Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model and Chemicals
2.2. Experimental Design and Exposure Protocols
2.2.1. PQ Exposure in Early Life of Male and Female Mice
2.2.2. PQ Re-Exposure at Adulthood in Male Mice
- a.
- NS + NS group (treated with saline at both PN period and adulthood, n = 9–18);
- b.
- NS + PQ group (treated with saline at PN period and with PQ at adulthood, n = 8–15);
- c.
- PQ + NS group (treated with PQ at PN period and with saline at adulthood, n = 8–23);
- d.
- PQ + PQ group (treated with PQ at both PN period and adulthood, n = 15–18).
2.3. Y-Maze Spontaneous Alternation Test
2.4. Passive Avoidance Test
2.5. Elevated plus Maze Test
2.6. Mice Organ Coefficient Detection
2.7. Statistical Analysis
3. Results
3.1. Exposure to PQ Has No Impact on Body Weight and Organ Coefficients in Aged Mice
3.2. Exposure to PQ during Early Life Elicits Sex-Specific Abnormal Non-Motor Neurobehavior in Aged Mice
3.3. Re-Exposure to PQ at Adulthood after PN Exposure Aggravated Spatial Working Memory Impairment in Aged Male Mice
3.4. Re-Exposure to PQ at Adulthood after PN Exposure Results in Progressive Cognitive Impairments in Aged Male Mice
3.5. Re-Exposure to PQ at Adulthood after PN Exposure Exacerbated Anxiety in Aged Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Breckenridge, C.B.; Sturgess, N.C.; Butt, M.; Wolf, J.C.; Zadory, D.; Beck, M.; Mathews, J.M.; Tisdel, M.O.; Minnema, D.; Travis, K.Z.; et al. Pharmacokinetic, neurochemical, stereological and neuropathological studies on the potential effects of paraquat in the substantia nigra pars compacta and striatum of male C57BL/6J mice. Neurotoxicology 2013, 37, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bastías-Candia, S.; Zolezzi, J.M.; Inestrosa, N.C. Revisiting the Paraquat-Induced Sporadic Parkinson’s Disease-Like Model. Mol. Neurobiol. 2019, 56, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Thompson, M.; Xu, Y.H. Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson’s disease. Lab. Investig. 2016, 96, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Su, Y.; Lin, F.; Iqbal, M.; Mehmood, K.; Zhang, H.; Shi, D. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. Ecotoxicol. Environ. Saf. 2021, 224, 112711. [Google Scholar] [CrossRef]
- Stuart, A.M.; Merfield, C.N.; Horgan, F.G.; Willis, S.; Watts, M.A.; Ramírez-Muñoz, F.; U, J.S.; Utyasheva, L.; Eddleston, M.; Davis, M.L.; et al. Agriculture without paraquat is feasible without loss of productivity-lessons learned from phasing out a highly hazardous herbicide. Environ. Sci. Pollut. Res. Int. 2023, 30, 16984–17008. [Google Scholar] [CrossRef]
- Jiang, X.; Jin, T.; Zhang, H.; Miao, J.; Zhao, X.; Su, Y.; Zhang, Y. Current Progress of Mitochondrial Quality Control Pathways Underlying the Pathogenesis of Parkinson’s Disease. Oxidative Med. Cell. Longev. 2019, 2019, 4578462. [Google Scholar] [CrossRef]
- Baltazar, M.T.; Dinis-Oliveira, R.J.; de Lourdes Bastos, M.; Tsatsakis, A.M.; Duarte, J.A.; Carvalho, F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases--a mechanistic approach. Toxicol. Lett. 2014, 230, 85–103. [Google Scholar] [CrossRef]
- Nandipati, S.; Litvan, I. Environmental Exposures and Parkinson’s Disease. Int. J. Environ. Res. Public Health 2016, 13, 881. [Google Scholar] [CrossRef]
- Seidler, A.; Hellenbrand, W.; Robra, B.P.; Vieregge, P.; Nischan, P.; Joerg, J.; Oertel, W.H.; Ulm, G.; Schneider, E. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: A case-control study in Germany. Neurology 1996, 46, 1275–1284. [Google Scholar] [CrossRef]
- Nellore, J.; Nandita, P. Paraquat exposure induces behavioral deficits in larval zebrafish during the window of dopamine neurogenesis. Toxicol. Rep. 2015, 2, 950–956. [Google Scholar] [CrossRef]
- Prasad, E.M.; Hung, S.Y. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson’s Disease. Antioxidants 2020, 9, 1007. [Google Scholar] [CrossRef]
- Huang, C.; Ma, J.; Li, B.X.; Sun, Y. Wnt1 silencing enhances neurotoxicity induced by paraquat and maneb in SH-SY5Y cells. Exp. Ther. Med. 2019, 18, 3643–3649. [Google Scholar] [CrossRef]
- Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Philippot, G.; Stenerlöw, B.; Fredriksson, A.; Sundell-Bergman, S.; Eriksson, P.; Buratovic, S. Developmental effects of neonatal fractionated co-exposure to low-dose gamma radiation and paraquat on behaviour in adult mice. J. Appl. Toxicol. 2019, 39, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Saunders, N.R.; Dziegielewska, K.M.; Møllgård, K.; Habgood, M.D. Recent Developments in Understanding Barrier Mechanisms in the Developing Brain: Drugs and Drug Transporters in Pregnancy, Susceptibility or Protection in the Fetal Brain? Annu. Rev. Pharmacol. Toxicol. 2019, 59, 487–505. [Google Scholar] [CrossRef]
