Sol-Gel Synthesis of New TiO2 Ball/Activated Carbon Photocatalyst and Its Application for Degradation of Three Hormones: 17α-EthinylEstradiol, Estrone, and β-Estradiol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of AC/TiO2 Ball
2.3. Characterization of AC/TiO2 Ball
2.4. Photocatalysis Experiment
2.5. Adsorption Experiment
2.6. Application in Wastewaters
2.7. Experimental Analysis
3. Results
3.1. Characterization of AC/TiO2 Ball
3.1.1. Thermogravimetric Analysis
3.1.2. Crystallography
3.1.3. Morphology
3.1.4. Surface Area and Pore Size
3.2. Adsorption Equilibrium and Photodegradation Kinetic Studies
3.3. Photocatalytic Studies
3.4. Application on Wastewater Effluents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arp, H.P.H. Emerging decontaminants. Environ. Sci. Technol. 2012, 46, 4259–4260. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yan, X.; Shen, Y.; Di, M.; Wang, J. Occurrence, behavior and risk assessment of estrogens in surface water and sediments from Hanjiang River, Central China. Ecotoxicology 2019, 28, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Diepens, N.J.; Koelmans, A.A.; Baveco, H.; van den Brink, P.J.; van den Heuvel-Greve, M.J.; Brock, T.C.M. Prospective environmental risk assessment for sediment-bound organic chemicals: A proposal for tiered effect assessment. In Reviews of Environmental Contamination and Toxicology; De Voogt, P., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 239, pp. 1–77. ISBN 978-3-319-33971-9. [Google Scholar]
- Almazrouei, B.; Islayem, D.; Alskafi, F.; Catacutan, M.K.; Amna, R.; Nasrat, S.; Sizirici, B.; Yildiz, I. Steroid hormones in wastewater: Sources, treatments, environmental risks, and regulations. Emerg. Contam. 2023, 9, 100210. [Google Scholar] [CrossRef]
- Tsai, H.-W.; Liao, P.-F.; Li, C.-J.; Lin, L.-T.; Wen, Z.-H.; Tsui, K.-H. High serum anti-Müllerian hormone concentrations have a negative impact on fertilization and embryo development rates. Reprod. Biomed. Online 2021, 44, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Giulivo, M.; de Alda, M.L.; Capri, E.; Barceló, D. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ. Res. 2016, 151, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Sifakis, S.; Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Human exposure to endocrine disrupting chemicals: Effects on the male and female reproductive systems. Environ. Toxicol. Pharmacol. 2017, 51, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Skalla, L.A.; Joubert, B.; Dilworth, C.H.; Gray, K.A. Review of developmental origins of health and disease publications in environmental epidemiology. Reprod. Toxicol. 2017, 68, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.J.; Rocha, E. Synthetic progestins in waste and surface waters: Concentrations, impacts and ecological risk. Toxics 2022, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef] [PubMed]
- Kolpin, D.W.; Furlong, E.; Meyer, M.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999−2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, L.; Klerks, P. Effects of the synthetic estrogen 17α-ethinylestradiol on Heterandria formosa populations: Does matrotrophy circumvent population collapse? Aquat. Toxicol. 2020, 229, 105659. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.R.; Jobling, S.; Sumpter, J.P. Endocrine disruption in wildlife: A critical review of the evidence. Crit. Rev. Toxicol. 1998, 28, 319–361. [Google Scholar] [CrossRef] [PubMed]
- Baussant, T.; Sanni, S.; Jonsson, G.; Skadsheim, A.; Børseth, J.F. Bioaccumulation of polycyclic aromatic compounds: 1. Bioconcentration in two marine species and in semipermeable membrane devices during chronic exposure to dispersed crude oil. Environ. Toxicol. Chem. 2001, 20, 1175–1184. [Google Scholar] [CrossRef]
