Job Exposure Matrix, a Solution for Retrospective Assessment of Particle Exposure in a Subway Network and Their Long-Term Effects
Abstract
:Highlights
- The job exposure matrix (JEM) provides annual means of PM10 concentrations for Parisian subway workers.
- Annual PM10 concentrations are estimated over the period of 2004–2020.
- The JEM approach is relevant to assess occupational long-term exposure to subway PM10.
- The JEM will allow to examen the health effects of long-term exposure to subway PM10.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Exposure Considered and Measurement Data Used
2.3. JEM Dimensions
2.4. JEM Construction
2.4.1. Assessment of the Job-Specific PM10 Exposure
2.4.2. Integration of the Spatial Dimension
2.4.3. Integration of the Temporal Dimension
2.5. JEM Uncertainty Assessment
3. Results
3.1. Work Shift Effect on the Occupational Exposure
3.2. Occupational Exposure Based on the Job-Assignment Site
3.3. Temporal Trend in the Occupational Exposure
3.4. Exposure Estimates
3.5. JEM Uncertainties
4. Discussion
4.1. JEM Relevance for Retrospective Assessment of Occupational Exposure to PM10 in Subway Workers
4.2. Limitations of the Current JEM
4.3. Further Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AirParif | the air quality observatory in the Parisian region |
COFRAC | French accreditation committee (comité français d’accréditation, in French) |
COPD | chronic obstructive pulmonary disease |
GS | geographical sector |
LOD | limit of detection |
JEM | job exposure matrix |
PM | particulate matter |
RATP | Parisian subway network (régie autonome des transports parisiens, in French) |
REA | retrospective exposure assessment |
RER | regional express network (réseau express régional, in French) |
ROBoCoP | respiratory disease occupational biomonitoring collaborative project |
TEOM | tapered element oscillating microbalance |
TSP | total suspended particulates |
UFP | ultrafine particles |
WP | work package |
References
- Doiron, D.; de Hoogh, K.; Probst-Hensch, N.; Fortier, I.; Cai, Y.; De Matteis, S.; Hansell, A.L. Air pollution, lung function and COPD: Results from the population-based UK Biobank study. Eur. Respir. J. 2019, 54, 1802140. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [PubMed]
- Wolf, K.; Stafoggia, M.; Cesaroni, G.; Andersen, Z.J.; Beelen, R.; Galassi, C.; Hennig, F.; Migliore, E.; Penell, J.; Ricceri, F.; et al. Long-term Exposure to Particulate Matter Constituents and the Incidence of Coronary Events in 11 European Cohorts. Epidemiology 2015, 26, 565–574. [Google Scholar] [CrossRef]
- Mak, H.W.; Ng, D.C. Spatial and Socio-Classification of Traffic Pollutant Emissions and Associated Mortality Rates in High-Density Hong Kong via Improved Data Analytic Approaches. Int. J. Environ. Res. Public Health 2021, 18, 6532. [Google Scholar] [CrossRef]
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environ. Health Perspect. 2014, 122, 906–911. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Li, T.; Yan, Y.; Xian, H.; Al-Aly, Z. The 2016 global and national burden of diabetes mellitus attributable to PM2.5 air pollution. Lancet Planet Health 2018, 2, e301–e312. [Google Scholar] [CrossRef]
- Correia, C.; Martins, V.; Cunha-Lopes, I.; Faria, T.; Diapouli, E.; Eleftheriadis, K.; Almeida, S.M. Particle exposure and inhaled dose while commuting in Lisbon. Environ. Pollut. 2020, 257, 113547. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, Y.S.; Roh, Y.M.; Lee, C.M.; Kim, C.N. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. J. Hazard. Mater. 2008, 154, 440–443. [Google Scholar] [CrossRef]
