. Environ. Res. 2021, 197, 110957. [Google Scholar] [CrossRef]
- Sirtori, C.; Zapata, A.; Oller, I.; Gernjak, W.; Agüera, A.; Malato, S. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res. 2009, 43, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Adishkumar, S.; Sivajothi, S.; Rajesh Banu, J. Coupled solar photo-fenton process with aerobic sequential batch reactor for treatment of pharmaceutical wastewater. Desalin. Water Treat. 2012, 48, 89–95. [Google Scholar] [CrossRef]
- Expósito, A.J.; Durán, A.; Monteagudo, J.M.; Acevedo, A. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant. Chemosphere 2016, 150, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, S.; Meschede-Anglada, L.; Serra, A.; Simon, F.X.; Sixto, G.; Casas, N.; Garcia-Montaño, J. Solar photo-Fenton with simultaneous addition of ozone for the treatment of real industrial wastewaters. Water Sci. Technol. 2018, 77, 2497–2508. [Google Scholar] [CrossRef]
- Bansal, P.; Verma, A.; Talwar, S. Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode. Chem. Eng. J. 2018, 349, 838–848. [Google Scholar] [CrossRef]
- Verma, A.; Chhikara, I.; Dixit, D. Photocatalytic treatment of pharmaceutical industry wastewater over TiO2 using immersion well reactor: Synergistic effect coupling with ultrasound. Desalin. Water Treat. 2014, 52, 6591–6597. [Google Scholar] [CrossRef]
- Jallouli, N.; Pastrana-Martínez, L.M.; Ribeiro, A.R.; Moreira, N.F.F.; Faria, J.L.; Hentati, O.; Silva, A.M.T.; Ksibi, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J. 2018, 334, 976–984. [Google Scholar] [CrossRef]
- Talwar, S.; Sangal, V.K.; Verma, A. Feasibility of using combined TiO2 photocatalysis and RBC process for the treatment of real pharmaceutical wastewater. J. Photochem. Photobiol. A Chem. 2018, 353, 263–270. [Google Scholar] [CrossRef]
- Gómez-Oliván, L.M.; Solís-Casados, D.A.; Islas-Flores, H.; Juan-Reyes, N.S. Evaluation of the Toxicity of an Industrial Effluent Before and after a Treatment with Sn-Modified TiO2 under UV Irradiation through Oxidative Stress Biomarkers. In Pollution of Water Bodies in Latin America; Gómez-Oliván, L., Ed.; Springer: Cham, Switzerland, 2019; pp. 157–175. [Google Scholar]
- Ahmadi, M.; Motlagh, H.R.; Jaafarzadeh, N.; Mostoufi, A.; Saeedi, R.; Barzegar, G.; Jorfi, S. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manag. 2017, 186, 55–63. [Google Scholar] [CrossRef]
- Shivaraju, H.P.; Yashas, S.R.; Harini, R. Application of Mg-doped TiO2 coated buoyant clay hollow-spheres for photodegradation of organic pollutants in wastewater. Mater. Today Proc. 2020, 27, 1369–1374. [Google Scholar] [CrossRef]
- Deng, F.; Zhong, F.; Lin, D.; Zhao, L.; Liu, Y.; Huang, J.; Luo, X.; Luo, S.; Dionysiou, D.D. One-step hydrothermal fabrication of visible-light-responsive AgInS2/SnIn4S8 heterojunction for highly-efficient photocatalytic treatment of organic pollutants and real pharmaceutical industry wastewater. Appl. Catal. B Environ. 2017, 219, 163–172. [Google Scholar] [CrossRef]