- Jobling, S.; Williams, R.; Johnson, A.; Taylor, A.; Gross-Sorokin, M.; Nolan, M.; Tyler, C.R.; van Aerle, R.; Santos, E.; Brighty, G. Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environ. Health Perspect. 2006, 114, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, G.P.; de Souza, N.C.; Vidal, C.B.; Alves, J.A.; Firmino, P.I.M.; Nascimento, R.F.; dos Santos, A.B. Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Sci. Total. Environ. 2014, 490, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Luo, Y.; Jia, A.; Park, M.; Daniels, K.D.; Nie, X.; Wu, S.; Snyder, S.A. Adsorption kinetics of 20 glucocorticoids at environmentally relevant concentrations in wastewater by powdered activated carbons and development of surrogate models. J. Water Process Eng. 2022, 50, 103279. [Google Scholar] [CrossRef]
- Yurtay, A.; Kılıç, M. Biomass-based activated carbon by flash heating as a novel preparation route and its application in high efficiency adsorption of metronidazole. Diam. Relat. Mater. 2023, 131, 109603. [Google Scholar] [CrossRef]
- Tagliavini, M.; Weidler, P.G.; Njel, C.; Pohl, J.; Richter, D.; Böhringer, B.; Schäfer, A.I. Polymer-based spherical activated carbon-ultrafiltration (UF-PBSAC) for the adsorption of steroid hormones from water: Material characteristics and process configuration. Water Res. 2020, 185, 116249. [Google Scholar] [CrossRef]
- Wang, C.; Lin, J.; Niu, Y.; Wang, W.; Wen, J.; Lv, L.; Liu, C.; Du, X.; Zhang, Q.; Chen, B.; et al. Impact of ozone exposure on heart rate variability and stress hormones: A randomized-crossover study. J. Hazard. Mater. 2021, 421, 126750. [Google Scholar] [CrossRef]
- Xia, Y.; Niu, Y.; Cai, J.; Liu, C.; Meng, X.; Chen, R.; Kan, H. Personal ozone exposure and stress hormones in the hypothalamus-pituitary-adrenal and sympathetic-adrenal-medullary axes. Environ. Int. 2021, 159, 107050. [Google Scholar] [CrossRef]
- Padovan, R.N.; de Carvalho, L.S.; Bergo, P.L.d.S.; Xavier, C.; Leitão, A.; Neto, J.D.S.; Lanças, F.M.; Azevedo, E.B. Degradation of hormones in tap water by heterogeneous solar TiO2-photocatalysis: Optimization, degradation products identification, and estrogenic activity removal. J. Environ. Chem. Eng. 2021, 9, 106442. [Google Scholar] [CrossRef]
- Astuti, M.P.; Rangsivek, R.; Padhye, L.P. Laboratory and pilot-scale UV, UV/H2O2, and granular activated carbon (GAC) treatments for simultaneous removal of five chemicals of emerging concerns (CECs) in water. J. Water Process Eng. 2022, 47, 102730. [Google Scholar] [CrossRef]
- Antonopoulou, M. Homogeneous and heterogeneous photocatalysis for the treatment of pharmaceutical industry wastewaters: A review. Toxics 2022, 10, 539. [Google Scholar] [CrossRef]
- Bakry, A.M.; Alamier, W.M.; Salama, R.S.; El-Shall, M.S.; Awad, F.S. Remediation of water containing phosphate using ceria nanoparticles decorated partially reduced graphene oxide (CeO2-PRGO) composite. Surf. Interfaces 2022, 31, 102006. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Salama, R.S.; El-Hakam, S.A.; Khder, A.S.; Ahmed, A.I. Synthesis of 12-tungestophosphoric acid supported on Zr/MCM-41 composite with excellent heterogeneous catalyst and promising adsorbent of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127753. [Google Scholar] [CrossRef]
- Liu, S.; Véron, E.; Lotfi, S.; Fischer, K.; Schulze, A.; Schäfer, A.I. Poly(vinylidene fluoride) membrane with immobilized TiO2 for degradation of steroid hormone micropollutants in a photocatalytic membrane reactor. J. Hazard. Mater. 2023, 447, 130832. [Google Scholar] [CrossRef]
- Yasir, M.; Ngwabebhoh, F.A.; Šopík, T.; Ali, H.; Sedlařík, V. Electrospun polyurethane nanofibers coated with polyaniline/polyvinyl alcohol as ultrafiltration membranes for the removal of ethinylestradiol hormone micropollutant from aqueous phase. J. Environ. Chem. Eng. 2022, 10, 107811. [Google Scholar] [CrossRef]