- Mao, P.; Li, J.; Xiong, L.; Wang, R.; Wang, X.; Tan, Y.; Li, H. Characterization of Urban Subway Microenvironment Exposure—A Case of Nanjing in China. Int. J. Environ. Res. Public Health 2019, 16, 625. [Google Scholar] [CrossRef]
- Perrino, C.; Marcovecchio, F.; Tofful, L.; Canepari, S. Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environ. Sci. Pollut. Res. Int. 2015, 22, 9204–9214. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.C.; Chazette, P.; Fortain, A. Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris. Atmos. Environ. 2009, 43, 860–868. [Google Scholar] [CrossRef]
- Smith, J.D.; Barratt, B.M.; Fuller, G.W.; Kelly, F.J.; Loxham, M.; Nicolosi, E.; Priestman, M.; Tremper, A.H.; Green, D.C. PM2.5 on the London Underground. Environ. Int. 2020, 134, 105188. [Google Scholar] [CrossRef] [PubMed]
- Sitzmann, B.; Kendall, M.; Watt, J.; Williams, I. Characterisation of airborne particles in London by computer-controlled scanning electron microscopy. Sci. Total Environ. 1999, 241, 63–73. [Google Scholar] [CrossRef]
- Qiao, T.; Xiu, G.; Zheng, Y.; Yang, J.; Wang, L.; Yang, J.; Huang, Z. Preliminary investigation of PM1, PM2.5, PM10 and its metal elemental composition in tunnels at a subway station in Shanghai, China. Transp. Res. Part D Transp. Environ. 2015, 41, 136–146. [Google Scholar] [CrossRef]
- Seaton, A.; Cherrie, J.; Dennekamp, M.; Donaldson, K.; Hurley, J.F.; Tran, C.L. The London Underground: Dust and hazards to health. Occup. Environ. Med. 2005, 62, 355. [Google Scholar] [CrossRef]
- Abbasi, S.; Jansson, A.; Olander, L.; Olofsson, U.; Sellgren, U. A pin-on-disc study of the rate of airborne wear particle emissions from railway braking materials. Wear 2012, 284–285, 18–29. [Google Scholar] [CrossRef]
- Byeon, S.H.; Willis, R.; Peters, T.M. Chemical characterization of outdoor and subway fine (PM(2.5–1.0)) and coarse (PM(10–2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM). Int. J. Environ. Res. Public Health 2015, 12, 2090–2104. [Google Scholar] [CrossRef]
- Ghio, A.J.; Carraway, M.S.; Madden, M.C. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J. Toxicol. Environ. Health B Crit Rev. 2012, 15, 1–21. [Google Scholar] [CrossRef]
- Crobeddu, B.; Aragao-Santiago, L.; Bui, L.C.; Boland, S.; Baeza Squiban, A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 2017, 230, 125–133. [Google Scholar] [CrossRef]
- Strak, M.; Janssen, N.A.H.; Godri, K.J.; Gosens, I.; Mudway, I.S.; Cassee, F.R.; Lebret, E.; Kelly, F.J.; Harrison, R.M.; Brunekreef, B.; et al. Respiratory health effects of airborne particulate matter: The role of particle size, composition, and oxidative potential-the RAPTES project. Environ. Health Perspect. 2012, 120, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Sauvain, J.J.; Hemmendinger, M.; Suárez, G.; Creze, C.; Hopf, N.B.; Jouannique, V.; Debatisse, A.; Pralong, J.A.; Wild, P.; Guseva Canu, I. Malondialdehyde and anion patterns in exhaled breath condensate among subway workers. Part. Fibre Toxicol. 2022, 19, 16. [Google Scholar] [CrossRef] [PubMed]
