Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Influent Characteristics Used in This Study
2.2. Mesocosm-Scale Constructed Wetlands Design
2.3. Experimental Scheme and Operation Mode
2.4. Chemicals and Standards
2.5. Sampling and Conventional Parameters Analysis
2.6. Endocrine-Disrupting Compounds (EDCs) Analysis
2.6.1. Solid Phase Extraction (SPE)
2.6.2. Chromatographic Analysis
2.7. Microscopic Analysis of the Emerged Substrate
2.8. Statistical Analysis
3. Results and Discussion
3.1. Cork Characterization
3.2. Chemical Oxygen Demand (COD) Removal Efficiency
3.3. Nitrogen Removal Efficiency
3.4. Investigated Endocrine-Disrupting Chemicals Removal Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization(WHO). Guidelines on Sanitation and Health; World Health Organisation: Geneva, Switzerland, 2018. Available online: https://www.who.int/publications/i/item/9789241514705 (accessed on 1 June 2022)ISBN 978-92-4-151470-5.
- Luo, Y.L.; Guo, W.S.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Cardona, J.A.; Segovia, O.C.; Böttger, S.; Castillo, N.A.M.; Cavallo, L.; Ribeiro, I.E.; Schlüter, S. Reuse-oriented decentralized wastewater and sewage sludge treatment for rural settlements in Brazil: A cost-benefit analysis. Desalin. Water Treat. 2017, 91, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Fu, T.; Wang, H.; Chen, R.; Wang, B.; He, T.; Pi, Y.; Zhou, J.; Liang, T.; Chen, M. Removal of organic pollutants by effluent recirculation constructed wetlands system treating landfill leachate. Environ. Technol. Innov. 2021, 24, 101843. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, J.; Han, T.; Yan, C.; Cao, C.; Cao, M. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands. Water Res. 2021, 202, 117420. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Kröpfelová, L. A three-stage experimental constructed wetland for treatment of domestic sewage: First 2 years of operation. Ecol. Eng. 2011, 37, 90–98. [Google Scholar] [CrossRef]
- Darajeh, N.; Idris, A.; Masoumi, H.R.F.; Nourani, A.; Truong, P.; Sairi, N.A. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. J. Environ. Manag. 2016, 181, 343–352. [Google Scholar] [CrossRef]
- Schug, T.T.; Johnson, A.F.; Birnbaum, L.S.; Colborn, T.; Guillette, L.J., Jr.; Crews, D.P.; Collins, T.; Soto, A.M.; Vom Saal, F.S.; McLachlan, J.A.; et al. Minireview: Endocrine Disruptors: Past Lessons and Future Directions. Mol. Endocrinol. 2016, 30, 833–847. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Ekama, G.A.; Wang, Y.; Dai, J.; Biswal, B.K.; Chen, G.; Wu, D. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. Bioresour. Technol. 2019, 285, 121303. [Google Scholar] [CrossRef]
- Wang, J.; Shi, G.; Yao, J.; Sheng, N.; Cui, R.; Su, Z.; Guo, Y.; Dai, J. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. Environ. Int. 2019, 134, 105317. [Google Scholar] [CrossRef]
- Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manag. 2012, 104, 19–34. [Google Scholar] [CrossRef]
- Fries, E.; Mahjoub, O.; Mahjoub, B.; Berrehouc, A.; Lions, J.; Bahadir, M. Occurrence of contaminants of emerging concern (cec) in conventional and non- conventional water resources in tunisia. Fresenius Environ. Bull. 2016, 25, 3317–3339. [Google Scholar]
- Bai, X.; Acharya, K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environ. Pollut. 2019, 247, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 2013, 42, 132–155. [Google Scholar] [CrossRef]
- Sungur, Ş.; Köroğlu, M.; Özkan, A. Determinatıon of bisphenol a migrating from canned food and beverages in markets. Food Chem. 2014, 142, 87–91. [Google Scholar] [CrossRef]
