Tetracycline Adsorption Performance and Mechanism Using Calcium Hydroxide-Modified Biochars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass and Chemicals
2.2. Biochar Preparation
2.3. Biochar Characterisation
2.4. Adsorption Experiments
3. Results and Discussion
3.1. Pristine and Modified Biochar Adsorbent
3.2. Influence of Solution pH on TC Adsorption
3.3. Adsorption Kinetics and Isotherms
3.4. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivera-Utrilla, J.; Gomez-Pacheco, C.V.; Sanchez-Polo, M.; Lopez-Penalver, J.J.; Ocampo-Perez, R. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J. Environ. Manag. 2013, 131, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Jia, A.; Wan, Y.; Liu, H.; Wang, K.P.; Peng, H.; Dong, Z.M.; Hu, J.Y. Occurrences of three classes of antibiotics in a natural river basin: Association with antibiotic-resistant Escherichia coli. Environ. Sci. Technol. 2014, 48, 14317–14325. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Liu, Y.; Du, P.P.; Zeng, L.J.; Mo, C.H.; Li, Y.W.; Lu, H.; Cai, Q.Y. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. Sci. Total Environ. 2019, 670, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Chen, Y.; Feng, M.J.; Chen, J.Q.; Shen, W.T.; Zhang, S.H. Occurrence of antibiotics and antibiotic resistance genes and their correlations in river-type drinking water source, China. Environ. Sci. Pollut. Res. 2021, 28, 42339–42352. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Chen, Q.W.; Zhang, J.Y.; Dong, J.W.; Yan, H.L.; Chen, C.; Feng, R.R. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River. J. Environ. Manag. 2019, 244, 13–22. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Zhao, Y.; Li, B.; Huang, C.L.; Zhang, S.Y.; Yu, S.; Chen, Y.S.; Zhang, T.; Gillings, M.R.; Su, J.Q. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2017, 2, 16270. [Google Scholar] [CrossRef]
- Sun, H.R.; Guo, F.; Pan, J.J.; Huang, W.; Wang, K.; Shi, W.L. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chem. Eng. J. 2021, 406, 126844. [Google Scholar] [CrossRef]
- Leal, J.F.; Esteves, V.I.; Santos, E.B.H. Use of sunlight to degrade oxytetracycline in marine aquaculture’s waters. Environ. Pollut. 2016, 213, 932–939. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2020, 102, 342–379. [Google Scholar] [CrossRef]
- Juela, D.M. Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep. Purif. Technol. 2022, 284, 120286. [Google Scholar] [CrossRef]
- Yuan, M.; Li, C.S.; Zhang, B.J.; Wang, J.L.; Zhu, J.H.; Ji, J.W.; Ma, Y.Q. A mild and one-pot method to activate lignin-derived biomass by using boric acid for aqueous tetracycline antibiotics removal in water. Chemosphere 2021, 280, 130877. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.J.; Li, J.J.; Shan, D.X. Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs. Chemosphere 2020, 238, 124432. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fang, C.R.; Wang, Q.; Chu, Y.X.; Song, Y.L.; Chen, Y.M.; Xue, X.D. Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Adv. 2018, 8, 16260–16268. [Google Scholar] [CrossRef]
- Mei, Y.L.; Xu, J.; Zhang, Y.; Li, B.; Fan, S.S.; Xu, H.C. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution. Bioresour. Technol. 2021, 325, 124732. [Google Scholar] [CrossRef]
- Qu, J.H.; Wu, Z.H.; Liu, Y.; Li, R.L.; Wang, D.; Wang, S.Q.; Wei, S.Q.; Zhang, J.R.; Tao, Y.; Jiang, Z.; et al. Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. Bioresour. Technol. 2022, 360, 127407. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Chai, B.; Wang, C.L.; Yan, J.T.; Fan, G.Z.; Song, G.S. Removal of tetracycline onto KOH-activated biochar derived from rape straw: Affecting factors, mechanisms and reusability inspection. Colloids Surf. A 2022, 640, 128466. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Nguyen, T.-B.; Huang, C.P.; Chen, C.-W.; Bui, X.-T.; Dong, C.-D. Alkaline modified biochar derived from spent coffee ground for removal of tetracycline from aqueous solutions. J. Water Process Eng. 2021, 40, 101908. [Google Scholar] [CrossRef]