- Bigert, C.; Alderling, M.; Svartengren, M.; Plato, N.; de Faire, U.; Gustavsson, P. Blood markers of inflammation and coagulation and exposure to airborne particles in employees in the Stockholm underground. Occup. Environ. Med. 2008, 65, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Bigert, C.; Alderling, M.; Svartengren, M.; Plato, N.; Gustavsson, P. No short-term respiratory effects among particle-exposed employees in the Stockholm subway. Scand. J. Work. Environ. Health 2011, 37, 129–135. [Google Scholar] [CrossRef]
- Seposo, X.T.; Arcilla, A.L.A.; De Guzman, J.G.N.; Dizon, E.M.S.; Figuracion, A.N.R.; Morales, C.M.M.; Tugonon, P.K.A.; Apostol, G.L.C. Ambient air quality and the risk for Chronic Obstructive Pulmonary Disease among Metro Manila Development Authority traffic enforcers in Metro Manila: An exploratory study. Chronic Dis. Transl. Med. 2021, 7, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, P.; Bigert, C.; Pollán, M. Incidence of lung cancer among subway drivers in Stockholm. Am. J. Ind. Med. 2008, 51, 545–547. [Google Scholar] [CrossRef]
- Grass, D.S.; Ross, J.M.; Family, F.; Barbour, J.; James Simpson, H.; Coulibaly, D.; Hernandez, J.; Chen, Y.; Slavkovich, V.; Li, Y.; et al. Airborne particulate metals in the New York City subway: A pilot study to assess the potential for health impacts. Environ. Res. 2010, 110, 1–11. [Google Scholar] [CrossRef]
- Mehrdad, R.; Aghdaei, S.; Pouryaghoub, G. Urinary 8-hydroxy-deoxyguanosine as a biomarker of oxidative DNA damage in employees of subway system. Acta Med. Iran. 2015, 53, 287–292. [Google Scholar]
- Chen, H.; Goldberg, M.S.; Villeneuve, P.J. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev. Environ. Health 2008, 23, 243–297. [Google Scholar]
- Pun, V.C.; Kazemiparkouhi, F.; Manjourides, J.; Suh, H.H. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. Am. J. Epidemiol. 2017, 186, 961–969. [Google Scholar] [CrossRef]
- Loxham, M.; Nieuwenhuijsen, M.J. Health effects of particulate matter air pollution in underground railway systems—A critical review of the evidence. Part. Fibre Toxicol. 2019, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Plato, N.; Bigert, C.; Larsson, B.M.; Alderling, M.; Svartengren, M.; Gustavsson, P. Exposure to Particles and Nitrogen Dioxide among Workers in the Stockholm Underground Train System. Saf. Health Work 2019, 10, 377–383. [Google Scholar] [CrossRef]
- Ji, W.; Liu, C.; Liu, Z.; Wang, C.; Li, X. Concentration, composition, and exposure contributions of fine particulate matter on subway concourses in China. Environ. Pollut. 2021, 275, 116627. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Cao, H. Commuter exposure to particulate matter in urban public transportation of Xi’an, China. J. Env. Health Sci. Eng. 2020, 18, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Park, W.M. Radon and PM(10) concentrations in underground parking lots and subway stations with health risks in South Korea. Environ. Sci. Pollut. Res. Int. 2018, 25, 35242–35248. [Google Scholar] [CrossRef] [PubMed]
- Pétremand, R.; Suárez, G.; Besançon, S.; Dil, J.H.; Guseva Canu, I. A Real-Time Comparison of Four Particulate Matter Size Fractions in the Personal Breathing Zone of Paris Subway Workers: A Six-Week Prospective Study. Sustainability 2022, 14, 5999. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Crézé, C.; Hemmendinger, M.; Ben Rayana, T.; Besançon, S.; Jouannique, V.; Debatisse, A.; Wild, P.; Sauvain, J.J.; Suárez, G.; et al. Particle and metal exposure in Parisian subway: Relationship between exposure biomarkers in air, exhaled breath condensate, and urine. Int. J. Hyg. Environ. Health 2021, 237, 113837. [Google Scholar] [CrossRef]