- Careghini, A.; Mastorgio, A.F.; Saponaro, S.; Sezenna, E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environ. Sci. Pollut. Res. 2014, 22, 5711–5741. [Google Scholar] [CrossRef] [Green Version]
- Elbalkiny, H.T.; Yehia, A.M.; Riad, S.M.; Elsaharty, Y.S. Potentiometric diclofenac detection in wastewater using functionalized nanoparticles. Microchem. J. 2018, 145, 90–95. [Google Scholar] [CrossRef]
- Mheidli, N.; Malli, A.; Mansour, F.; Al-Hindi, M. Occurrence and risk assessment of pharmaceuticals in surface waters of the Middle East and North Africa: A review. Sci. Total Environ. 2022, 851, 158302. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, M.S.; Azha, S.F.; Sellaoui, L.; Badawi, M.; Bonilla-Petriciolet, A.; Ismail, S. Performance and interactions of diclofenac adsorption using Alginate/Carbon-based Films: Experimental investigation and statistical physics modelling. Chem. Eng. J. 2021, 428, 131929. [Google Scholar] [CrossRef]
- Arous, F.; Hamdi, C.; Bessadok, S.; Jaouani, A. Innovative Biological Approaches for Contaminants of Emerging Concern Removal from Wastewater: A Mini-Review. Adv. Biotechnol. Microbiol. 2019, 13, 114–120. [Google Scholar] [CrossRef]
- Li, X.; Tian, T.; Shang, X.; Zhang, R.; Xie, H.; Wang, X.; Wang, H.; Xie, Q.; Chen, J.; Kadokami, K. Occurrence and Health Risks of Organic Micro-Pollutants and Metals in Groundwater of Chinese Rural Areas. Environ. Health Perspect. 2020, 128, 107010. [Google Scholar] [CrossRef]
- Ipek, I.; Kabay, N.; Yüksel, M. Separation of bisphenol A and phenol from water by polymer adsorbents: Equilibrium and kinetics studies. J. Water Process Eng. 2017, 16, 206–211. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Cao, Y.; Han, L. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019, 285, 121348. [Google Scholar] [CrossRef]
- Boateng, L.K.; Heo, J.; Flora, J.R.; Park, Y.-G.; Yoon, Y. Molecular level simulation of the adsorption of bisphenol A and 17α-ethinyl estradiol onto carbon nanomaterials. Sep. Purif. Technol. 2013, 116, 471–478. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Z.-H.; Wang, H.; Wang, X.-M.; Zhang, X.-H.; Xie, Y.F. Synergistic effects of combining ozonation, ceramic membrane filtration and biologically active carbon filtration for wastewater reclamation. J. Hazard. Mater. 2019, 382, 121091. [Google Scholar] [CrossRef] [PubMed]
- Golshan, M.; Jorfi, S.; Haghighifard, N.J.; Takdastan, A.; Ghafari, S.; Rostami, S.; Ahmadi, M. Development of salt-tolerant microbial consortium during the treatment of saline bisphenol A-containing wastewater: Removal mechanisms and microbial characterization. J. Water Process Eng. 2019, 32, 100949. [Google Scholar] [CrossRef]
- Tang, S.; Xu, L.; Yu, X.; Chen, S.; Li, H.; Huang, Y.; Niu, J. Degradation of anticancer drug capecitabine in aquatic media by three advanced oxidation processes: Mechanisms, toxicity changes and energy cost evaluation. Chem. Eng. J. 2020, 413, 127489. [Google Scholar] [CrossRef]
- Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Vieira, M.G.A. Latest advanced oxidative processes applied for the removal of endocrine disruptors from aqueous media—A critical report. J. Environ. Chem. Eng. 2021, 9, 105748. [Google Scholar] [CrossRef]
- Stefanakis, A.I. Constructed wetlands: Description and benefits of an eco-tech water treatment system. In Waste Management: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2020; pp. 503–525. [Google Scholar] [CrossRef]
- Vymazal, J.; Zhao, Y.; Mander, Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Raphael, O.D.; Ojo, S.I.A.; Ogedengbe, K.; Eghobamien, C.; Morakinyo, A.O. Comparison of the performance of horizontal and vertical flow constructed wetland planted with Rhynchospora corymbosa. Int. J. Phytoremediat. 2019, 21, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.; Ruiz, I.; Soto, M. The Potential of Constructed Wetland Systems and Photodegradation Processes for the Removal of Emerging Contaminants—A Review. Environments 2022, 9, 116. [Google Scholar] [CrossRef]