- Ermawati, R.; Morimura, S.; Tang, Y.; Liu, K.; Kida, K. Degradation and behavior of natural steroid hormones in cow manure waste during biological treatments and ozone oxidation. J. Biosci. Bioeng. 2007, 103, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.N.; Fujishita, A.; Koshiba, A.; Mori, T.; Kuroboshi, H.; Ogi, H.; Itoh, K.; Nakashima, M.; Kitawaki, J. Biological differences between focal and diffuse adenomyosis and response to hormonal treatment. Reprod. Biomed. Online 2018, 38, 634–646. [Google Scholar] [CrossRef]
- Rokhina, E.V.; Suri, R.P. Application of density functional theory (DFT) to study the properties and degradation of natural estrogen hormones with chemical oxidizers. Sci. Total. Environ. 2012, 417–418, 280–290. [Google Scholar] [CrossRef]
- El Mouchtari, E.M.; Bahsis, L.; El Mersly, L.; Anane, H.; Lebarillier, S.; Piram, A.; Briche, S.; Wong-Wah-Chung, P.; Rafqah, S. Insights in the aqueous and adsorbed photocatalytic degradation of carbamazepine by a biosourced composite: Kinetics, Mechanisms and DFT calculations. Int. J. Environ. Res. 2021, 15, 135–147. [Google Scholar] [CrossRef]
- Daou, C.; Hamade, A.; El Mouchtari, E.M.; Rafqah, S.; Piram, A.; Wong-Wah-Chung, P.; Najjar, F. Zebrafish toxicity assessment of the photocatalysis-biodegradation of diclofenac using composites of TiO2 and activated carbon from Argania spinosa tree nutshells and Pseudomonas aeruginosa. Environ. Sci. Pollut. Res. 2020, 27, 17258–17267. [Google Scholar] [CrossRef] [PubMed]
- Briche, S.; Derqaoui, M.; Belaiche, M.; El Mouchtari, E.M.; Wong-Wah-Chung, P.; Rafqah, S. Nanocomposite material from TiO2 and activated carbon for the removal of pharmaceutical product sulfamethazine by combined adsorption/photocatalysis in aqueous media. Environ. Sci. Pollut. Res. 2020, 27, 25523–25534. [Google Scholar] [CrossRef] [PubMed]
- El Mouchtari, E.M.; El Mersly, L.; Jhabli, O.; Anane, H.; Piram, A.; Briche, S.; Wong-Wah-Chung, P.; Rafqah, S. Hydrothermal synthesis of 3D cauliflower anatase TiO2 and bio sourced activated carbon: Adsorption and photocatalytic activity in real water matrices. Int. J. Environ. Anal. Chem. 2022, 1–16. [Google Scholar] [CrossRef]
- El Mouchtari, E.M.; Daou, C.; Rafqah, S.; Najjar, F.; Anane, H.; Piram, A.; Hamadeh, A.; Briche, S.; Wong-Wah-Chung, P. TiO2 and activated carbon of Argania Spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution. J. Photochem. Photobiol. A Chem. 2019, 388, 112183. [Google Scholar] [CrossRef]
- Mahmood, P.H.; Amiri, O.; Ahmed, S.S.; Hama, J.R. Simple microwave synthesis of TiO2/NiS2 nanocomposite and TiO2/NiS2/Cu nanocomposite as an efficient visible driven photocatalyst. Ceram. Int. 2019, 45, 14167–14172. [Google Scholar] [CrossRef]
- Arthi, G.; Archana, J.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Muthamizhchelvan, C.; Ramaraj, S.G. Solvothermal synthesis of 3D hierarchical rutile TiO2 nanostructures for efficient dye-sensitized solar cells. Mater. Lett. 2023, 337, 133961. [Google Scholar] [CrossRef]
- Peñas-Garzón, M.; Gómez-Avilés, A.; Belver, C.; Rodriguez, J.; Bedia, J. Degradation pathways of emerging contaminants using TiO2-activated carbon heterostructures in aqueous solution under simulated solar light. Chem. Eng. J. 2020, 392, 124867. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids (technical report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Bruschi, L.; Mistura, G.; Negri, F.; Coasne, B.; Mayamei, Y.; Lee, W. Adsorption on alumina nanopores with conical shape. Nanoscale 2018, 10, 18300–18305. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Asencios, Y.J.; Lourenço, V.S.; Carvalho, W.A. Removal of phenol in seawater by heterogeneous photocatalysis using activated carbon materials modified with TiO2. Catal. Today 2020, 388–389, 247–258. [Google Scholar] [CrossRef]