- Borghi, F.; Mazzucchelli, L.A.; Campagnolo, D.; Rovelli, S.; Fanti, G.; Keller, M.; Cattaneo, A.; Spinazzè, A.; Cavallo, D.M. Retrospective Exposure Assessment Methods Used in Occupational Human Health Risk Assessment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 6190. [Google Scholar] [CrossRef]
- Ge, C.B.; Friesen, M.C.; Kromhout, H.; Peters, S.; Rothman, N.; Lan, Q.; Vermeulen, R. Use and Reliability of Exposure Assessment Methods in Occupational Case-Control Studies in the General Population: Past, Present, and Future. Ann. Work Exp. Health 2018, 62, 1047–1063. [Google Scholar] [CrossRef]
- Goldberg, M.; Kromhout, H.; Guénel, P.; Fletcher, A.C.; Gérin, M.; Glass, D.C.; Heederik, D.; Kauppinen, T.; Ponti, A. Job exposure matrices in industry. Int. J. Epidemiol. 1993, 22 (Suppl. 2), S10–S15. [Google Scholar] [CrossRef]
- Guseva Canu, I. Chemical Hazards at Work and Occupational Diseases Using Job Exposure Matrices: Handbook of Life Course Occupational Health; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Benke, G.; Sim, M.; Fritschi, L.; Aldred, G. Beyond the job exposure matrix (JEM): The task exposure matrix (TEM). Ann. Occup. Hyg. 2000, 44, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Vermeulen, R.; Portengen, L.; Olsson, A.; Kendzia, B.; Vincent, R.; Savary, B.; Lavoue, J.; Cavallo, D.; Cattaneo, A.; et al. SYN-JEM: A Quantitative Job-Exposure Matrix for Five Lung Carcinogens. Ann. Occup. Hyg. 2016, 60, 795–811. [Google Scholar] [CrossRef] [PubMed]
- Guseva Canu, I.; Paquet, F.; Goldberg, M.; Auriol, B.; Bérard, P.; Collomb, P.; David, J.-C.; Molina, G.; Perez, P.; Tirmarche, M. Comparative assessing for radiological, chemical, and physical exposures at the French uranium conversion plant: Is uranium the only stressor? Int. J. Hyg. Env. Health 2009, 212, 398–413. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Vienneau, D.; Sampri, A.; Turner, M.C.; Castaño-Vinyals, G.; Bugge, M.; Savary, B.; Lavoué, J.; Cavallo, D.; Cattaneo, A.; et al. Occupational Exposure Assessment Tools in Europe: A Comprehensive Inventory Overview. Ann. Work Expo. Health 2022, 66, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Guseva Canu, I.; Molina, G.; Goldberg, M.; Collomb, P.; David, J.C.; Perez, P.; Paquet, F.; Tirmarche, M. Development of a job exposure matrix for the epidemiological follow-up of workers in the French nuclear industry. Rev. Épidémiol. Santé Publique 2008, 56, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Guseva Canu, I.; Laurier, D.; Caër-Lorho, S.; Samson, E.; Timarche, M.; Auriol, B.; Bérard, P.; Collomb, P.; Quesne, B.; Blanchardon, E. Characterisation of protracted low-level exposure to uranium in the workplace: A comparison of two approaches. Int. J. Hyg. Environ. Health. 2010, 213, 270–277. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Faust, S.; Knieczak, E.; Carles, M.; Samson, E.; Laurier, D. Estimating historic exposures at the European Gaseous Diffusion plants. Int. J. Hyg. Environ. Health 2013, 216, 499–507. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Burstyn, I.; Richardson, D.B. Commentary: The Order of Things: Control Bands for Risk Managers and Scientists. Epidemiology 2016, 27, 765–768. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Jezewski-Serra, D.; Delabre, L.; Ducamp, S.; Iwatsubo, Y.; Audignon, S.; Duscros, C.; Radauceanu, A.; Durand, C.; Witschger, O.; et al. Qualitative and Semiquantitative Assessment of Exposure to Engineered Nanomaterials within the French EpiNano Program: Inter- and Intramethod Reliability Study. Ann. Work Expo. Health 2017, 61, 87–97. [Google Scholar]
