Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Embryo Collection and Methyl Parathion Exposure
2.3. Morphological Analysis and Developmental Toxicity Assessment
2.4. Assessment of Cardiac Morphology and Function
2.5. Oxidative Stress Analysis
2.6. Acridine Orange (AO) Staining
2.7. Analysis of Gene Expression
2.8. Rescue Experiments
2.9. Determination of MP Concentration in Aqueous Solution and Zebrafish Larvae
2.10. Statistical Analysis
3. Results
3.1. Stability of MP during the Experiment and Concentrations of MP in Zebrafish Larvae
3.2. MP-Induced Developmental Toxicity in Zebrafish Embryos
3.3. MP-Induced Cardiotoxicity in Zebrafish Embryos
3.4. Expression of Genes Related to Heart Development
3.5. Oxidative Stress Analysis
3.6. Apoptosis Analysis of Cardiac Cells
3.7. Expression of Apoptosis-Related Genes
3.8. Astaxanthin Partially Rescued Zebrafish Embryos from MP-Induced toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.K. Organophosphorus-degrading bacteria: Ecology and industrial applications. Nat. Rev. Microbiol. 2009, 7, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Bhattu, M.; Verma, M.; Kathuria, D. Recent advancements in the detection of organophosphate pesticides: A review. Anal. Methods 2021, 13, 4390–4428. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Malik, A. Preety, Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, G.K.; Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Singh, J. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1135–1187. [Google Scholar] [CrossRef]
- Jain, M.; Yadav, P.; Joshi, B.; Joshi, A.; Kodgire, P. Recombinant organophosphorus hydrolase (OPH) expression in E. coli for the effective detection of organophosphate pesticides. Protein Expr. Purif. 2021, 186, 105929. [Google Scholar] [CrossRef]
- Jain, M.; Yadav, P.; Joshi, A.; Kodgire, P. Advances in detection of hazardous organophosphorus compounds using organophosphorus hydrolase based biosensors. Crit. Rev. Toxicol. 2019, 49, 387–410. [Google Scholar] [CrossRef]
- Cai, Y.; Fang, J.; Wang, B.; Zhang, F.; Shao, G.; Liu, Y. A signal-on detection of organophosphorus pesticides by fluorescent probe based on aggregation-induced emission. Sens. Actuators B Chem. 2019, 292, 156–163. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, Y.; Liu, S.; Zhang, J.; Zhang, C.; Jiang, H.; Han, X.; He, L.; Wang, S.; Zhang, K. Colorimetric and fluorescent sensors for detection of nerve agents and organophosphorus pesticides. Sens. Actuators B Chem. 2021, 344, 130278. [Google Scholar] [CrossRef]
- Garcia, S.J.; Abu-Qare, A.W.; Meeker-O’Connell, W.A.; Borton, A.J.; Abou-Donia, M.B. Methyl parathion: A review of health effects. J. Toxicol. Environ. Health B Crit. Rev. 2003, 6, 185–210. [Google Scholar] [CrossRef]
- Rico, A.; Geber-Correa, R.; Campos, P.S.; Garcia, M.V.; Waichman, A.V.; van den Brink, P.J. Effect of parathion-methyl on Amazonian fish and freshwater invertebrates: A comparison of sensitivity with temperate data. Arch. Environ. Contam. Toxicol. 2010, 58, 765–771. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Huang, H.Q. Differential expression profile of membrane proteins in zebrafish (Danio rerio) brain exposed to methyl parathion. Proteomics 2011, 11, 3743–3756. [Google Scholar] [CrossRef] [Green Version]
- Niell, S.; Gerez, N.; Jesús, F.; Cesio, V.; Heinzen, H. Case Study: Beehive Devastation by Microencapsulated Parathion-Methyl. Chromatographia 2016, 79, 1085–1090. [Google Scholar] [CrossRef]