- Che, W.; Luo, Y.; Deng, F.; Zhang, A.; Zhao, L.; Luo, X.; Ruan, Q. Facile solvothermal fabrication of cubic-like reduced graphene oxide/AgIn5S8 nanocomposites with anti-photocorrosion and high visible-light photocatalytic performance for highly-efficient treatment of nitrophenols and real pharmaceutical wastewater. Appl. Catal. A Gen. 2018, 565, 170–180. [Google Scholar] [CrossRef]
- Talwar, S.; Verma, A.K.; Sangal, V.K. Synergistic degradation employing photocatalysis and photo-Fenton process of real industrial pharmaceutical effluent utilizing the Iron-Titanium dioxide composite. Process Saf. Environ. Prot. 2021, 146, 564–576. [Google Scholar] [CrossRef]
- Isari, A.A.; Mehregan, M.; Mehregan, S.; Hayati, F.; Kalantary, R.R.; Kakavandi, B. Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system. J. Haz. Mat. 2020, 390, 122050. [Google Scholar] [CrossRef] [PubMed]
- Boroski, M.; Rodrigues, A.C.; Garcia, J.C.; Sampaio, L.C.; Nozaki, J.; Hioka, N. Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. J. Haz. Mat. 2009, 162, 448–454. [Google Scholar] [CrossRef]
- Varatharajan, B.; Kanmani, S. Treatability study of pharmaceutical wastewater by combined solar photo Fenton and activated sludge process. J. Ind. Pollut. Control 2007, 23, 157–164. [Google Scholar]
- Sirtori, C.; Zapata, A.; Oller, I.; Gernjak, W.; Agüera, A.; Malato, S. Solar Photo-Fenton as Finishing Step for Biological Treatment of a Pharmaceutical Wastewater. Environ. Sci. Technol. 2009, 43, 1185–1191. [Google Scholar] [CrossRef]
- Sharmila, V.G.; Kumar, S.A.; Banu, J.R.; Yeom, I.T.; Saratale, G.D. Feasibility analysis of homogenizer coupled solar photo Fenton process for waste activated sludge reduction. J. Environ. Manag. 2019, 238, 251–256. [Google Scholar] [CrossRef]
- Gallego-Valero, L.; Moral-Parajes, E.; Román-Sánchez, I.M. Wastewater Treatment Costs: A Research Overview through Bibliometric Analysis. Sustainability 2021, 13, 5066. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 3.3–12.7 |
Color | Light–Dark brown |
Conductivity (mS cm−1) | 1.23–44.85 |
COD (mg L−1) | 180–37,410 |
BOD5 (mg L−1) | 25–21,560 |
BOD5/COD | 0.1–0.6 |
TSS (mg L−1) | 57–7130 |
TDS (mg L−1) | 675–28,000 |
TKN (mg L−1) | 165−770 |
SO42− (mg L−1) | 160−9000 |
Cl− (mg L−1) | 182–6230 |
Heterogeneous Photocatalysis (TiO2 Is Used as a Representative Photocatalyst) | |
---|---|
(1) | |
(2) | |
(3) | |
(4) | |
(5) | |
(6) | |
(7) | |
Photo-Fenton process | |
(8) | |
(9) | |
− | (10) |
(11) | |
Ferrioxalate-Assisted Photo-Fenton Process | |
(12) | |
(13) | |
(14) | |
(15) | |
(16) | |
(17) | |
(18) | |
− | (19) |
Matrix | Characteristics | Catalyst | Reactor/Irradiation Source | Experimental Conditions | Removal Efficiency | Reference |
---|---|---|---|---|---|---|
Pharmaceutical industry wastewater (Hyderabad, India) | [TOC]0 = 94,420 mg L−1 (undiluted) | FeSO4•7H2O H2O2 50% w/v | UVA-LED strip 6 W (395 nm) | pH = 5; [Fe2+]0 = 12 g L−1; [H2O2]0 = 100 mL L−1 | 46.51% TOC removal in 120 min | [2] |