- Fonseca, A.S.; Jørgensen, A.K.; Larsen, B.X.; Moser-Johansen, M.; Flachs, E.M.; Ebbehøj, N.E.; Bønløkke, J.H.; Østergaard, T.O.; Bælum, J.; Sherson, D.L.; et al. Historical Asbestos Measurements in Denmark-A National Database. Int. J. Environ. Res. Public Health 2022, 19, 643. [Google Scholar] [CrossRef]
- Gabriel, S.; Koppisch, D.; Range, D. The MGU—A monitoring system for the collection and documentation of valid workplace exposure data. Gefahrstoffe Reinhalt. Luft 2010, 70, 43–49. [Google Scholar]
- Kauppinen, T.; Toikkanen, J.; Pedersen, D.; Young, R.; Ahrens, W.; Boffetta, P.; Bønløkke, J.H.; Østergaard, T.O.; Bælum, J.; Sherson, D.L.; et al. Occupational exposure to carcinogens in the European Union. Occup. Env. Med. 2000, 57, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Vermeulen, R.; Olsson, A.; Van Gelder, R.; Kendzia, B.; Vincent, R.; Savary, B.; Williams, N.; Woldbæk, T.; Lavoué, J.; et al. Development of an Exposure Measurement Database on Five Lung Carcinogens (ExpoSYN) for Quantitative Retrospective Occupational Exposure Assessment. Ann. Occup. Hyg. 2011, 56, 70–79. [Google Scholar]
- Noth, E.M.; Dixon-Ernst, C.; Liu, S.; Cantley, L.; Tessier-Sherman, B.; Eisen, E.A.; Cullen, M.R.; Hammond, S.K. Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Audignon-Durand, S.; Gramond, C.; Ducamp, S.; Manangama, G.; Garrigou, A.; Delva, F.; Brochard, P.; Lacourt, A. Development of a Job-Exposure Matrix for Ultrafine Particle Exposure: The MatPUF JEM. Ann. Work Exp. Health 2021, 65, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Ben Rayana, T.; Debatisse, A.; Jouannique, V.; Sakthithasan, K.; Besançon, S.; Molle, R.; Wild, P.; Guinhouya, B.; Guseva Canu, I. Sixteen-Year Monitoring of Particulate Matter Exposure in the Parisian Subway: Data Inventory and Compilation in a Database. Atmosphere 2022, 13, 1061. [Google Scholar] [CrossRef]
- Simões Amaral, S.; Carvalho, J.; Martins Costa, M.; Pinheiro, C. An Overview of Particulate Matter Measurement Instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef]
- Perera, I.E.; Litton, C.D. Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (<PM(2.5))Using Analytical and Microscopic Techniques. Fire Technol. 2015, 51, 247–269. [Google Scholar]
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Hemmendinger, M.; Sauvain, J.J.; Suarez, G.; Hopf, N.B.; Pralong, J.A.; Ben Rayana, T.; Besançon, S.; Sakthithasan, K.; Jouannique, V. Respiratory Disease Occupational Biomonitoring Collaborative Project (ROBoCoP): A longitudinal pilot study and implementation research in the Parisian transport company. J. Occup. Med. Toxicol. 2021, 16, 22. [Google Scholar] [CrossRef]
- Pétremand, R.; Wild, P.; Crézé, C.; Suarez, G.; Besançon, S.; Jouannique, V.; Debatisse, A.; Guseva Canu, I. Application of the Bayesian spline method to analyze real-time measurements of ultrafine particle concentration in the Parisian subway. Environ. Int. 2021, 156, 106773. [Google Scholar] [CrossRef] [PubMed]
- AirParif. Surveillance et Information sur la Qualité de l‘air en Ile-de-France_Bilan Année 2019. Available online: https://www.airparif.asso.fr/actualite/2020/bilan-2019-de-la-qualite-de-lair-en-ile-de-france#:~:text=En%202019%2C%20environ%20500%20000,prolonge%20sur%20l%27ann%C3%A9e%202019 (accessed on 28 September 2023).