- Arellano-Aguilar, O.; Macias Garcia, C. Effects of methyl parathion exposure on development and reproduction in the viviparous fish Girardinichthys multiradiatus. Environ. Toxicol. 2009, 24, 178–186. [Google Scholar] [CrossRef]
- Hernandez-Cortes, D.; Alvarado-Cruz, I.; Solis-Heredia, M.J.; Quintanilla-Vega, B. Epigenetic modulation of Nrf2 and Ogg1 gene expression in testicular germ cells by methyl parathion exposure. Toxicol. Appl. Pharmacol. 2018, 346, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Delgado, V.H.; Martinez-Saldana, M.C.; Rodriguez-Vazquez, M.L.; Reyes-Romero, M.A.; Reyes-Sanchez, J.L.; Jaramillo-Juarez, F. Renal damage induced by the pesticide methyl parathion in male Wistar rats. J. Toxicol. Environ. Health A 2018, 81, 130–141. [Google Scholar] [CrossRef]
- Ruckart, P.Z.; Kakolewski, K.; Bove, F.J.; Kaye, W.E. Long-term neurobehavioral health effects of methyl parathion exposure in children in Mississippi and Ohio. Environ. Health Perspect. 2004, 112, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Rotich, H.K.; Zhang, Z.; Zhao, Y.; Li, J. The adsorption behavior of three organophosphorus pesticides in peat and soil samples and their degradation in aqueous solutions at different temperatures and pH values. Int. J. Environ. Anal. Chem. 2004, 84, 289–301. [Google Scholar] [CrossRef]
- Alfonso, L.F.; German, G.V.; Maria Del Carmen, P.C.; Hossein, G. Adsorption of organophosphorus pesticides in tropical soils: The case of karst landscape of northwestern Yucatan. Chemosphere 2017, 166, 292–299. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, W.; Zhang, W.; Wu, H.; Guang, C.; Mu, W. In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides. Bioresour. Technol. 2021, 323, 124641. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y. A hybrid nanobiocatalyst with in situ encapsulated enzyme and exsolved Co nanoclusters for complete chemoenzymatic conversion of methyl parathion to 4-aminophenol. J. Hazard. Mater. 2022, 424 Pt D, 127755. [Google Scholar] [CrossRef]
- Horzmann, K.A.; Freeman, J.L. Making Waves: New Developments in Toxicology With the Zebrafish. Toxicol. Sci. 2018, 163, 5–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Meng, Z.; Liu, F.; Zhou, L.; Su, M.; Meng, Y.; Zhang, S.; Liao, X.; Cao, Z.; Lu, H. Characterization of boscalid-induced oxidative stress and neurodevelopmental toxicity in zebrafish embryos. Chemosphere 2020, 238, 124753. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.; McManus, M.; Kumar, N.; Awoyemi, O.; Crago, J. Comparative analyses of the neurobehavioral, molecular, and enzymatic effects of organophosphates on embryo-larval zebrafish (Danio rerio). Neurotoxicol. Teratol. 2019, 73, 67–75. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, J.G.; Koakoski, G.; Piato, A.L.; Bogo, M.R.; Bonan, C.D.; Barcellos, L.J. Impaired brain StAR and HSP70 gene expression in zebrafish exposed to Methyl-Parathion based insecticide. J. Toxicol. Environ. Health A 2016, 79, 1–7. [Google Scholar] [CrossRef]
- De La Vega Salazar, M.Y.; Tabche, L.M.; Garcia, C.M. Bioaccumulation of methyl parathion and its toxicology in several species of the freshwater community in Ignacio Ramirez dam in Mexico. Ecotoxicol. Environ. Saf. 1997, 38, 53–62. [Google Scholar] [CrossRef]