- Ávila, C.; Reyes, C.; Bayona, J.M.; García, J. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: Influence of redox. Water Res. 2013, 47, 315–325. [Google Scholar] [CrossRef]
- Ilyas, H.; Masih, I.; van Hullebusch, E.D. Pharmaceuticals’ removal by constructed wetlands: A critical evaluation and meta-analysis on performance, risk reduction, and role of physicochemical properties on removal mechanisms. J. Water Health 2020, 18, 253–291. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.-L.; Cui, L.-H.; Ouyang, Y.; Long, C.-F.; Tang, X.-D. Kinetic Adsorption of Ammonium Nitrogen by Substrate Materials for Constructed Wetlands. Pedosphere 2011, 21, 454–463. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global development of various emerged substrates utilized in constructed wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Mlih, R.; Bydalek, F.; Klumpp, E.; Yaghi, N.; Bol, R.; Wenk, J. Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands—A review. Ecol. Eng. 2020, 148, 105783. [Google Scholar] [CrossRef]
- Zhong, H.; Hu, N.; Wang, Q.; Chen, Y.; Huang, L. How to select substrate for alleviating clogging in the subsurface flow constructed wetland? Sci. Total Environ. 2022, 828, 154529. [Google Scholar] [CrossRef] [PubMed]
- Sghaier, T.; Garchi, S.; Azizi, T. Modélisation de la croissance et de la production du liège en Tunisie. Bois Trop. 2020, 346, 3–20. [Google Scholar] [CrossRef]
- Campos, J.M.; Queiroz, S.C.; Roston, D.M. Removal of the endocrine disruptors ethinyl estradiol, bisphenol A, and levonorgestrel by subsurface constructed wetlands. Sci. Total Environ. 2019, 693, 133514. [Google Scholar] [CrossRef]
- NT106.03; Environment Protection: Use of Reclaimed Water for Agricultural Purposes (Physical, Chemical and Biological Specifications). Tunisian Standards; Institut National de la Normalisation et de la Propriete Industrielle (INNORPI): Tunis, Tunisia, 1989. (In French)
- Regulation (EU) 2020/741 of the European Parliament on the Minimum Requirements for Water Reuse Official Journal of the European Union. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741&from=EN (accessed on 22 April 2022).
- U.S. Environmental Protection Agency (EPA). Guidelines for Water Reuse 2012; A/600/R-12/618; Environmental Protection Agency: Washington, DC, USA, 2012.
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Ben Sghaier, R.; Net, S.; Ghorbel-Abid, I.; Bessadok, S.; Le Coz, M.; Ben Hassan-Chehimi, D.; Trabelsi-Ayadi, M.; Tackx, M.; Ouddane, B. Simultaneous Detection of 13 Endocrine Disrupting Chemicals in Water by a Combination of SPE-BSTFA Derivatization and GC-MS in Transboundary Rivers (France-Belgium). Water Air Soil Pollut. 2016, 228, 2. [Google Scholar] [CrossRef]
- Dordio, A.V.; Gonçalves, P.; Texeira, D.; Candeias, A.J.; Castanheiro, J.E.; Pinto, A.P.; Carvalho, A.P. Pharmaceuticals sorption behaviour in granulated cork for the selection of a support matrix for a constructed wetlands system. Int. J. Environ. Anal. Chem. 2011, 91, 615–631. [Google Scholar] [CrossRef]
- Pereira, H. The Rationale behind Cork Properties: A Review of Structure and Chemistry. Bioresources 2015, 10, 6207–6229. [Google Scholar] [CrossRef]
- Pirozzi, C.; Pontoni, L.; Fabbricino, M.; Bogush, A.; Campos, L.C. Effect of organic matter release from natural cork used on bisphenol a removal from aqueous solution. J. Clean. Prod. 2019, 244, 118675. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2014, 175, 594–601. [Google Scholar] [CrossRef]