- Tu, M.; Olofsson, U. PM levels on an underground metro platform: A study of the train, passenger flow, urban background, ventilation, and night maintenance effects. Atmos. Environ. X 2021, 12, 100134. [Google Scholar] [CrossRef]
- Johansson, C.; Johansson, P.-Å. Particulate matter in the underground of Stockholm. Atmos. Environ. 2003, 37, 3–9. [Google Scholar] [CrossRef]
- Song, X.-Y.; Lu, Q.-C.; Peng, Z.-R. Spatial Distribution of Fine Particulate Matter in Underground Passageways. Int. J. Environ. Res. Public Health 2018, 15, 1574. [Google Scholar] [CrossRef]
- Colombi, C.; Angius, S.; Gianelle, V.; Lazzarini, M. Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system. Atmos. Environ. 2013, 70, 166–178. [Google Scholar] [CrossRef]
- Bigert, C.; Klerdal, K.; Hammar, N.; Gustavsson, P. Myocardial infarction in Swedish subway drivers. Scand. J. Work. Environ. Health 2007, 33, 267–271. [Google Scholar] [CrossRef]
- Heo, Y.; Lee, S.H.; Kim, S.H.; Lee, S.H.; Kim, H.A. Public facility workers’ immunological characteristics involved with development of respiratory allergic diseases in Korea. Ind. Health 2010, 48, 171–177. [Google Scholar] [CrossRef]
- Peters, S. Although a valuable method in occupational epidemiology, job-exposure matrices are no magic fix. Scand. J. Work. Environ. Health 2020, 46, 231–234. [Google Scholar] [CrossRef]
- Johnson, C.Y.; Rocheleau, C.M.; Hein, M.J.; Waters, M.A.; Stewart, P.A.; Lawson, C.C.; Reefhuis, J. Agreement between two methods for retrospective assessment of occupational exposure intensity to six chlorinated solvents: Data from the National Birth Defects Prevention Study. J. Occup. Environ. Hyg. 2017, 14, 389–396. [Google Scholar] [CrossRef]
- Van Ryswyk, K.; Kulka, R.; Marro, L.; Yang, D.; Toma, E.; Mehta, L.; McNeil-Taboika, L.; Evans, G.J. Impacts of Subway System Modifications on Air Quality in Subway Platforms and Trains. Environ. Sci. Technol. 2021, 55, 11133–11143. [Google Scholar] [CrossRef]
- RATP. Respiratory Health of RATP Employees Working in Underground Railways; Occupational Health Department of the Régie Autonome des Transports Parisiens (RATP): Paris, France, 2010; p. 67. [Google Scholar]
- Campagna, D.; Ihaddadene, K.; Randon, A.; Mattei, N.; Marchand, J.L.; Imbernon, H. Analysis of the Mortality of RATP Employees and Former Employees over the Period 1980–1999 (EDGAR Cohort); France Public Health France: Paris, France, 2008. [Google Scholar]
- Park, D.-S.; Oh, M.; Yoon, Y.; Park, E.; Lee, K. Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Atmos. Environ. 2012, 49, 180–185. [Google Scholar] [CrossRef]
- Kappelt, N.; Russell, H.S.; Fessa, D.; Ryswyk, K.V.; Hertel, O.; Johnson, M.S. Particulate air pollution in the Copenhagen metro part 1: Mass concentrations and ventilation. Environ. Int. 2023, 171, 107621. [Google Scholar] [CrossRef]
- Kumar, P.; Zavala-Reyes, J.C.; Kalaiarasan, G.; Abubakar-Waziri, H.; Young, G.; Mudway, I.; Dilliway, C.; Lakhdar, R.; Mumby, S.; Kłosowski, M.M.; et al. Characteristics of fine and ultrafine aerosols in the London underground. Sci. Total Environ. 2023, 858 Pt 1, 159315. [Google Scholar] [CrossRef] [PubMed]