Pharmaceutical industry wastewater (Derabassi, Punjab) | (i) Raw low strength wastewater (LSW) [COD]0 = 8370 ± 190 mg L−1 [TOC]0 = 2350 ± 110 mg L−1 (ii) Raw high strength wastewater (HSW) [COD]0 = 37,410 ± 225 mg L−1 [TOC]0 = 8250 ± 145 mg L−1 | FeSO4•7H2O H2O2 30% w/v | Glass reactor/Solar irradiation | (i) pH = 3; [Fe2+]0 = 0.05 mol L−1; [H2O2]0 = 0.25 mol L−1 (ii) pH = 3; [Fe2+]0 = 0.1 mol L−1; [H2O2]0 = 1 mol L−1 | (i) 58.4% COD removal in 120 min 26.4% TOC removal in 120 min (ii) 57.1% COD removal in 120 min 31.5% TOC removal in 120 min | [7] |
Pharmaceutical industry wastewater (veterinary pharmaceutical industry, Paraíba Valley, São Paulo State) | Fenbendazole and Triclabendazole: main pollutants | FeSO4•7H2O H2O2 30% w/w | Tubular batch reactor/Low-pressure mercury lamps (254 nm) | pH = 3; [Fe2+]0 = 2.5 g L−1, [H2O2]0 = 30 g L−1; Temperature = 20 °C; UV light power = 28 W | 74.2 ± 7.2% TOC removal in 60 min | [9] |
Pharmaceutical industry wastewater (Castilla-La Mancha) | [TOC]0 = 125 mg L−1 (after dilution) | FeSO4•7H2O (COOH)2•2H2O H2O2 30% w/v | Solar-compound parabolic collector (CPC) pilot plant | pH = 2.9; [Fe2+]0 = 125 mg L−1, [H2O2]0 = 5250 mg L−1; [H2C2O4]0 = 510 mg L−1 Temperature = 35.4 °C; Solar power = 38.59 W m−2 | 84% TOC removal in 115 min | [18] |
Pharmaceutical industry wastewater | [DOC]0 = 775 mg L−1 [COD]0 = 3420 mg L−1 [Nalidixic acid]0 = 45 mg L−1 | FeSO4•7H2O H2O2 30% w/w | Pilot plant- CPCs/Solar irradiation | pH = 2.6–2.8 [Fe2+]0 = 20 mg L−1; [H2O2]0 = 200–400 mg L−1 | 90% DOC removal in 400 min (180 mM H2O2 consumed) 100% Nalidixic acid removal in190 min (72 mM H2O2 consumed) | [21] |
Pharmaceutical industry wastewater (Chennai) | [COD]0= 5750 mg L−1 | Fe2+/H2O2 | Reactor/solar irradiation UV intensity = 32 ± 2 W m−2 | pH = 3; [Fe2+]0 = 1 g L−1; [H2O2]0 = 5 g L−1 | 73 % COD removal in 60 min | [22] |
Pharmaceutical industry wastewater (pharmaceutical laboratory) | (i) [TOC]0 = 274.1 mg L−1 (after dilution) (ii) [TOC]0 = 20–400 mg L−1 (after dilution) | FeSO4•7H2O (COOH)2•2H2O H2O2 30% w/v | Semi-industrial autonomous solar CPC plant | (i) pH = 2.7; [Fe2+]0 = 20 mg L−1, [H2O2]0 = 2500 mg L−1; molar ratio Fe/oxalic acid = 3 (ii) pH = 2.7; H2O2/Fe2+ =20–125; molar ratio Fe/oxalic acid = 3 | (i)~60% TOC removal in 300 min (ii) Up to 79% TOC removalin 120 min | [23] |
Pharmaceutical industry wastewater | [COD]0 = 18,300 mg L−1 [TOC]0 = 5000 mg L−1 | FeSO4•7H2O H2O2 50% w/w | CPC/Solar irradiation | pH = 3; [Fe2+]0 = 10 mg L−1; stoichiometric H2O2 dose | ~30% COD removal in 180 min < 15% TOC removal in 180 min | [24] |
Matrix | Characteristics | Catalyst | Reactor/Irradiation Source | Experimental Conditions | Removal Efficiency | Reference |
---|---|---|---|---|---|---|
