Gas Particle Partitioning of PAHs Emissions from Typical Solid Fuel Combustions as Well as Their Health Risk Assessment in Rural Guanzhong Plain, China
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection and Chemical Analysis
2.2. Emission Factor Calculations and Indoor PAH Concentration Estimation
2.3. Total BaPeq and Cancer Risk Estimation
3. Results and Discussion
3.1. Gas Particle Partitioning of PAHs
3.2. BaPeq
3.3. Contribution of Different Ring PAHs to BaPeq
3.4. Cancer Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, S.; Ru, M.Y.; Du, W.; Zhu, X.; Zhong, Q.R.; Li, B.G.; Shen, G.F.; Pan, X.L.; Meng, W.J.; Chen, Y.L.; et al. Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey. Nat. Energy 2018, 3, 567–573. [Google Scholar] [CrossRef]
- Lin, C.; Huang, R.-J.; Ceburnis, D.; Buckley, P.; Preissler, J.; Wenger, J.; Rinaldi, M.; Facchini, M.C.; O’Dowd, C.; Ovadnevaite, J. Extreme air pollution from residential solid fuel burning. Nat. Sustain. 2018, 1, 512–517. [Google Scholar] [CrossRef]
- Shen, Z.; Arimoto, R.; Cao, J.; Zhang, R.; Li, X.; Du, N.; Okuda, T.; Nakao, S.; Tanaka, S. Seasonal Variations and Evidence for the Effectiveness of Pollution Controls on Water-Soluble Inorganic Species in Total Suspended Particulates and Fine Particulate Matter from Xi’an, China. J. Air Waste Manag. Assoc. 2008, 58, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Cao, J.; Arimoto, R.; Han, Z.; Zhang, R.; Han, Y.; Liu, S.; Okuda, T.; Nakao, S.; Tanaka, S. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos. Environ. 2009, 43, 2911–2918. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Z.; Liu, F.; Lu, D.; Tao, J.; Lei, Y.; Zhang, Q.; Zeng, Y.; Xu, H.; Wu, Y.; et al. Saccharides in summer and winter PM2.5 over Xi’an, Northwestern China: Sources, and yearly variations of biomass burning contribution to PM2.5. Atmos. Res. 2018, 214, 410–417. [Google Scholar] [CrossRef]
- Shen, G.; Tao, S.; Wei, S.; Chen, Y.; Zhang, Y.; Shen, H.; Huang, Y.; Zhu, D.; Yuan, C.; Wang, H.; et al. Field Measurement of Emission Factors of PM, EC, OC, Parent, Nitro-, and Oxy- Polycyclic Aromatic Hydrocarbons for Residential Briquette, Coal Cake, and Wood in Rural Shanxi, China. Environ. Sci. Technol. 2013, 47, 2998–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Schauer, J.J.; Zhang, Y.; Zeng, L.; Wei, Y.; Liu, Y.; Shao, M. Characteristics of Particulate Carbon Emissions from Real-World Chinese Coal Combustion. Environ. Sci. Technol. 2008, 42, 5068–5073. [Google Scholar] [CrossRef] [PubMed]
- Mastral, A.M.; Callén, M.S. A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Energy Generation. Environ. Sci. Technol. 2000, 34, 3051–3057. [Google Scholar] [CrossRef]
- Mosallaei, S.; Hashemi, H.; Hoseini, M.; Dehghani, M.; Naz, A. Polycyclic Aromatic Hydro-carbons (PAHs) in household dust: The association between PAHs, Cancer Risk and Sick Building Syndrome. Build. Environ. 2023, 229, 109966. [Google Scholar] [CrossRef]
- Ngo, T.H.; Yang, H.Y.; Pan, S.Y.; Chang, M.B.; Chi, K.H. Condensable and filterable particulate matter emission of coal fired boilers and characteristics of PM2.5-bound polycyclic aromatic hydrocarbons in the vicinity. Fuel 2021, 308, 121833. [Google Scholar] [CrossRef]
- Wincent, E.; Le Bihanic, F.; Dreij, K. Induction and inhibition of human cytochrome P4501 by oxygenated polycyclic aromatic hydrocarbons. Toxicol. Res. 2016, 5, 788–799. [Google Scholar] [CrossRef] [Green Version]
