Occurrence and Health Risk Assessment of Sulfonamide Antibiotics in Different Freshwater Fish in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Sample Preparation and Instrumental Analysis
2.3. Quality Assurance and Quality Control
2.4. Human Health Risk Assessment
3. Results
3.1. Antibiotic Residues
3.2. Dietary Risk Assessment of Sulfonamide Antibiotics in Fish
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guérin, T.; Chekri, R.; Vaste, C.; Sirot, V.; Volatier, J.L.; Leblanc, J.C.; Noël, L. Determination of 20 trace elements in fish and other seafood from the french market. Food Chem. 2011, 127, 934–942. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Ge, F.; Huang, S.; Chen, M.; Wang, R. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere 2011, 82, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, H.; Qian, M.; Ma, J.; Zhang, H.; Yang, H. Occurrence and Distribution of Veterinary Residues in Aquatic Environments near Livestock and Poultry Farms in Zhejiang Province, China. Asian J. Chem. 2018, 30, 1109–1114. [Google Scholar] [CrossRef]
- WHO. Antimicrobial resistance: Global report on surveillance. Australas. Med. J. 2014, 7, 237. [Google Scholar]
- Li, S.; Shi, W.; Liu, W.; Li, H.; Zhang, W.; Hu, J.; Ke, Y.; Sun, W.; Ni, J. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total. Environ. 2018, 615, 906–917. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef]
- Centner, T.J. Recent government regulations in the United States seek to ensure the effectiveness of antibiotics by limiting their agricultural use. Environ. Int. 2016, 94, 1–7. [Google Scholar] [CrossRef]
- Hvistendahl, M. China takes aim at rampant antibiotic resistance. Science 2012, 336, 795. [Google Scholar] [CrossRef]
- Ruiz-Viceo, J.A.; Rosales-Conrado, N.; Guillén-Casla, V.; Pérez-Arribas, L.V.; León-González, M.E.; Polo-Díez, L.M. Fluoroquinolone antibiotic determination in bovine milk using capillary liquid chromatography with diode array and mass spectrometry detection. J. Food. Compos. Anal. 2012, 28, 99–106. [Google Scholar] [CrossRef]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquacult. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Gray, A.D.; Todd, D.; Hershey, A.E. The seasonal distribution and concentration of antibiotics in rural streams and drinking wells in the piedmont of North Carolina. Sci. Total Environ. 2020, 710, 136286. [Google Scholar] [CrossRef]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total. Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Ska, A.B.; Stolte, S.; Arning, J.; Uebers, U.; Boschen, A.; Stepnowski, P.; Matzke, M. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 2011, 85, 928–933. [Google Scholar] [CrossRef]
- Baran, W.; Sochacka, J.; Wardas, W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 2006, 65, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, H.; Liu, Y.; Cui, Y.; Li, Y.; Yang, Z. Distribution, residue level, sources, and phase partition of antibiotics in surface sediments from the inland river: A case study of the Xiangjiang River, south-central China. Environ. Sci. Pollut. Res. 2020, 27, 2273–2286. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Meng, W.; Zheng, B. Residues and health risk assessment of typical antibiotics in aquatic products from the Dongting Lake, China-“Did you eat “antibiotics” today? Environ. Sci. Pollut. Res. 2018, 25, 3913–3921. [Google Scholar] [CrossRef]
- Zhou, L.J.; Wang, W.X.; Lv, Y.J.; Mao, Z.G.; Chen, C.; Wu, Q.L. Tissue concentrations, trophic transfer and human risks of antibiotics in freshwater food web in Lake Taihu, China. Ecotox. Environ. Safe. 2020, 197, 110626. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Panseri, S.; Arioli, F. Antibiotic use in heavy pigs: Comparison between urine and muscle samples from food chain animals analysed by HPLC-MS/MS. Food Chem. 2017, 235, 111–118. [Google Scholar] [CrossRef]
- GB 29694-2013; Determination of Sulfonamides residues in animal derived food by High Performance Liquid Chromatographic method. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2013.
- Ministry of Agriculture the PRC (Ministry of Agriculture of the People’s Republic of China). Bulletin (NO. 235): The Guideline of Maximum Residue Limits for Veterinary Drugs in Animal Food; Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2002.