- Zhao, J.W.; Dai, Y.J. Tetracycline adsorption mechanisms by NaOH-modified biochar derived from waste Auricularia auricula dregs. Environ. Sci. Pollut. Res. 2022, 29, 9142–9152. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Li, B.; Fan, S.S.; Xu, H.C.; Guan, D.X. Improved adsorption properties of tetracycline on KOH/KMnO4 modified biochar derived from wheat straw. Chemosphere 2022, 296, 133981. [Google Scholar] [CrossRef]
- Anthonysamy, S.I.; Lahijani, P.; Mohammadi, M.; Mohamed, A.R. Alkali-modified biochar as a sustainable adsorbent for the low-temperature uptake of nitric oxide. Int. J. Environ. Sci. Technol. 2021, 19, 7127–7140. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.Z.; Cui, Y.T.; Liang, Y.; Wang, H.Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Kang, Y.X.; Duan, H.T.; Zhou, Y.; Li, H.; Chen, S.G.; Tian, F.H.; Li, L.Q.; Drosos, M.; Dong, C.X.; et al. Remediation of Cd2+ in aqueous systems by alkali-modified (Ca) biochar and quantitative analysis of its mechanism. Arab. J. Chem. 2022, 15, 103750. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Kan, E. Sustainable use of Ca(OH)2 modified biochar for phosphorus recovery and tetracycline removal from water. Sci. Total Environ. 2022, 839, 156159. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.D.; Kong, L.J.; Long, J.Y.; Su, M.H.; Diao, Z.H.; Chang, X.Y.; Chen, D.Y.; Song, G.; Shih, K.M. Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies. Chemosphere 2018, 195, 666–672. [Google Scholar] [CrossRef]
- Wang, K.F.; Peng, N.; Zhang, D.Q.; Zhou, H.J.; Gu, J.F.; Huang, J.H.; Liu, C.; Chen, Y.; Liu, Y.; Sun, J.T. Efficient removal of methylene blue using Ca(OH)2 modified biochar derived from rice straw. Environ. Technol. Innov. 2023, 31, 103145. [Google Scholar] [CrossRef]
- Ghodszad, L.; Reyhanitabar, A.; Maghsoodi, M.R.; Asgari Lajayer, B.; Chang, S.X. Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere 2021, 283, 131176. [Google Scholar] [CrossRef]
- Mu, Y.K.; Ma, H.Z. NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal. Chem. Eng. Res. Des. 2021, 167, 129–140. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.Y.; Liu, H.H.; Cheng, W.Y.; Bao, Y.C. Modification of calcium-rich biochar by loading Si/Mn binary oxide after NaOH activation and its adsorption mechanisms for removal of Cu(II) from aqueous solution. Colloids Surf. A 2020, 601, 124960. [Google Scholar] [CrossRef]
- Yang, J.; Dou, Y.P.; Yang, H.M.; Wang, D.H. A novel porous carbon derived from CO2 for high-efficient tetracycline adsorption: Behavior and mechanism. Appl. Surf. Sci. 2021, 538, 148110. [Google Scholar] [CrossRef]
- Wang, W.T.; Kang, R.; Yin, Y.W.; Tu, S.; Ye, L.Y. Two-step pyrolysis biochar derived from agro-waste for antibiotics removal: Mechanisms and stability. Chemosphere 2022, 292, 133454. [Google Scholar] [CrossRef]
- Ofomaja, A.E.; Naidoo, E.B.; Modise, S.J. Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder. Ind. Eng. Chem. Res. 2010, 49, 2562–2572. [Google Scholar] [CrossRef]
- Chien, S.H.; Clayton, W.R. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Li, B.; Xie, Z.X.; Li, X.D.; Tang, J.; Fan, S.S. Enhanced adsorption performance of tetracycline in aqueous solutions by KOH-modified peanut shell-derived biochar. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W.J.; Jiang, H.; Chen, J.J.; Li, W.W.; Yu, H.Q. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 2012, 121, 235–240. [Google Scholar] [CrossRef]
- Zhuo, S.N.; Dai, T.C.; Ren, H.Y.; Liu, B.F. Simultaneous adsorption of phosphate and tetracycline by calcium modified corn stover biochar: Performance and mechanism. Bioresour. Technol. 2022, 359, 127477. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, H.Y.; Yu, S.H.; Ni, J.Z.; Wei, R.; Chen, W.F. Influence of pyrolysis atmosphere and temperature co-regulation on the sorption of tetracycline onto biochar: Structure-performance relationship variation. Bioresour. Technol. 2022, 360, 127647. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, Y.; Xu, J.; Fan, S.S.; Xu, H.C. Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature. Chemosphere 2022, 291, 132713. [Google Scholar] [CrossRef]