- Zhong, K.; Meng, Y.; Wu, J.; Wei, Y.; Huang, Y.; Ma, J.; Lu, H. Effect of flupyradifurone on zebrafish embryonic development. Environ. Pollut. 2021, 285, 117323. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, J.; Zeng, Y.; Chen, K.; Wang, C.; Yang, S.; Sun, N.; Chen, H.; Duan, K.; Zeng, G. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease. Clin. Chim. Acta 2020, 510, 62–72. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Wang, H.; Meng, Z.; Zhou, L.; Cao, Z.; Liao, X.; Ye, R.; Lu, H. Effects of acetochlor on neurogenesis and behaviour in zebrafish at early developmental stages. Chemosphere 2019, 220, 954–964. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, J.; Huang, Y.; Wang, Z.; Cheng, B.; Ma, J.; Wei, Y.; Meng, Y.; Lu, H. Benoxacor caused developmental and cardiac toxicity in zebrafish larvae. Ecotoxicol. Environ. Saf. 2021, 224, 112696. [Google Scholar] [CrossRef]
- Huang, M.; Jiao, J.; Wang, J.; Xia, Z.; Zhang, Y. Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis. Environ. Pollut. 2018, 234, 656–666. [Google Scholar] [CrossRef]
- Meng, Y.; Zhong, K.; Xiao, J.; Huang, Y.; Wei, Y.; Tang, L.; Chen, S.; Wu, J.; Ma, J.; Cao, Z.; et al. Exposure to pyrimethanil induces developmental toxicity and cardiotoxicity in zebrafish. Chemosphere 2020, 255, 126889. [Google Scholar] [CrossRef]
- Sule, R.O.; Condon, L.; Gomes, A.V. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxid. Med. Cell Longev. 2022, 2022, 5563759. [Google Scholar] [CrossRef]
- Piña-Guzmán, B.; Solís-Heredia, M.J.; Rojas-García, A.E.; Urióstegui-Acosta, M.; Quintanilla-Vega, B. Genetic damage caused by methyl–parathion in mouse spermatozoa is related to oxidative stress. Toxicol. Appl. Pharmacol. 2006, 216, 216–224. [Google Scholar] [CrossRef]
- Edwards, F.L.; Yedjou, C.G.; Tchounwou, P.B. Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG(2)) cells. Environ. Toxicol. 2013, 28, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Argentin, G.; Divizia, M.; Cicchetti, R. Oxidative Stress, Cytotoxicity, and Genotoxicity Induced by Methyl Parathion in Human Gingival Fibroblasts: Protective Role of Epigallocatechin-3-Gallate. J. Toxicol. Environ. Health A 2015, 78, 1227–1240. [Google Scholar] [CrossRef]
- Simoneschi, D.; Simoneschi, F.; Todd, N.E. Assessment of cardiotoxicity and effects of malathion on the early development of zebrafish (Danio rerio) using computer vision for heart rate quantification. Zebrafish 2014, 11, 275–280. [Google Scholar] [CrossRef]
- Murugasan Kuppuswamy, J.; Seetharaman, B. Monocrotophos Based Pesticide Alters the Behavior Response Associated with Oxidative Indices and Transcription of Genes Related to Apoptosis in Adult Zebrafish (Danio rerio) Brain. Biomed. Pharmacol. J. 2020, 13, 1291–1304. [Google Scholar] [CrossRef]
- Turton, N.; Heaton, R.A.; Ismail, F.; Roberts, S.; Nelder, S.; Phillips, S.; Hargreaves, I.P. The Effect of Organophosphate Exposure on Neuronal Cell Coenzyme Q10 Status. Neurochem. Res. 2021, 46, 131–139. [Google Scholar] [CrossRef]
- Yen, J.; Donerly, S.; Levin, E.D.; Linney, E.A. Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotoxicol. Teratol. 2011, 33, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquat. Toxicol. 2005, 74, 172–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallab, J.C.; Nim, H.T.; Stolper, J.; Chahal, G.; Waylen, L.; Bolk, F.; Elliott, D.A.; Porrello, E.; Ramialison, M. Towards spatio-temporally resolved developmental cardiac gene regulatory networks in zebrafish. Brief Funct. Genom. 2021, 20, 427–433. [Google Scholar] [CrossRef]