- Shen, M.; Kang, C.; Song, T.; Lu, H.; Wang, Y.; Yu, B.; Wang, R.; Cheng, J. Content and health risk assessment of heavy metals and polybrominated diphenyl ethers in fish from Songhua Lake (Jilin City), China. Environ. Sci. Pollut. Res. 2020, 27, 40848–40856. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Regional Screening Level (RSL) Summary Table 2011; USEPA: Washington, DC, USA, 2011.
- GB 31650-2019; National Food Safety Standard-Maximum Residue Limits for Veterinary Drugs in Foods. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2019.
- Li, C.; Zhang, C.; Zhong, S.; Duan, J.; Li, M.; Shi, Y. The Removal of Pollutants from Wastewater Using Magnetic Biochar: A Scientometric and Visualization Analysis. Molecules 2023, 28, 5840. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shan, L.; Xu, X.R.; Liu, S.S.; Zhou, G.J.; Sun, K.F.; Zhao, J.L.; Ying, G.G. Antibiotics in typical marine aquaculture farms surrounding hailing island, South China: Occurrence, bioaccumulation and human dietary exposure. Mar. Pollut. Bull. 2015, 90, 181–187. [Google Scholar] [CrossRef]
- Ye, C.; Shi, J.; Zhang, X.; Qin, L.; Jiang, Z.; Wang, J.; Li, Y.; Liu, B. Occurrence and bioaccumulation of sulfonamide antibiotics in different fish species from Hangbu-Fengle River, Southeast China. Environ. Sci. Pollut. Res. 2021, 28, 44111–44123. [Google Scholar] [CrossRef]
- Zhao, J.L.; Liu, Y.S.; Liu, W.R.; Jiang, Y.X.; Su, H.C.; Zhang, Q.Q.; Chen, X.W.; Yang, Y.Y.; Chen, J.; Liu, S.S.; et al. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region. Environ. Pollut. 2015, 198, 15–24. [Google Scholar] [CrossRef]
- Li, N.; Zhao, X.; Wu, W.; Zhao, X. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China. Chemosphere 2014, 111, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tang, J.; Wu, X.; Fan, S.; Cheng, H.; Li, X.; Hua, R. Bioconcentration and ecotoxicity of sulfadiazine in the aquatic midge Chironomus riparius. Environ. Toxicol. Phar. 2019, 66, 69–74. [Google Scholar] [CrossRef]
- Jansomboon, W.; Boontanon, S.K.; Boontanon, N.; Polprasert, C.; Da, C.T. Monitoring and determination of sulfonamide antibiotics (sulfamethoxydiazine, sulfamethazine, sulfamethoxazole and sulfadiazine) in imported Pangasius catfish products in Thailand using liquid chromatography coupled with tandem mass spectrometry. Food Chem. 2016, 212, 635–640. [Google Scholar] [CrossRef]
- Griboff, J.; Carrizo, J.C.; Bonansea, R.I.; Valdés, M.E.; Wunderlin, D.A.; Amé, M.V. Multiantibiotic residues in commercial fish from Argentina. The presence of mixtures of antibiotics in edible fish, a challenge to health risk assessment. Food Chem. 2020, 332, 127380. [Google Scholar] [CrossRef]
- Barani, A.; Fallah, A.A. Occurrence of tetracyclines, sulfonamides, fluoroquinolones and florfenicol in farmed rainbow trout in Iran. Food Agr. Immunol. 2015, 26, 420–429. [Google Scholar] [CrossRef]