- Luglio, D.G.; Katsigeorgis, M.; Hess, J.; Kim, R.; Adragna, J.; Raja, A.; Gordon, C.; Fine, J.; Thurston, G.; Gordon, T.; et al. PM2.5 Concentration and Composition in Subway Systems in the Northeastern United States. Environ. Health Perspect. 2021, 129, 27001. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Leng, J.; Shen, X.; Han, G.; Sun, L.; Yu, F. Environmental and Health Effects of Ventilation in Subway Stations: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 1084. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Fan, X.; Zhang, H.; Zheng, W.; Ye, T. A review on characteristics and mitigation strategies of indoor air quality in underground subway stations. Sci. Total. Environ. 2023, 869, 161781. [Google Scholar] [CrossRef] [PubMed]
Name of Measurement Campaign | Measurement Type (Location) | Geographical Coverage | Period | Device | Device Time Interval | Measurement Duration | Temporal Coverage | Reported PM Concentration | Number of Recorded Measurements |
---|---|---|---|---|---|---|---|---|---|
Squales | Stationary (1 platform) | 6 stations (lines 1, 4, 9, 3 on RER A) | January 2004–November 2020 | TEOM | 15 min | 24 h/7 days | Continuous | Daily | 7276 369 |
Monthly | |||||||||
5:30–13:30 | Daily | 6596 - | |||||||
Monthly | |||||||||
2016 Mapping | Stationary (1 platform) | All network lines and stations | June–December 2016 | DustTrak | 30 s | 30 min | 7:30 to 9:30 | Average concentration on 30 min (1 platform) | 441 |
Locomotive Operators 2016 | Personal (3 locomotive operators per line) | Along all network lines | November–December 2016 | Gravimetric | _ | =3 work shifts | Morning (=5:00 to 12:00) | Exposure (8 h-TWA) | 45 |
Personal (1 locomotive operator per line) | DustTrak | 30 s | =4 h | Average concentration on = 4 h | 14 | ||||
Security Guards 2017 | Personal (each GS team) | 3 GS 1, 2, 3 † | January–February 2017, February 2018 | Gravimetric | _ | 3-day work shifts | Afternoon (=12:00 to 19:00) | Exposure (8 h-TWA) | 8 |
DustTrak | 30 s | =4 h | Average concentration on = 4 h | 9 | |||||
WP2 2019 | Personal | 2 stations of line 7 (station agents) | October 2019 | Gravimetric | _ | 10-day work shifts | Afternoon (=12:00 to 19:00) | Exposure (8 h-TWA) | 20 |
Personal | Along line 7 (locomotive operators) | October 2019 | Gravimetric | _ | 9-day work shifts | Morning (=5:00 to 12:00) | Exposure (8 h-TWA) | 8 | |
Personal | GS 1 (security guards) | November 2019 | Gravimetric | _ | 9-day work shifts | Afternoon (=12:00 to 19:00) | Exposure (8 h-TWA) | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Rayana, T.; Wild, P.; Debatisse, A.; Jouannique, V.; Sakthithasan, K.; Suarez, G.; Guseva Canu, I. Job Exposure Matrix, a Solution for Retrospective Assessment of Particle Exposure in a Subway Network and Their Long-Term Effects. Toxics 2023, 11, 836. https://doi.org/10.3390/toxics11100836
Ben Rayana T, Wild P, Debatisse A, Jouannique V, Sakthithasan K, Suarez G, Guseva Canu I. Job Exposure Matrix, a Solution for Retrospective Assessment of Particle Exposure in a Subway Network and Their Long-Term Effects. Toxics. 2023; 11(10):836. https://doi.org/10.3390/toxics11100836
Chicago/Turabian StyleBen Rayana, Tesnim, Pascal Wild, Amélie Debatisse, Valérie Jouannique, Kirushanthi Sakthithasan, Guillaume Suarez, and Irina Guseva Canu. 2023. "Job Exposure Matrix, a Solution for Retrospective Assessment of Particle Exposure in a Subway Network and Their Long-Term Effects" Toxics 11, no. 10: 836. https://doi.org/10.3390/toxics11100836
APA StyleBen Rayana, T., Wild, P., Debatisse, A., Jouannique, V., Sakthithasan, K., Suarez, G., & Guseva Canu, I. (2023). Job Exposure Matrix, a Solution for Retrospective Assessment of Particle Exposure in a Subway Network and Their Long-Term Effects. Toxics, 11(10), 836. https://doi.org/10.3390/toxics11100836