- Škrbić, B.; Đurišić-Mladenović, N.; Živančev, J.; Tadić, Đ. Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. Sci. Total. Environ. 2018, 647, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chiang, H.-C.; Hsu, C.-Y.; Yang, T.-T.; Lin, T.-Y.; Chen, M.-J.; Chen, N.-T.; Wu, Y.-S. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environ. Pollut. 2016, 218, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, M.; Yunesian, M.; Nabizadeh, R.; Yaghmaeian, K.; Ahmadkhaniha, R.; Rastkari, N.; Parmy, S.; Faridi, S.; Rafiee, A.; Naddafi, K. Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric Particulate of Tehran, Iran. Environ. Sci. Pollut. Res. 2015, 23, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Nadali, A.; Leili, M.; Bahrami, A.; Karami, M.; Afkhami, A. Phase distribution and risk assessment of PAHs in ambient air of Hamadan, Iran. Ecotoxicol. Environ. Saf. 2021, 209, 111807. [Google Scholar] [CrossRef]
- Xing, X.; Chen, Z.; Tian, Q.; Mao, Y.; Liu, W.; Shi, M.; Cheng, C.; Hu, T.; Zhu, G.; Li, Y.; et al. Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons in urban, suburban, and rural ambient air, central China during summer harvest. Ecotoxicol. Environ. Saf. 2020, 191, 110219. [Google Scholar] [CrossRef]
- Cheng, Y.; Kong, S.; Yan, Q.; Liu, H.; Wang, W.; Chen, K.; Yin, Y.; Zheng, H.; Wu, J.; Yao, L.; et al. Size-segregated emission fac-tors and health risks of PAHs from residential coal flaming/smoldering combustion. Environ. Sci. Pollut. Res. 2019, 26, 31793–31803. [Google Scholar] [CrossRef]
- Ma, W.-L.; Zhu, F.-J.; Liu, L.-Y.; Jia, H.-L.; Yang, M.; Li, Y.-F. PAHs in Chinese atmosphere Part II: Health risk assessment. Ecotoxicol. Environ. Saf. 2020, 200, 110774. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, Y.; Chen, Y.; Yu, M.; Xia, Z. Construction of an atmospheric PAH emission inventory and health risk assessment in Jiangsu, China. Air Qual. Atmos. Health 2022. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, J.; Duan, L.; Hao, J. Evolution of Submicrometer Organic Aero-sols during a Complete Residential Coal Combustion Process. Environ. Sci. Technol. 2016, 50, 7861–7869. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, L.; Zhang, Y.; Zhang, T.; Lei, Y.; Niu, X.; Zhang, Q.; Dang, W.; Han, W.; et al. Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality. Environ. Int. 2019, 133, 105252. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.X.; Cao, J.J.; Arimoto, R.; Zhang, R.J.; Jie, D.M.; Liu, S.X.; Zhu, C.S. Chemical composition and source characterization of spring aerosol over Horqin sand land in northeastern China. J. Geophys. Res. Atmos. 2007, 112, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Sun, J.; Jiang, N.; Zeng, Y.; Zhang, Y.; He, K.; Xu, H.; Liu, S.; Ho, S.S.H.; Qu, L.; et al. Emission factors, characteristics, and gas-particle partitioning of polycyclic aromatic hydrocarbons in PM2.5 emitted for the typical solid fuel combustions in rural Guanzhong Plain, China. Environ. Pollut. 2021, 286, 117573. [Google Scholar] [CrossRef]
- Delmas, R.; Lacaux, J.P.; Brocard, D. Determination of biomass burning emission factors: Methods and results. Environ. Monit. Assess. 1995, 38, 181–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Sun, J.; Zhang, L.; Zhang, B.; Zhang, T.; Wang, J.; Xu, H.; Liu, P.; Zhang, N.; et al. Parent, alkylated, oxygenated and nitro polycyclic aromatic hydrocarbons from raw coal chunks and clean coal combustion: Emission factors, source profiles, and health risks. Sci. Total. Environ. 2020, 721, 137696. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Shen, Z.; Huang, Y.; Zhang, Y.; Niu, X.; Cao, J.; Zhang, Q.; Xu, H.; Zhang, N.; et al. Volatile organic compounds from residential solid fuel burning in Guanzhong Plain, China: Source-related profiles and risks. Chemosphere 2019, 221, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Bandowe, B.A.M.; Meusel, H.; Huang, R.-J.; Ho, K.; Cao, J.; Hoffmann, T.; Wilcke, W. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese meg-acity: Seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2014, 473–474, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shen, Z.; Zhang, T.; Kong, S.; Zhang, H.; Niu, X.; Huang, S.; Xu, H.; Ho, K.-F.; Cao, J. A comprehensive evaluation of PM2.5-bound PAHs and their derivative in winter from six megacities in China: Insight the source-dependent health risk and secondary reactions. Environ. Int. 2022, 165. [Google Scholar] [CrossRef]