- Bortolotte, A.R.; Daniel, D.; Reyes, F.G.R. Occurrence of antimicrobial residues in tilapia (Oreochromis niloticus) fillets produced in Brazil and available at the retail market. Food Res. Int. 2021, 140, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Carrizo, J.C.; Griboff, J.; Bonansea, R.I.; Nimptsch, J.; Valdés, M.E.; Wunderlin, D.A.; Amé, M.V. Different antibiotic profiles in wild and farmed Chilean salmonids. Which is the main source for antibiotic in fish? Sci. Total Environ. 2021, 800, 149516. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.H.A.; Hai, C.V.; Ha, H.Y.; Tu, N.H.K. Antibiotic resistance in salmonella isolated from ho chi minh city (vietnam) and difference of sulfonamide resistance gene existence in serovars. J. Pure Appl. Microbio. 2021, 15, 2244–2251. [Google Scholar] [CrossRef]
- Kusunur, A.B.; Kuraganti, G.K.; Mogilipuri, S.S.; Vaiyapuri, M.; Narayanan, S.V.; Badireddy, M.R. Multidrug resistance of Escherichia coli in fish supply chain: A preliminary investigation. J. Food Safety. 2022, 3, 42. [Google Scholar] [CrossRef]
- Liu, S.; Bekele, T.G.; Zhao, H.; Cai, X.; Chen, J. Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou bay, North China. Sci. Total Environ. 2018, 631–632, 1398–1405. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 1–12. [Google Scholar] [CrossRef]
- Ajslev, T.A.; Andersen, C.S.; Gamborg, M.; Sorensen, T.I.A.; Jess, T. Childhood overweight after establishment of the gut microbiota: The role of delivery mode, pre pregnancy weight and early administration of antibiotics. Int. J. Obes. 2011, 35, 522–529. [Google Scholar] [CrossRef]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 2011, 127, 204–215. [Google Scholar] [CrossRef]
- Cox, L.M.; Blaser, M.J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 2014, 11, 182–190. [Google Scholar] [CrossRef]
- Cox, L.M.; Yamanishi, S.; Sohn, J.; Alekseyenko, A.V.; Leung, J.M.; Cho, I.; Kim, S.G.; Li, H.; Gao, Z.; Mahana, D.; et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014, 158, 705–721. [Google Scholar] [CrossRef]
City | Feeding Habits | Species | Sample Size | Length (cm) | Weight (g) |
---|---|---|---|---|---|
Harbin | Carnivorous | Silurus asotus | 4 | 42~48 | 1000 |
Siniperca chuatsi | 4 | 33~35 | 750 | ||
Omnivorous | Cyprinus carpio | 4 | 33~36 | 1000 | |
Carassius auratus | 4 | 22~28 | 500 | ||
Phoxinus lagowskii | 24 | 12~18 | 17 | ||
Aristichthys nobilis | 3 | 52~55 | 2000 | ||
Pelteobagrus fulvidraco | 6 | 18~20 | 100 | ||
Hypophthalmichthys molitrix | 4 | 45~50 | 1900 | ||
Herbivorous | Ctenopharyngodon idellus | 4 | 41~44 | 1250 | |
Shenyang | Carnivorous | Silurus asotus | 4 | 40~45 | 650 |
Omnivorous | Hemisalanx prognathus | 40 | 7~9 | 5 | |
Cyprinus carpio | 4 | 36~40 | 900 | ||
Carassius auratus | 4 | 26~32 | 550 | ||
Phoxinus lagowskii | 30 | 12~18 | 16 | ||
Aristichthys nobilis | 3 | 53~55 | 2000 | ||
Pelteobagrus fulvidraco | 6 | 23~26 | 250 | ||