- Banjo, T.; Grajcarek, J.; Yoshino, D.; Osada, H.; Miyasaka, K.Y.; Kida, Y.S.; Ueki, Y.; Nagayama, K.; Kawakami, K.; Matsumoto, T.; et al. Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21. Nat. Commun. 2013, 4, 1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, M.; Zhang, J.; Liu, J.; Qian, L.; Chen, X.; Zhao, F.; Zhao, W.; Zhong, Z.; Yang, Y.; Wang, C. Toxic effects of broflanilide exposure on development of zebrafish (Danio rerio) embryos and its potential cardiotoxicity mechanism. Environ. Pollut. 2021, 286, 117481. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Wei, J.; Liu, X.; Liu, T.; Fan, Y. A mathematical model of human heart including the effects of heart contractility varying with heart rate changes. J. Biomech. 2018, 75, 129–137. [Google Scholar] [CrossRef]
- Li, K.; Wu, J.Q.; Jiang, L.L.; Shen, L.Z.; Li, J.Y.; He, Z.H.; Wei, P.; Lv, Z.; He, M.F. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. Chemosphere 2017, 171, 40–48. [Google Scholar] [CrossRef]
- England, J.; Loughna, S. Heavy and light roles: Myosin in the morphogenesis of the heart. Cell. Mol. Life Sci. 2012, 70, 1221–1239. [Google Scholar] [CrossRef] [Green Version]
- Gawdzik, J.C.; Yue, M.S.; Martin, N.R.; Elemans, L.M.H.; Lanham, K.A.; Heideman, W.; Rezendes, R.; Baker, T.R.; Taylor, M.R.; Plavicki, J.S. sox9b is required in cardiomyocytes for cardiac morphogenesis and function. Sci. Rep. 2018, 8, 13906. [Google Scholar] [CrossRef] [Green Version]
- Sergeeva, I.A.; Hooijkaas, I.B.; Ruijter, J.M.; van der Made, I.; de Groot, N.E.; van de Werken, H.J.; Creemers, E.E.; Christoffels, V.M. Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development 2016, 143, 2135–2146. [Google Scholar] [CrossRef]
- Grassini, D.R.; Lagendijk, A.K.; De Angelis, J.E.; Da Silva, J.; Jeanes, A.; Zettler, N.; Bower, N.I.; Hogan, B.M.; Smith, K.A. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume. Development 2018, 145, dev160739. [Google Scholar] [CrossRef] [Green Version]
- Man, J.; Barnett, P.; Christoffels, V.M. Structure and function of the Nppa-Nppb cluster locus during heart development and disease. Cell Mol. Life Sci. 2018, 75, 1435–1444. [Google Scholar] [CrossRef] [Green Version]
- Komamura, K.; Iwai, N.; Kokame, K.; Yasumura, Y.; Kim, J.; Yamagishi, M.; Morisaki, T.; Kimura, A.; Tomoike, H.; Kitakaze, M.; et al. The role of a common TNNT2 polymorphism in cardiac hypertrophy. J. Hum. Genet. 2004, 49, 129–133. [Google Scholar] [CrossRef] [Green Version]
- McNamara, J.W.; Schuckman, M.; Becker, R.C.; Sadayappan, S. A Novel Homozygous Intronic Variant in TNNT2 Associates With Feline Cardiomyopathy. Front. Physiol. 2020, 11, 608473. [Google Scholar] [CrossRef]
- Liu, J.; Stainier, D.Y. Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. Circ. Res. 2010, 106, 1818–1828. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, V.A.; Heise, M.; Moghtadaei, M.; Bornhorst, D.; Manner, J.; Abdelilah-Seyfried, S. Morphogenetic control of zebrafish cardiac looping by Bmp signaling. Development 2019, 146, dev180091. [Google Scholar] [CrossRef]
- De Gaetano, A.; Gibellini, L.; Zanini, G.; Nasi, M.; Cossarizza, A.; Pinti, M. Mitophagy and Oxidative Stress: The Role of Aging. Antioxidants 2021, 10, 794. [Google Scholar] [CrossRef] [PubMed]
- Le Pen, J.; Maillet, L.; Sarosiek, K.; Vuillier, C.; Gautier, F.; Montessuit, S.; Martinou, J.C.; Letai, A.; Braun, F.; Juin, P.P. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2017, 8, e2596. [Google Scholar] [CrossRef] [Green Version]
- Pena-Blanco, A.; Garcia-Saez, A.J. Bax, Bak and beyond—Mitochondrial performance in apoptosis. FEBS J. 2018, 285, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Welshons, W.V.; Thayer, K.A.; Judy, B.M.; Taylor, J.A.; Curran, E.M.; vom Saal, F.S. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ. Health Perspect. 2003, 111, 994–1006. [Google Scholar] [CrossRef]