Pharmaceutical industry wastewater (Ambala, Haryana, India). Pre-treated with coagulation (FeCl3) | [COD]0 = 4800 mg L−1 | TiO2 Degussa P25 | Borosilicate glass bowl/UV-A (365 nm) | [Cat.]0 = 1 g L−1; [H2O2]0 = 300 mg L−1 | ∼75% COD removal in 300 min | [25] |
Pharmaceutical industry wastewater | [COD]0 = 2500 ± 500 mg L−1(diluted) | TiO2 Degussa P25 | Photochemical Pyrex glass reactor/UV lamps 125 W Average intensity = 25 W m−2 | [Cat.]0 = 1 g L−1; [H2O2]0 = 0.075 g L−1; pH = 4 | 90% COD removal in 240 min | [26] |
Pharmaceutical industry wastewater (Sfax, Tunisia) | [DOC]0 = 170 mg L−1 [Ibuprofen]0 = 213 mg L−1 | TiO2 Degussa P25 | Quartz cylindrical Reactor-UV LEDs 10 W (382 nm) | [Cat.]0 = 2.5 g L−1; pH = 7.9 Temperature = 25 °C | 57% DOC removal in 240 min 100% Ibuprofen removal in 240 min | [27] |
Pharmaceutical industry wastewater (Paunta Sahib, Himachal Pradesh, India) | [COD]0 = 12,425 mg L−1 | TiO2 Degussa P25 | Glass reactor/UV tubes 30 W | [Cat.]0 = 0.6 g L−1; pH = 3.2 | 63.7% COD removal in 455 min | [28] |
Pharmaceutical industry wastewater (Hyderabad, India) | [TOC]0 = 94,420 mg L−1 | TiO2 (rutile phase) | UVA-LED strip 6 W (395 nm) | [Cat.]0 = 0.5 g L−1; pH = 9 [H2O2]0 = 16 mL L−1 | 4% TOC removal in 840 min (14 h) | [2] |
Pharmaceutical industry wastewater (Toluca City, State of Mexico) | [COD]0 = 193 mg L−1 [TOC]0 = 384 mg L−1 [Diclofenac]0 =104.63 ± 0.05 μg L−1 [Ibuprofen]0 = 100.40 ± 0.03 μg L−1 [Naproxen]0 = 1717.31 ± 0.03 μg L−1 [Paracetamol]0 = 3034.41 ± 0.02 μg L−1 | Sn-modified TiO2 | Photochemistry reactor UV lamp 250 Watts (250 nm) | Not reported | 73.6% COD removal 94.3% TOC removal 78.8% Diclofenac removal 82.3% Ibuprofen removal 82.7% Naproxen removal 86.9% Paracetamol removal respectively, after the photocatalytic treatment. | [29] |
Pharmaceutical industry wastewater | [TOC]0 = 1295 mg L−1 [COD]0 = 2267 mg L−1 | MWCNT/TiO2 | Cylindrical quartz photo-reactor -UV 6 W lamps (240 nm) | [Cat.]0 = 0.2 g L−1; pH = 5 | 82.4% TOC removal in 240 min 84.9% COD removal in 240 min | [30] |
Pharmaceutical industry wastewater | (i) 50% diluted (ii) undiluted | Mg-doped TiO2 coated buoyant clay hollow-spheres | Quartz beaker/UV (11 W) Quartz beaker/LED (9 W) Quartz beaker/tungsten light (15 W) | 4–5: number of spheres | (i) 72%, 61% and 68% COD removal under LED, UV, and tungsten photon sources in 300 min (ii) 69%, 58% and 66% COD removal under LED, UV, and tungsten photon sources in 300 min | [31] |
Pharmaceutical industry wastewater (Jiujiang, China) | [COD]0 = 634 mg L−1 | AgInS2/SnIn4S8 nanosheet (0.6:1 molar ratio) | Visible-light irradiation | (i)[Cat.]0 = 200 mg L−1; pH = 9 (ii)[Cat.]0 = 200 mg L−1; pH = 9 [H2O2]0 = 0.5 mL L−1 | (i) ~50% COD removal in 720 min (12 h) 59.09% mineralization in 720 min (12 h) (ii)78.7% COD removal in 720 min (12 h) 65.98% mineralization in 720 min (12 h) | [32] |
Pharmaceutical industry wastewater (Jiangxi Chemedir) | [COD]0 = 31,500 mg L−1 | 1% graphene oxide/AgIn5S8 | Double jacketed glass beaker- Xe lamp 300 W with a 400 nm cut-off filter, Intensity= 1.8 W cm−2 | (i)[Cat.]0 = 400 mg L−1 (ii)[Cat.]0 = 400 mg L−1 [H2O2]0 = 10 mL L−1 | (i)76% COD removal in 90 min (ii) 89% COD removal in 90 min | [33] |