- Elfanssi, S.; Ouazzani, N.; Latrach, L.; Hejjaj, A.; Mandi, L. Phytoremediation of domestic wastewater using a hybrid constructed wetland in mountainous rural area. Int. J. Phytoremediat. 2018, 20, 75–87. [Google Scholar] [CrossRef]
- Kraiem, K.; Kallali, H.; Wahab, M.A.; Fra-Vazquez, A.; Mosquera-Corral, A.; Jedidi, N. Comparative study on pilots between ANAMMOX favored conditions in a partially saturated vertical flow constructed wetland and a hybrid system for rural wastewater treatment. Sci. Total Environ. 2019, 670, 644–653. [Google Scholar] [CrossRef]
- Sanjrani, M.A.; Zhou, B.; Zhao, H.; Zheng, Y.P.; Wang, Y.; Xia, S.B. The Influence of Wetland Media in Improving the Performance of Pollutant Removal during Water Treatment: A Review. Appl. Ecol. Environ. Res. 2019, 17, 3803–3818. [Google Scholar] [CrossRef]
- Toscano, A.; Marzo, A.; Milani, M.; Cirelli, G.L.; Barbagallo, S. Comparison of removal efficiencies in Mediterranean pilot constructed wetlands vegetated with different plant species. Ecol. Eng. 2015, 75, 155–160. [Google Scholar] [CrossRef]
- Caselles-Osorio, A.; Vega, H.; Lancheros, J.C.; Casierra-Martínez, H.A.; Mosquera, J.E. Horizontal subsurface-flow constructed wetland removal efficiency using Cyperus articulatus L. Ecol. Eng. 2017, 99, 479–485. [Google Scholar] [CrossRef]
- Jamwal, P.; Raj, A.V.; Raveendran, L.; Shirin, S.; Connelly, S.; Yeluripati, J.; Richards, S.; Rao, L.; Helliwell, R.; Tamburini, M. Evaluating the performance of horizontal sub-surface flow constructed wetlands: A case study from southern India. Ecol. Eng. 2021, 162, 106170. [Google Scholar] [CrossRef]
- Xu, Q.; Cui, L. Removal of COD from synthetic wastewater in vertical flow constructed wetland. Water Environ. Res. 2019, 91, 1661–1668. [Google Scholar] [CrossRef]
- Fu, X.; Hou, R.; Yang, P.; Qian, S.; Feng, Z.; Chen, Z.; Wang, F.; Yuan, R.; Chen, H.; Zhou, B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total Environ. 2022, 817, 153061. [Google Scholar] [CrossRef] [PubMed]
- Timotewos, M.T.; Kassa, K.; Reddythota, D. Selection of mesocosm to remove nutrients with constructed wetlands. J. Ecol. Eng. 2017, 18, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Barbagallo, S.; Cirelli, G.L.; Marzo, A.; Milani, M.; Toscano, A. Effect of different plant species in pilot constructed wetlands for wastewater reuse in agriculture. J. Agric. Eng. 2013, 44, 796–802. [Google Scholar] [CrossRef]
- Abed, S.N. Effect of Wastewater Quality on the Performance of Constructed Wetland in an Arid Region Birzeit University. 2012. Available online: https://iews.birzeit.edu/sites/default/files/theses/TD756.5.A24%202012%20shereen%20abed.pdf (accessed on 10 June 2022).
- Akratos, C.S.; Tsihrintzis, V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2006, 29, 173–191. [Google Scholar] [CrossRef]
- Ballesteros, F.; Vuong, T.H.; Secondes, M.F.; Tuan, P.D. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene. Sustain. Environ. Res. 2016, 26, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Ling, H.; Li, Z.; Li, Y.; Chen, R.; Cai, S.; Gao, B. Treatment of Ammonium-Nitrogen–Contaminated Groundwater by Tidal Flow Constructed Wetlands Using Different Substrates: Evaluation of Performance and Microbial Nitrogen Removal Pathways. Water Air Soil Pollut. 2022, 233, 159. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Tran, T.P.; Hoang, V.H.; Nguyen, T.P.; Chang, S.W.; Nguyen, D.D.; Guo, W.; Kumar, A.; La, D.D.; Bach, Q.-V. Combined biochar vertical flow and free-water surface constructed wetland system for dormitory sewage treatment and reuse. Sci. Total Environ. 2020, 713, 136404. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Ferreira, C.I.A.; Pereira, J.C.; Correia, P.; Silva, S.P.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Use of cork powder and granules for the adsorption of pollutants: A review. Water Res. 2012, 46, 3152–3166. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, A.; Khalid, N.; Aqeel, M.; Noman, A.; Naeem, N.; Sarfraz, W.; Ejaz, U.; Qaiser, Z.; Khalid, A. Nitrogen Dynamics in Wetland Systems and Its Impact on Biodiversity. Nitrogen 2021, 2, 196–217. [Google Scholar] [CrossRef]