- Asoglu, M.R.; Gabbay-Benziv, R.; Turan, O.M.; Turan, S. Exposure of the developing heart to diabetic environment and early cardiac assessment: A review. Echocardiography 2018, 35, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, A.; Pasalar, P.; Abdollahi, M. Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum. Exp. Toxicol. 2002, 21, 179–182. [Google Scholar] [CrossRef]
- Tarangelo, A.; Magtanong, L.; Bieging-Rolett, K.T.; Li, Y.; Ye, J.; Attardi, L.D.; Dixon, S.J. p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells. Cell Rep. 2018, 22, 569–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.M.; Cheng, Y.R.; Ding, D.S.; Chen, Y.T.; Sun, W.T.; Pan, C.H. Effects of Ciliate Infection on the Activities of Two Antioxidant Enzymes (SOD and CAT) in Captive Coral (Goniopora columna) and Evaluation of Drug Therapy. Biology 2021, 10, 1216. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Li, J.; Dahlgren, R.A.; Wang, X.; Huang, H.; Wang, H. Risk assessment of cardiotoxicity to zebrafish (Danio rerio) by environmental exposure to triclosan and its derivatives. Environ. Pollut. 2020, 265 Pt A, 114995. [Google Scholar] [CrossRef]
- Mi, P.; Tang, Y.Q.; Feng, X.Z. Acute fluorene-9-bisphenol exposure damages early development and induces cardiotoxicity in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2020, 202, 110922. [Google Scholar] [CrossRef]
- Sztretye, M.; Dienes, B.; Gonczi, M.; Czirjak, T.; Csernoch, L.; Dux, L.; Szentesi, P.; Keller-Pinter, A. Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. Oxid. Med. Cell Longev. 2019, 2019, 3849692. [Google Scholar] [CrossRef] [Green Version]
- Niu, T.; Xuan, R.; Jiang, L.; Wu, W.; Zhen, Z.; Song, Y.; Hong, L.; Zheng, K.; Zhang, J.; Xu, Q.; et al. Astaxanthin Induces the Nrf2/HO-1 Antioxidant Pathway in Human Umbilical Vein Endothelial Cells by Generating Trace Amounts of ROS. J. Agric. Food Chem. 2018, 66, 1551–1559. [Google Scholar] [CrossRef]
- Dose, J.; Matsugo, S.; Yokokawa, H.; Koshida, Y.; Okazaki, S.; Seidel, U.; Eggersdorfer, M.; Rimbach, G.; Esatbeyoglu, T. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin. Int. J. Mol. Sci. 2016, 17, 103. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Huang, Y.; Peng, Y.; Xu, Z.; Wang, Z.; Chen, X.; Xie, S.; Jiang, P.; Zhong, K.; Lu, H. Bifenazate exposure induces cardiotoxicity in zebrafish embryos. Environ. Pollut. 2021, 274, 116539. [Google Scholar] [CrossRef]
Nominal Concentration (mg/L) | Time (h) | MP Concentration in Water (mg/L) a | MP Concentration in Larvae at 72 hpf (μg/g) a |
---|---|---|---|
2.5 | 0 | 2.59 ± 0.17 | 0.74 ± 0.03 |
24 | 2.37 ± 0.19 | ||
5 | 0 | 4.99 ± 0.08 | 2.41 ± 0.05 |
24 | 4.84 ± 0.55 | ||
10 | 0 | 10.70 ± 0.24 | 5.05 ± 0.06 |
24 | 10.10 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Chen, H.; Wang, A.; Yao, W.; Xu, Z.; Wang, B.; Wang, J.; Wu, Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. Toxics 2023, 11, 84. https://doi.org/10.3390/toxics11010084
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. Toxics. 2023; 11(1):84. https://doi.org/10.3390/toxics11010084
Chicago/Turabian StyleChen, Tianyi, Haoze Chen, Anli Wang, Weixuan Yao, Zhongshi Xu, Binjie Wang, Jiye Wang, and Yuanzhao Wu. 2023. "Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos" Toxics 11, no. 1: 84. https://doi.org/10.3390/toxics11010084
APA StyleChen, T., Chen, H., Wang, A., Yao, W., Xu, Z., Wang, B., Wang, J., & Wu, Y. (2023). Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. Toxics, 11(1), 84. https://doi.org/10.3390/toxics11010084