Matrix | Details | Hybrid Process | Removal Efficiency | Reference |
---|---|---|---|---|
Pharmaceutical industry wastewater (Ambala, Haryana, India). Pre-treated with coagulation (FeCl3) | [COD]0 = 4800 mg L−1 | Photocatalysis-Photo-Fenton Fe-TiO2 composite beads; Catalyst dose equivalent to 102% area of reactor bed covered with Fe-TiO2 composite beads; [H2O2]0 = 1155 mg L−1 (i) Pilot-scale under natural solar irradiation; Time: 120 min (ii) Batch mode under artificial UV-A irradiation; Time: 360 min | (i) ∼80% COD removal (ii) 89.1% COD removal | [25] |
Pharmaceutical industry wastewater (Barnala, Punjab, India) | [COD]0 = 1250 mg L−1 | Photocatalysis-Photo-Fenton Fe-TiO2 composite beads; Number of beads =: 98 (98% surface area covered); [H2O2]0 = 800 mg L−1 (i) Batch reactor/solar irradiation; Time: 365 min (ii) Continuous recirculation fixed bed reactor/solar irradiation; Time: 300 min | (i) 71% COD removal (ii) 75% COD removal | [34] |
Pharmaceutical industry wastewater | [COD]0 = 18,300 mg L−1 [TOC]0 = 5000 mg L−1 | Solar photo-Fenton-ozonation (SPFO) pH = 3; [Fe2+]0 = 10 mg L−1; O3 = 0.1 g min−1; stoichiometric H2O2 dose; Time: 120 min | ~60% COD removal ~12% TOC removal | [24] |
Pharmaceutical industry wastewater (Tehran, Iran) | [COD]0 = 2429 mg L−1 [TOC]0 = 702 mg L−1 | Sono-photocatalysis process WO3/CNT; photocatalyst, Visible light pH = 9.0, [Cat.]0 = 0.7 g L−1, US power: 250 W m−2; irradiation intensity = W m−2 Time: 220 min | 90.6 % COD removal 83.7 % TOC removal | [35] |
Pharmaceutical industry wastewater | [COD]0 = 2500 ± 500 mg L−1(diluted) | Ultrasound- UV/TiO2/H2O2 Ultrasound 100 W, 33 ± 3 kHz UV/TiO2/H2O2: pH 4.0 [Cat.]0 = 1 g L−1; [H2O2]0 = 0.075 g L−1 Time: 240 min | 99% COD removal | [26] |
Pharmaceutical industry wastewater (Parana State, Brazil) | [COD]0= 1753 mg L−1 | Electrocoagulation (EC) -UV/TiO2/H2O2 EC: iron cathode/anode (12.50 cm × 2.50 cm × 0.10 cm), current density 763 A m−2, pH= 6.0 Time: 90 min UV/TiO2/H2O2: pH 3.0, Time: 240 min [Cat.]0 = 0.255 g L−1; [H2O2]0 = 10 mmol L−1 | 97% COD removal | [36] |
Pharmaceutical industry wastewater (Kancheepuram District, Tamil Nadu, India) | [COD]0= 25,600 mg L−1 [BOD3]0= 4890 mg L−1 | Solar photo-Fenton-Activated sludge process Solar photo-Fenton: pH = 3; dosage of H2O2 65 mL and Fe2+ = 1.34 g Activated sludge process: MLSS concentration of 3490 mg L−1 | 95 % COD removal 93 % BOD removal | [37] |
Pharmaceutical industry wastewater (Chennai) | [COD]0= 5750 mg L−1 | Solar photo-Fenton-Aerobic sequential batch reactor (SBR) Solar photo-Fenton: pH = 3; [Fe2+]0 = 1 g L−1; [H2O2]0 = 5 g L−1; Time: 60 min SBR: [Biomass]= 4000 mg L−1; Time: 300 min | 98 % COD removal | [22] |