- Minakshi, D.; Sharma, P.K.; Rani, A. Effect of filter media and hydraulic retention time on the performance of vertical constructed wetland system treating dairy farm wastewater. Environ. Eng. Res. 2021, 27, 200436. [Google Scholar] [CrossRef]
- Carrasco-Acosta, M.; Garcia-Jimenez, P.; Herrera-Melián, J.A.; Peñate-Castellano, N.; Rivero-Rosales, A. The Effects of Plants on Pollutant Removal, Clogging, and Bacterial Community Structure in Palm Mulch-Based Vertical Flow Constructed Wetlands. Sustainability 2019, 11, 632. [Google Scholar] [CrossRef] [Green Version]
- Foladori, P.; Ruaben, J.; Ortigara, A.R. Recirculation or artificial aeration in vertical flow constructed wetlands: A comparative study for treating high load wastewater. Bioresour. Technol. 2013, 149, 398–405. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhu, J.N.; Liu, Q.F.; Liu, Y.; Liu, M.; Liu, L.; Zhang, Q. Comparison of the diversity of root-associated bacteria in Phragmites australis and Typha angustifolia L. in artificial wetlands. World J. Microbiol. Biotechnol. 2013, 29, 1499–1508. [Google Scholar] [CrossRef]
- Dan, A.; Fujii, D.; Soda, S.; Machimura, T.; Ike, M. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. Sci. Total Environ. 2017, 578, 566–576. [Google Scholar] [CrossRef]
- Ruppelt, J.P.; Pinnekamp, J.; Tondera, K. Elimination of micropollutants in four test-scale constructed wetlands treating combined sewer overflow: Influence of filtration layer height and feeding regime. Water Res. 2019, 169, 115214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, T.; Kelly, B.C.; Gin, K.Y.-H. Bioaccumulation behaviour of pharmaceuticals and personal care products in a constructed wetland. Chemosphere 2019, 222, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Ávila, C.; Nivala, J.; Olsson, L.; Kassa, K.; Headley, T.; Mueller, R.A.; Bayona, J.M.; García, J. Emerging organic contaminants in vertical subsurface flow constructed wetlands: Influence of media size, loading frequency and use of active aeration. Sci. Total Environ. 2014, 494–495, 211–217. [Google Scholar] [CrossRef]
- Toro-Vélez, A.; Madera-Parra, C.; Peña-Varón, M.; Lee, W.; Cruz, J.B.; Walker, W.; Cárdenas-Henao, H.; Quesada-Calderón, S.; García-Hernández, H.; Lens, P. BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Sci. Total Environ. 2016, 542, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Papaevangelou, V.A.; Gikas, G.D.; Tsihrintzis, V.A.; Antonopoulou, M.; Konstantinou, I.K. Removal of Endocrine Disrupting Chemicals in HSF and VF pilot-scale constructed wetlands. Chem. Eng. J. 2016, 294, 146–156. [Google Scholar] [CrossRef]
- Carranza-Diaz, O.; Schultze-Nobre, L.; Moeder, M.; Nivala, J.; Kuschk, P.; Koeser, H. Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecol. Eng. 2014, 71, 234–245. [Google Scholar] [CrossRef]
- Ilyas, H.; van Hullebusch, E.D. Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: A review. Environ. Sci. Pollut. Res. 2020, 27, 14342–14364. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M.; Sadreddini, S.; Zhu, J.; Tuan, N.A. Removal of pharmaceutical compounds in tropical constructed wetlands. Ecol. Eng. 2011, 37, 460–464. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.; Wang, X.C.; Zhang, Q.; Dzakpasu, M. Photochemical behavior of constructed wetlands-derived dissolved organic matter and its effects on Bisphenol A photodegradation in secondary treated wastewater. Sci. Total Environ. 2022, 845, 157300. [Google Scholar] [CrossRef]