- Tang, J.Y.; Ma, Y.F.; Zeng, C.Y.; Yang, L.; Cui, S.; Zhi, S.L.; Yang, F.X.; Ding, Y.Z.; Zhang, K.Q.; Zhang, Z.L. Fe-Al bimetallic oxides functionalized-biochar via ball milling for enhanced adsorption of tetracycline in water. Bioresour. Technol. 2023, 369, 128385. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Li, Y.F.; Cao, Y.Y.; Han, L.J. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019, 285, 121348. [Google Scholar] [CrossRef]
- Kim, J.E.; Bhatia, S.K.; Song, H.J.; Yoo, E.; Jeon, H.J.; Yoon, J.Y.; Yang, Y.; Gurav, R.; Yang, Y.H.; Kim, H.J.; et al. Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar. Bioresour. Technol. 2020, 306, 123092. [Google Scholar] [CrossRef]
- Antunes, E.; Jacob, M.V.; Brodie, G.; Schneider, P.A. Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis. J. Environ. Chem. Eng. 2018, 6, 395–403. [Google Scholar] [CrossRef]
- Parolo, M.E.; Avena, M.J.; Savini, M.C.; Baschini, M.T.; Nicotra, V. Adsorption and circular dichroism of tetracycline on sodium and calcium-montmorillonites. Colloids Surf. A 2013, 417, 57–64. [Google Scholar] [CrossRef]
Models | Equations | Parameters | CSB | Ca-CSB |
---|---|---|---|---|
PFO model | k1 (min−1) | 0.3086 | 0.4754 | |
qe (mg g−1) | 5.90 | 42.20 | ||
R2 | 0.9116 | 0.8515 | ||
PSO model | k2 (g mg−1 min−1) | 0.0287 | 0.0052 | |
qe (mg g−1) | 6.36 | 45.45 | ||
R2 | 0.9999 | 0.9999 | ||
IPD model | k3 (g mg−1 min−1/2) | 0.0897 | 0.5111 | |
C (mg g−1) | 4.1482 | 32.8770 | ||
R2 | 0.5035 | 0.4840 | ||
Elovich model | α (mg g−1 min) | 175.5 | 23,184.4 | |
β (g mg−1) | 1.856 | 0.329 | ||
R2 | 0.8391 | 0.7877 | ||
Langmuir model | qm (mg g−1) | 8.22 | 93.46 | |
KL (L mg−1) | 0.19 | 0.15 | ||
R2 | 0.9857 | 0.9757 | ||
Freundlich model | KF ((mg g−1) (L mg−1)1/n) | 1.57 | 16.64 | |
n | 2.24 | 2.13 | ||
R2 | 0.7617 | 0.9368 |
Biochar Feedstock | Pyrolysis Temperature (°C) | Modified Reagent or Method | Maximum Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|---|
Corn straw | 500 | Ca(OH)2 | 93.5 | This study |
Rice husk | 500 | KOH | 58.8 | Liu et al., 2012 [34] |
Corn stover | 500 | CaCl2 | 12.5 | Zhuo et al., 2022 [35] |
Yellow pine wood | 550 | Ca(OH)2 | 20.9 | Zeng and Kan, 2022 [23] |
Pine sawdust Wheat straw | 300–600 | Air-limitation CO2-flow N2-flow | 2.57–56.0 7.40–22.8 | Xiang et al., 2022 [36] |
Corn straw | 500 | K2FeO4 + ball milling | 74.0 | Qu et al., 2022 [15] |
Tea waste | 500 600 | Hydrothermal + KHCO3 + FeCl3 | 59.4 86.2 | Li et al., 2022 [37] |
Sugarcane bagasse | 600 | FeCl3 + AlCl3 + ball milling | 116.6 | Tang et al., 2023 [38] |
Properties | CSB | Na-CSB | Ca-CSB |
---|---|---|---|
SBET (m2 g−1) | 1.72 | 13.52 | 31.25 |
Vtotal (cm3 g−1) | 0.01 | 0.04 | 0.06 |
Dap (nm) | 23.97 | 11.33 | 7.64 |
Ultimate analysis (wt%) | |||
C | 35.74 | 29.74 | 20.17 |
H | 1.86 | 2.00 | 2.08 |
O | 17.92 | 21.73 | 19.65 |
N | 0.57 | 0.10 | 0.48 |
H/C | 0.62 | 0.81 | 1.24 |
O/C | 0.38 | 0.55 | 0.73 |
(O+N)/C | 0.39 | 0.55 | 0.75 |
EDX (wt%) | |||
C K | 43.11 | 20.22 | 20.11 |
O K | 25.42 | 48.87 | 46.09 |
Si K | 17.28 | 8.52 | 11.04 |
Na K | — | 13.88 | — |
Ca K | — | — | 21.70 |
Other | 14.19 | 8.51 | 1.06 |
O/C | 0.44 | 1.81 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Yao, R.; Zhang, D.; Peng, N.; Zhao, P.; Zhong, Y.; Zhou, H.; Huang, J.; Liu, C. Tetracycline Adsorption Performance and Mechanism Using Calcium Hydroxide-Modified Biochars. Toxics 2023, 11, 841. https://doi.org/10.3390/toxics11100841
Wang K, Yao R, Zhang D, Peng N, Zhao P, Zhong Y, Zhou H, Huang J, Liu C. Tetracycline Adsorption Performance and Mechanism Using Calcium Hydroxide-Modified Biochars. Toxics. 2023; 11(10):841. https://doi.org/10.3390/toxics11100841
Chicago/Turabian StyleWang, Kaifeng, Runlin Yao, Dongqing Zhang, Na Peng, Ping Zhao, Yongming Zhong, Haijun Zhou, Jiahui Huang, and Chen Liu. 2023. "Tetracycline Adsorption Performance and Mechanism Using Calcium Hydroxide-Modified Biochars" Toxics 11, no. 10: 841. https://doi.org/10.3390/toxics11100841
APA StyleWang, K., Yao, R., Zhang, D., Peng, N., Zhao, P., Zhong, Y., Zhou, H., Huang, J., & Liu, C. (2023). Tetracycline Adsorption Performance and Mechanism Using Calcium Hydroxide-Modified Biochars. Toxics, 11(10), 841. https://doi.org/10.3390/toxics11100841