- MacCarty, N.; Still, D.; Ogle, D. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain. Dev. 2010, 14, 161–171. [Google Scholar] [CrossRef]
- Manoj, K.; Sachin, K.; Tyagi, S.K. Design, development and technological advancement in the biomass cookstoves: A review. Renew. Sustain. Energy Rev. 2013, 26, 265–285. [Google Scholar] [CrossRef]
- Ohura, T.; Kurihara, R.; Hashimoto, S. Aryl hydrocarbon receptor activities of hydroxylated polycyclic aromatic hydrocarbons in recombinant yeast cells. Toxicol. Environ. Chem. 2010, 92, 737–742. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, L.; Zhang, Q.; Lei, Y.; Cao, J.; Huang, Y.; Liu, S.; Zheng, C.; Xu, H.; et al. Impact of primary and secondary air supply intensity in stove on emissions of size-segregated particulate matter and carbonaceous aerosols from apple tree wood burning. Atmos. Res. 2017, 202, 33–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Zhang, B.; Sun, J.; Zhang, L.; Zhang, T.; Xu, H.; Bei, N.; Tian, J.; Wang, Q.; et al. Emission reduction effect on PM2.5, SO2 and NOx by using red mud as additive in clean coal briquetting. Atmos. Environ. 2019, 223, 117203. [Google Scholar] [CrossRef]
- Keyte, I.J.; Harrison, R.M.; Lammel, G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—A review. Chem. Soc. Rev. 2013, 42, 9333–9391. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shen, Z.; Sun, J.; Zhang, L.; Zhang, B.; Zou, H.; Zhang, T.; Ho, S.S.H.; Chang, X.; Xu, H.; et al. Parent, alkylated, oxygenated and nitrated polycyclic aromatic hydrocarbons in PM2.5 emitted from residential biomass burning and coal combustion: A novel database of 14 heating scenarios. Environ. Pollut. 2020, 268, 115881. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Wang, J.; Ho, S.S.H.; He, K.; Shen, Z.; Ning, Z.; Sun, J.; Li, L.; Lei, R.; et al. Personal exposure to PM2.5-bound organic species from domestic solid fuel combustion in rural Guanzhong Basin, China: Characteristics and health implication. Chemosphere 2019, 227, 53–62. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Guinot, B.; Wang, J.; He, K.; Ho, K.F.; Cao, J.; Shen, Z.; Sun, J.; Lei, Y.; et al. Personal exposure of PM2.5 emitted from solid fuels combustion for household heating and cooking in rural Guanzhong Plain, northwestern China. Atmos. Environ. 2018, 185, 196–206. [Google Scholar] [CrossRef]
- Sun, J.; Niu, X.; Zhang, B.; Zhang, L.; Yu, J.; He, K.; Zhang, T.; Wang, Q.; Xu, H.; Cao, J.; et al. Clarifying winter clean heating importance: Insight chemical compositions and cytotoxicity exposure to primary and aged pollution emissions in China rural areas. J. Environ. Manag. 2022, 320, 115822. [Google Scholar] [CrossRef]
- Feng, S.; Shen, X.; Hao, X.; Cao, X.; Li, X.; Yao, X.; Shi, Y.; Lv, T.; Yao, Z. Polycyclic and ni-tro-polycyclic aromatic hydrocarbon pollution characteristics and carcinogenic risk assessment of in-door kitchen air during cooking periods in rural households in North China. Environ. Sci. Pollut. Res. 2021, 28, 11498–11508. [Google Scholar] [CrossRef]
- Liu, H.-H.; Yang, H.-H.; Chou, C.-D.; Lin, M.-H.; Chen, H.-L. Risk assessment of gaseous/particulate phase PAH exposure in foundry industry. J. Hazard. Mater. 2010, 181, 105–111. [Google Scholar] [CrossRef]