- Mathon, B.; Coquery, M.; Miège, C.; Vandycke, A.; Choubert, J.-M. Influence of water depth and season on the photodegradation of micropollutants in a free-water surface constructed wetland receiving treated wastewater. Chemosphere 2019, 235, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Olivella, M.; Bazzicalupi, C.; Bianchi, A.; Fiol, N.; Villaescusa, I. New insights into the interactions between cork chemical components and pesticides. The contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Chemosphere 2015, 119, 863–870. [Google Scholar] [CrossRef]
- Mallek, M.; Chtourou, M.; Portillo, M.; Monclús, H.; Walha, K.; ben Salah, A.; Salvadó, V. Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J. Environ. Manag. 2018, 223, 576–585. [Google Scholar] [CrossRef] [PubMed]
Influent | Standards for Agricultural Reuse | ||||
---|---|---|---|---|---|
Tunisian Limits (NT106.03) | European Union Limits | WHO (2006) Wastewater Quality for Agriculture | EPA (USA) | ||
pH | 7.8 ± 0.3 | 6.5–8.5 | 6–9.5 | 5.8–8.5 | 6–9 |
EC (µS /cm) | 5600 ± 215 | 7000 | n.r | 4500 | n.r |
TSS (mg L−1) | 269 ± 22.7 | ≤30 | A: ≤10 B: ≤35 C: ≤35 D: ≤35 | Unrestricted <50 Restricted 50–100 | ≤30 |
COD (mg L−1) | 474.8 ± 29.48 | ≤90 | n.r | n.r | n.r |
BOD5 (mg L−1) | 230 ± 20 | ≤30 | A: ≤10 B: ≤25 C: ≤25 D: ≤25 | n.r | For food crops: ≤10 Industrial crops: ≤30 |
NH4-N (mg L−1) | 83.57 ± 2.95 | n.r | n.r | n.r | n.r |
NO3-N (mg L−1) | 0.95 ± 0.20 | n.r | n.r | n.r | n.r |
Unit | Substrate | Plant | Volume (L) |
---|---|---|---|
H1FCW | 100% Gravel | Unplanted | 21 |
H2FCW | 75% Gravel + 25% Granulated Cork | Unplanted | 21 |
H3FCW | 100% Gravel | Phragmites australis | 21 |
H4FCW | 100% Gravel | Typha angustifolia | 21 |
H5FCW | 75% Gravel + 25% Granulated Cork | Phragmites australis | 21 |
H6FCW | 75% Gravel + 25% Granulated Cork | Typha angustifolia | 21 |
Compounds | Chemical Formula | Chemical Structure | Mw (g mol−1) | Mw -TMS | Ions (m/z) | R2 |
---|---|---|---|---|---|---|
Bisphenol A (BPA) | C15H16O2 | 228.29 | 372 | 357 358 | 0.990 | |
Diclofenac (DCF) | C14H10Cl2NO2Na | 318.1 | 367 | 214 242 277 | 0.996 |
Target EDCs | Concentration Average | EDCs Removal Rates % | |||
---|---|---|---|---|---|
Spiked Influent (µg L−1) | H4FCW Effluent (µg L−1) | H6FCW Effluent (µg L−1) | H4FCW | H6FCW | |
Bisphenol A (BPA) | 74.47 ± 0.35 | 27.12 ± 0.43 | 6.74 ± 0.62 | 63.58 ± 0.62 | 90.95 ± 0.37 |
Diclofenac (DCF) | 26.35 ± 0.57 | 9.35 ± 0.48 | 2.72 ± 0.53 | 64.52 ± 0.38 | 89.66 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessadok, S.; Kraiem, K.; Arous, F.; Al Souki, K.S.; Tabassi, D.; El Toumi, S.; Jaouani, A. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate. Toxics 2023, 11, 81. https://doi.org/10.3390/toxics11010081
Bessadok S, Kraiem K, Arous F, Al Souki KS, Tabassi D, El Toumi S, Jaouani A. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate. Toxics. 2023; 11(1):81. https://doi.org/10.3390/toxics11010081
Chicago/Turabian StyleBessadok, Salma, Khadija Kraiem, Fatma Arous, Karim Suhail Al Souki, Dorra Tabassi, Safa El Toumi, and Atef Jaouani. 2023. "Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate" Toxics 11, no. 1: 81. https://doi.org/10.3390/toxics11010081
APA StyleBessadok, S., Kraiem, K., Arous, F., Al Souki, K. S., Tabassi, D., El Toumi, S., & Jaouani, A. (2023). Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate. Toxics, 11(1), 81. https://doi.org/10.3390/toxics11010081