Pharmaceutical industry wastewater (Derabassi, Punjab) | (i) Raw low strength wastewater (LSW) [COD]0= 8370 ± 190 mg L−1 [TOC]0= 2350 ± 110 mg L−1 (ii) Raw high strength wastewater (HSW) [COD]0= 37,410 ± 225 mg L−1 [TOC]0= 8250 ± 145 mg L−1 | Solar photo-Fenton-Aerobic biological treatment Solar photo-Fenton: (i) pH = 3; [Fe2+]0 = 0.05 mol L−1; [H2O2]0 = 0.25 mol L−1; Time: 120 min (ii) pH = 3; [Fe2+]0 = 0.1 mol L−1; [H2O2]0 = 1 mol L−1; Time: 120 min Aerobic biological treatment: pH = 7.0–8.2; MLSS concentration of 3200 ± 110 mg L−1 | (i) ~84% COD removal (ii) ~82% COD removal | [7] |
Pharmaceutical industry wastewater | [DOC]0 = 775 mg L−1 [COD]0 = 3420 mg L−1 [Nalidixic acid]0 = 45 mg L−1 | Solar Photo-Fenton process- Immobilized Biomass Reactor—IBR (biological treatment) Solar Photo-Fenton process: Solar irradiation, pH = 2.6–2.8 [Fe2+]0 = 20 mg L−1; [H2O2]0 = 66 mM; Time: 190 min IBR: pH = 7.0, operation flux = 500 L h−1, Time= 7200 min (120 h) | 95% DOC removal | [21] |
Pharmaceutical industry wastewater | [DOC]0 = 725 mg L−1 [COD]0 = 3400 mg L−1 [Nalidixic acid]0 = 38 mg L−1 | Immobilized Biomass Reactor—IBR (biological treatment)- Solar Photo-Fenton process IBR: pH = 7.0, operation flux = 500 L h−1, Time: 5760 min (96 h) Solar Photo-Fenton process: Solar irradiation, pH = 2.6–2.8 [Fe2+]0 = 20 mg L−1; [H2O2]0 = 200–400 mg L−1; Time: 25 min | 96% DOC removal 100% removal of Nalidixic acid | [38] |
Pharmaceutical industry wastewater (Paunta Sahib, Himachal Pradesh, India) | [COD]0 = 12,425 mg L−1 | UV/TiO2-Rotating Biological Contractor (RBC) UV/TiO2: pH = 3.20, [Cat.]0 = 0.6 g L−1, Time= 455 min RBC: Time:50,400 min (35 d) | 96.5% COD removal | [28] |
Advantages |
---|
High oxidation potential of HO• radicals |
Applicable in wide range of pH (in case of heterogeneous photocatalysis) |
High removal percentages after optimization |
Potential of using solar light |
High efficiency in hybrid systems |
Limitations |
Iron sludge production and separation of the catalyst particles |
Acid conditions for photo-Fenton and photo-Fenton-assisted processes |
High cost due to energy consumption and chemicals usage |
Efficiency depends on wastewater characteristics |
Prospects |
Combination with conventional methods |
Cost reduction using solar energy |
Preparation of novel catalysts with response to visible light good reusability |
Large-scale application |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonopoulou, M. Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review. Toxics 2022, 10, 539. https://doi.org/10.3390/toxics10090539
Antonopoulou M. Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review. Toxics. 2022; 10(9):539. https://doi.org/10.3390/toxics10090539
Chicago/Turabian StyleAntonopoulou, Maria. 2022. "Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review" Toxics 10, no. 9: 539. https://doi.org/10.3390/toxics10090539
APA StyleAntonopoulou, M. (2022). Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review. Toxics, 10(9), 539. https://doi.org/10.3390/toxics10090539