- Chen, P.; Kang, S.; Li, C.; Li, Q.; Yan, F.; Guo, J.; Ji, Z.; Zhang, Q.; Hu, Z.; Tripathee, L.; et al. Source Apportionment and Risk Assessment of Atmospheric Polycyclic Aromatic Hydrocarbons in Lhasa, Tibet, China. Aerosol Air Qual. Res. 2018, 18, 1294–1304. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.; Ghosh, S.K.; Raha, S. Impacts of photochemical ageing on the half-lives and diagnostic ratio of polycyclic aromatic hydrocarbons intrinsic to PM2.5 collected from ‘real-world’ like combustion events of wood and rice straw burning. J. Hazard. Mater. 2018, 366, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Durant, J.L.; Busby, W.F., Jr.; Lafleur, A.L.; Penman, B.W.; Crespi, C.L. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat. Res. Genet. Toxicol. 1996, 371, 123–157. [Google Scholar] [CrossRef] [PubMed]
- Lui, K.; Bandowe, B.A.M.; Tian, L.; Chan, C.-S.; Cao, J.-J.; Ning, Z.; Lee, S.; Ho, K. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. Chemosphere 2017, 169, 660–668. [Google Scholar] [CrossRef]
- Liu, B.; Huang, F.; Yu, Y.; Dong, W. Polycyclic Aromatic Hydrocarbons (PAHs) in Indoor Dust Across China: Occurrence, Sources and Cancer Risk Assessment. Arch. Environ. Contam. Toxicol. 2021, 81, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Han, Y.; Bandowe, B.A.M.; Cao, J.; Huang, R.-J.; Ni, H.; Tian, J.; Wilcke, W. Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi’an, central China. Sci. Total. Environ. 2015, 505, 814–822. [Google Scholar] [CrossRef]
Group | Gas Phase PAHs (mg/kg) | Particulate Phase PAHs (mg/kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
pPAH | aPAH | oPAH | nPAH | ∑PAHs | pPAH | aPAH | oPAH | nPAH | ∑PAHs | Total PAHs | |
G1 | 13.4 ± 4.73 | 0.63 ± 0.54 | 0.01 ± 0.01 | 0.002 ± 0.00 | 14.1 ± 5.29 | 4.25 ± 2.60 | 0.73 ± 0.64 | 0.04 ± 0.02 | 0.002 ± 0.00 | 5.03 ± 3.26 | 19.1 ± 8.55 |
G2 | 15.8 ± 9.41 | 0.58 ± 0.19 | 0.01 ± 0.01 | 0.001 ± 0.00 | 16.4 ± 9.61 | 4.81 ± 2.71 | 0.63 ± 0.39 | 0.04 ± 0.01 | 0.002 ± 0.00 | 5.48 ± 3.11 | 21.9 ± 12.7 |
G3 | 407 ± 46.7 | 17.7 ± 7.21 | 0.34 ± 0.18 | 0.05 ± 0.01 | 425 ± 54.1 | 140 ± 32.4 | 24.2 ± 10.4 | 1.32 ± 0.55 | 0.08 ± 0.02 | 165 ± 43.4 | 590 ± 97.5 |
G4 | 970 ± 306 | 32.7 ± 22.0 | 0.32 ± 0.05 | 0.06 ± 0.03 | 1003 ± 328 | 237 ± 63.1 | 36.3 ± 18.2 | 1.97 ± 0.82 | 0.13 ± 0.06 | 275 ± 82.2 | 1278 ± 410 |
G5 | 468 ± 53.6 | 2.96 ± 1.81 | 0.15 ± 0.06 | 0.06 ± 0.00 | 471 ± 55.4 | 191 ± 4.91 | 3.86 ± 1.38 | 0.97 ± 0.25 | 0.13 ± 0.01 | 196 ± 6.53 | 667 ± 61.9 |
G6 | 629 ± 273 | 13.3 ± 2.97 | 0.32 ± 0.14 | 0.09 ± 0.04 | 643 ± 276 | 284 ± 134 | 15.5 ± 8.60 | 1.74 ± 1.09 | 0.18 ± 0.09 | 302 ± 144 | 945 ± 420 |
G7 | 553 ± 32.5 | 3.61 ± 1.67 | 0.10 ± 0.15 | 0.05 ± 0.01 | 557 ± 31.0 | 230 ± 1.75 | 3.66 ± 0.31 | 0.63 ± 0.89 | 0.11 ± 0.01 | 234 ± 2.35 | 791 ± 33.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Peng, Z.; Lv, J.; Peng, Q.; He, K.; Xu, H.; Sun, J.; Shen, Z. Gas Particle Partitioning of PAHs Emissions from Typical Solid Fuel Combustions as Well as Their Health Risk Assessment in Rural Guanzhong Plain, China. Toxics 2023, 11, 80. https://doi.org/10.3390/toxics11010080
Zhang B, Peng Z, Lv J, Peng Q, He K, Xu H, Sun J, Shen Z. Gas Particle Partitioning of PAHs Emissions from Typical Solid Fuel Combustions as Well as Their Health Risk Assessment in Rural Guanzhong Plain, China. Toxics. 2023; 11(1):80. https://doi.org/10.3390/toxics11010080
Chicago/Turabian StyleZhang, Bin, Zezhi Peng, Jing Lv, Qin Peng, Kun He, Hongmei Xu, Jian Sun, and Zhenxing Shen. 2023. "Gas Particle Partitioning of PAHs Emissions from Typical Solid Fuel Combustions as Well as Their Health Risk Assessment in Rural Guanzhong Plain, China" Toxics 11, no. 1: 80. https://doi.org/10.3390/toxics11010080
APA StyleZhang, B., Peng, Z., Lv, J., Peng, Q., He, K., Xu, H., Sun, J., & Shen, Z. (2023). Gas Particle Partitioning of PAHs Emissions from Typical Solid Fuel Combustions as Well as Their Health Risk Assessment in Rural Guanzhong Plain, China. Toxics, 11(1), 80. https://doi.org/10.3390/toxics11010080