Hypophthalmichthys molitrix | 3 | 51~55 | 1800 | ||
Herbivorous | Ctenopharyngodon idellus | 4 | 41~43 | 1200 | |
Changchun | Carnivorous | Silurus asotus | 4 | 39~43 | 600 |
Omnivorous | Hemisalanx prognathus | 40 | 7~9 | 3 | |
Cyprinus carpio | 4 | 38~39 | 900 | ||
Carassius auratus | 4 | 26~28 | 400 | ||
Aristichthys nobilis | 3 | 52~57 | 2000 | ||
Pelteobagrus fulvidraco | 6 | 21~24 | 200 | ||
Hypophthalmichthys molitrix | 3 | 52~55 | 2000 | ||
Herbivorous | Ctenopharyngodon idellus | 4 | 36~42 | 800 |
Compounds | Surrogate | Recovery % | MDLs ng/g ww | MQLs ng/g ww |
---|---|---|---|---|
sulfapyridine | sulfamethoxazole -D4 | 79 ± 8 | 0.04 | 0.12 |
sulfadimethoxine | sulfathiazole -D4 | 117 ± 7 | 0.002 | 0.006 |
sulfamethoxazole | sulfamethoxazole -D4 | 90 ± 5 | 0.002 | 0.006 |
sulfachloropyridazine | sulfamethoxazole -D4 | 88 ± 7 | 0.004 | 0.01 |
sulfathiazole | sulfathiazole -D4 | 85 ± 6 | 0.02 | 0.06 |
sulfisoxazole | sulfathiazole -D4 | 90 ± 8 | 0.06 | 0.20 |
sulfadiazine | sulfamethoxazole -D4 | 96 ± 8 | 0.20 | 0.50 |
sulfamethazine | sulfathiazole -D4 | 87 ± 3 | 0.02 | 0.06 |
sulfamerazine | sulfathiazole -D4 | 67 ± 7 | 0.20 | 0.60 |
sulfamonomethoxine | sulfathiazole -D4 | 112 ± 4 | 0.06 | 0.20 |
sulfamethoxypyridazine | sulfathiazole -D4 | 110 ± 8 | 0.06 | 0.20 |
sulfacetamide | sulfamethoxazole -D4 | 70 ± 5 | 0.40 | 1.00 |
s | Harbin | Changchun | Shenyang | Summary of Three Cities | ||||
---|---|---|---|---|---|---|---|---|
Concentration (Mean) | Frequency % | Concentration (Mean) | Frequency % | Concentration (Mean) | Frequency % | Concentration (Mean) | Frequency % | |
SMX | 4.23 | 87.88 | 2.85 | 92.86 | 5.22 | 100 | 4.15 | 93.48 |
SCP | 0.52 | 78.79 | 0.63 | 78.57 | 0.98 | 83.87 | 0.71 | 80.43 |
SA | 2.60 | 57.58 | 0.52 | 28.57 | 1.90 | 58.06 | 1.72 | 48.91 |
SPD | 0.19 | 42.42 | 0.06 | 25.00 | 0.24 | 48.39 | 0.17 | 39.13 |
SDZ | 0.84 | 45.45 | 0.32 | 28.57 | 0.57 | 35.48 | 0.58 | 36.96 |
SMM | 0.50 | 33.33 | 0.21 | 32.14 | 1.11 | 58.06 | 0.62 | 41.30 |
SMP | 0.47 | 30.30 | 0.19 | 28.57 | 0.77 | 58.06 | 0.49 | 39.13 |
SDM | 2.24 | 84.85 | 0.16 | 39.29 | 0.38 | 67.74 | 0.95 | 65.22 |
SMT | 2.97 | 84.85 | 1.82 | 78.57 | 2.42 | 90.32 | 2.43 | 84.78 |
SMR | 1.89 | 39.39 | 2.49 | 50.00 | 1.66 | 48.39 | 2.00 | 45.65 |
STZ | 2.85 | 72.73 | 0.76 | 42.86 | 1.34 | 70.97 | 1.68 | 63.04 |
SIA | 2.68 | 78.79 | 1.32 | 78.57 | 2.59 | 90.32 | 2.23 | 82.61 |
Species | Harbin | Changchun | Shenyang | ||||||
---|---|---|---|---|---|---|---|---|---|
Age: 2–5 | Age: 6–17 | Age: ≥18 | Age: 2–5 | Age: 6–17 | Age: ≥18 | Age: 2–5 | Age: 6–17 | Age: ≥18 | |
Carassius auratus | 0.029 | 0.015 | 0.008 | 0.032 | 0.017 | 0.009 | 0.032 | 0.017 | 0.009 |
Ctenopharyngodon idellus | 0.022 | 0.012 | 0.006 | 0.010 | 0.005 | 0.003 | 0.033 | 0.018 | 0.009 |
Cyprinus carpio | 0.015 | 0.008 | 0.004 | 0.014 | 0.007 | 0.004 | 0.035 | 0.019 | 0.010 |