- Ribeiro, E.; Plantard, G.; Goetz, V. TiO2 grafted activated carbon elaboration by milling: Composition effect on sorption and photocatalytic properties. J. Photochem. Photobiol. A Chem. 2020, 408, 113108. [Google Scholar] [CrossRef]
- Abdullah, M.; Iqbal, J.; Rehman, M.S.U.; Khalid, U.; Mateen, F.; Arshad, S.N.; Al-Sehemi, A.G.; Algarni, H.; Al-Hartomy, O.A.; Fazal, T. Removal of ceftriaxone sodium antibiotic from pharmaceutical wastewater using an activated carbon based TiO2 composite: Adsorption and photocatalytic degradation evaluation. Chemosphere 2023, 317, 137834. [Google Scholar] [CrossRef]
- Rashki, O.; Rezaei, M.R.; Sayadi, M.H. The high photocatalytic efficiency and stability of the Z-scheme CaTiO3/WS2 heterostructure for photocatalytic removal of 17α-ethinyl estradiol in aqueous solution. J. Photochem. Photobiol. A Chem. 2022, 433, 114169. [Google Scholar] [CrossRef]
- Khadgi, N.; Li, Y.; Upreti, A.R.; Zhang, C.; Zhang, W.; Wang, Y.; Wang, D. Enhanced photocatalytic degradation of 17α-ethinylestradiol exhibited by multifunctional ZnFe2O4-Ag/rGO nanocomposite under visible light. Photochem. Photobiol. 2016, 92, 238–246. [Google Scholar] [CrossRef]
- Upreti, A.R.; Li, Y.; Khadgi, N.; Naraginti, S.; Zhang, C. Efficient visible light photocatalytic degradation of 17α-ethinyl estradiol by a multifunctional Ag–AgCl/ZnFe2O4 magnetic nanocomposite. RSC Adv. 2016, 6, 32761–32769. [Google Scholar] [CrossRef]
- Yang, K.; Liu, M.; Weng, X.; Owens, G.; Chen, Z. Fenton-like oxidation for the simultaneous removal of estrone and β-estradiol from wastewater using biosynthesized silver nanoparticles. Sep. Purif. Technol. 2022, 285, 120304. [Google Scholar] [CrossRef]
[TiCl4] mol L−1 | %TiO2 Theo | %TiO2 Exp | Referred Name | Anatase % | Rutile % | TiO2 Size (nm) |
---|---|---|---|---|---|---|
0.85 | 40.4 | 37.8 | AC/TiO2-b 38% | 100 | 0 | 52 |
1.29 | 50.7 | 52.6 | AC/TiO2-b 53% | 95 | 5 | 63 |
2.5 | 66.7 | 62.9 | AC/TiO2-b 63% | 100 | 0 | 77 |
Material | SBET (m2 g−1) | Porous Volume (cm3 g−1) | Pores Diameter (nm) |
---|---|---|---|
AC | 1070 | 0.59 | 2.2 |
AC/TiO2-b 38% | 736 | 0.43 | 2.4 |
AC/TiO2-b 53% | 541 | 0.35 | 2.6 |
AC/TiO2-b 63% | 422 | 0.28 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mouchtari, E.M.; El Mersly, L.; Belkodia, K.; Piram, A.; Lebarillier, S.; Briche, S.; Rafqah, S.; Wong-Wah-Chung, P. Sol-Gel Synthesis of New TiO2 Ball/Activated Carbon Photocatalyst and Its Application for Degradation of Three Hormones: 17α-EthinylEstradiol, Estrone, and β-Estradiol. Toxics 2023, 11, 299. https://doi.org/10.3390/toxics11040299
El Mouchtari EM, El Mersly L, Belkodia K, Piram A, Lebarillier S, Briche S, Rafqah S, Wong-Wah-Chung P. Sol-Gel Synthesis of New TiO2 Ball/Activated Carbon Photocatalyst and Its Application for Degradation of Three Hormones: 17α-EthinylEstradiol, Estrone, and β-Estradiol. Toxics. 2023; 11(4):299. https://doi.org/10.3390/toxics11040299
Chicago/Turabian StyleEl Mouchtari, El Mountassir, Lekbira El Mersly, Kaltoum Belkodia, Anne Piram, Stéphanie Lebarillier, Samir Briche, Salah Rafqah, and Pascal Wong-Wah-Chung. 2023. "Sol-Gel Synthesis of New TiO2 Ball/Activated Carbon Photocatalyst and Its Application for Degradation of Three Hormones: 17α-EthinylEstradiol, Estrone, and β-Estradiol" Toxics 11, no. 4: 299. https://doi.org/10.3390/toxics11040299
APA StyleEl Mouchtari, E. M., El Mersly, L., Belkodia, K., Piram, A., Lebarillier, S., Briche, S., Rafqah, S., & Wong-Wah-Chung, P. (2023). Sol-Gel Synthesis of New TiO2 Ball/Activated Carbon Photocatalyst and Its Application for Degradation of Three Hormones: 17α-EthinylEstradiol, Estrone, and β-Estradiol. Toxics, 11(4), 299. https://doi.org/10.3390/toxics11040299