Aristichthys nobilis | 0.051 | 0.027 | 0.014 | 0.010 | 0.005 | 0.003 | 0.016 | 0.008 | 0.004 |
Silurus asotus | 0.049 | 0.026 | 0.014 | 0.024 | 0.013 | 0.007 | 0.024 | 0.013 | 0.007 |
Hypophthalmichthys molitrix | 0.038 | 0.020 | 0.011 | 0.035 | 0.019 | 0.010 | 0.029 | 0.015 | 0.008 |
Pelteobagrus fulvidraco | 0.019 | 0.010 | 0.005 | 0.015 | 0.008 | 0.004 | 0.041 | 0.022 | 0.012 |
Hemisalanx prognathus | - | - | - | 0.018 | 0.009 | 0.005 | 0.028 | 0.015 | 0.008 |
Phoxinus lagowskii | 0.029 | 0.015 | 0.008 | - | - | - | 0.062 | 0.033 | 0.018 |
Siniperca chuatsi | 0.095 | 0.050 | 0.027 | - | - | - | - | - | - |
Species | Harbin | Changchun | Shenyang | ||||||
---|---|---|---|---|---|---|---|---|---|
Age: 2–5 | Age: 6–17 | Age: ≥18 | Age: 2–5 | Age: 6–17 | Age: ≥18 | Age: 2–5 | Age: 6–17 | Age: ≥18 | |
Carassius auratus | 0.0006 | 0.0003 | 0.0002 | 0.0006 | 0.0003 | 0.0002 | 0.0006 | 0.0003 | 0.0002 |
Ctenopharyngodon idellus | 0.0004 | 0.0002 | 0.0001 | 0.0002 | 0.0001 | 0.0001 | 0.0007 | 0.0004 | 0.0002 |
Cyprinus carpio | 0.0003 | 0.0002 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0007 | 0.0004 | 0.0002 |
Aristichthys nobilis | 0.0010 | 0.0005 | 0.0003 | 0.0002 | 0.0001 | 0.0001 | 0.0003 | 0.0002 | 0.0001 |
Silurus asotus | 0.0010 | 0.0005 | 0.0003 | 0.0005 | 0.0003 | 0.0001 | 0.0005 | 0.0003 | 0.0001 |
Hypophthalmichthys molitrix | 0.0008 | 0.0004 | 0.0002 | 0.0007 | 0.0004 | 0.0002 | 0.0006 | 0.0003 | 0.0002 |
Pelteobagrus fulvidraco | 0.0004 | 0.0002 | 0.0001 | 0.0003 | 0.0002 | 0.0001 | 0.0008 | 0.0004 | 0.0002 |
Hemisalanx prognathus | - | - | - | 0.0004 | 0.0002 | 0.0001 | 0.0006 | 0.0003 | 0.0002 |
Phoxinus lagowskii | 0.0006 | 0.0003 | 0.0002 | - | - | - | 0.0012 | 0.0007 | 0.0004 |
Siniperca chuatsi | 0.0019 | 0.0010 | 0.0005 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.; Yu, B.; Hu, Y.; Liu, Z.; Zhao, K.; Li, C.; Li, M.; Lyu, C.; Lu, H.; Zhong, S.; et al. Occurrence and Health Risk Assessment of Sulfonamide Antibiotics in Different Freshwater Fish in Northeast China. Toxics 2023, 11, 835. https://doi.org/10.3390/toxics11100835
Shen M, Yu B, Hu Y, Liu Z, Zhao K, Li C, Li M, Lyu C, Lu H, Zhong S, et al. Occurrence and Health Risk Assessment of Sulfonamide Antibiotics in Different Freshwater Fish in Northeast China. Toxics. 2023; 11(10):835. https://doi.org/10.3390/toxics11100835
Chicago/Turabian StyleShen, Mengnan, Bowen Yu, Yi Hu, Zhi Liu, Ke Zhao, Chenyang Li, Ming Li, Chen Lyu, Hai Lu, Shuang Zhong, and et al. 2023. "Occurrence and Health Risk Assessment of Sulfonamide Antibiotics in Different Freshwater Fish in Northeast China" Toxics 11, no. 10: 835. https://doi.org/10.3390/toxics11100835
APA StyleShen, M., Yu, B., Hu, Y., Liu, Z., Zhao, K., Li, C., Li, M., Lyu, C., Lu, H., Zhong, S., & Cheng, J. (2023). Occurrence and Health Risk Assessment of Sulfonamide Antibiotics in Different Freshwater Fish in Northeast China. Toxics, 11(10), 835. https://doi.org/10.3390/toxics11100835