- Colle, D.; Santos, D.B.; Naime, A.A.; Gonçalves, C.L.; Ghizoni, H.; Hort, M.A.; Farina, M. Early Postnatal Exposure to Paraquat and Maneb in Mice Increases Nigrostriatal Dopaminergic Susceptibility to a Re-challenge with the Same Pesticides at Adulthood: Implications for Parkinson’s Disease. Neurotox. Res. 2020, 37, 210–226. [Google Scholar] [CrossRef]
- Barlow, B.K.; Richfield, E.K.; Cory-Slechta, D.A.; Gonçalves, C.L.; Ghizoni, H.; Hort, M.A.; Farina, M. A fetal risk factor for Parkinson’s disease. Dev. Neurosci. 2004, 26, 11–23. [Google Scholar] [CrossRef]
- Mittra, N.; Chauhan, A.K.; Singh, G.; Patel, D.K.; Singh, C. Postnatal zinc or paraquat administration increases paraquat or zinc-induced loss of dopaminergic neurons: Insight into augmented neurodegeneration. Mol. Cell. Biochem. 2020, 467, 27–43. [Google Scholar] [CrossRef]
- Peri, A. Neuroprotective effects of estrogens: The role of cholesterol. J. Endocrinol. Investig. 2016, 39, 11–18. [Google Scholar] [CrossRef]
- Baldereschi, M.; Di Carlo, A.; Rocca, W.A.; Vanni, P.; Maggi, S.; Perissinotto, E.; Grigoletto, F.; Amaducci, L.; Inzitari, D.; Grp, I.W. Parkinson’s disease and parkinsonism in a longitudinal study—Two-fold higher incidence in men. Neurology 2000, 55, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Moisan, F.; Kab, S.; Mohamed, F.; Canonico, M.; Le Guern, M.; Quintin, C.; Carcaillon, L.; Nicolau, J.; Duport, N.; Singh-Manoux, A.; et al. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, D.; Hamberg, K.; Hariz, M.; Forsgren, L.; Hariz, G.M. Gender differences in Parkinson’s disease: A clinical perspective. Acta Neurol. Scand. 2017, 136, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Kaasinen, V.; Joutsa, J.; Noponen, T.; Johansson, J.; Seppanen, M. Effects of aging and gender on striatal and extrastriatal I-123 FP-CIT binding in Parkinson’s disease. Neurobiol. Aging 2015, 36, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Pinares-Garcia, P.; Loke, H.; Ham, S.; Vilain, E.; Harley, V.R. Sex-specific neuroprotection by inhibition of the Y-chromosome gene, SRY, in experimental Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2019, 116, 16577–16582. [Google Scholar] [CrossRef]
- Baraka, A.M.; Korish, A.A.; Soliman, G.A.; Kamal, H. The possible role of estrogen and selective estrogen receptor modulators in a rat model of Parkinson’s disease. Life Sci. 2011, 88, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Litim, N.; Morissette, M.; Di Paolo, T. Neuroactive gonadal drugs for neuroprotection in male and female models of Parkinson’s disease. Neurosci. Biobehav. Rev. 2016, 67, 79–88. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, Z.; Zhang, B.; Luo, H.; Song, B.; Zhou, Z.; Chang, X. Impacts of early-life paraquat exposure on gut microbiota and body weight in adult mice. Chemosphere 2022, 291 Pt 3, 133135. [Google Scholar] [CrossRef]
- Rudyk, C.A.; McNeill, J.; Prowse, N.; Dwyer, Z.; Farmer, K.; Litteljohn, D.; Caldwell, W.; Hayley, S. Age and Chronicity of Administration Dramatically Influenced the Impact of Low Dose Paraquat Exposure on Behavior and Hypothalamic-Pituitary-Adrenal Activity. Front. Aging Neurosci. 2017, 9, 222. [Google Scholar] [CrossRef]
- Kruk-Slomka, M.; Dzik, A.; Biala, G. The Influence of CB2-Receptor Ligands on the Memory-Related Responses in Connection with Cholinergic Pathways in Mice in the Passive Avoidance Test. Molecules 2022, 27, 4252. [Google Scholar] [CrossRef]
- Hritcu, L.; Clicinschi, M.; Nabeshima, T. Brain serotonin depletion impairs short-term memory, but not long-term memory in rats. Physiol. Behav. 2007, 91, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Roncarati, R.; Scali, C.; Comery, T.A.; Grauer, S.M.; Aschmi, S.; Bothmann, H.; Jow, B.; Kowal, D.; Gianfriddo, M.; Kelley, C.; et al. Procognitive and Neuroprotective Activity of a Novel alpha 7 Nicotinic Acetylcholine Receptor Agonist for Treatment of Neurodegenerative and Cognitive Disorders. J. Pharmacol. Exp. Ther. 2009, 329, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 1987, 92, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Djukic, M.M.; Jovanovic, M.D.; Ninkovic, M.; Stevanovic, I.; Ilic, K.; Curcic, M.; Vekic, J. Protective role of glutathione reductase in paraquat induced neurotoxicity. Chem.-Biol. Interact. 2012, 199, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Bertsias, G.K.; Katonis, P.; Tzanakakis, G.; Tsatsakis, A.M. Review of clinical and toxicological features of acute pesticide poisonings in Crete (Greece) during the period 1991–2001. Med. Sci. Monit. 2004, 10, CR622–CR627. [Google Scholar]
- Marinus, J.; Zhu, K.; Marras, C.; Aarsland, D.; van Hilten, J.J. Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol. 2018, 17, 559–568. [Google Scholar] [CrossRef]
- Kwok, J.Y.Y.; Choi, E.P.H.; Lee, J.J.; Lok, K.Y.W.; Kwan, J.C.Y.; Mok, V.C.T.; Auyeung, M. Effects of Mindfulness Yoga Versus Conventional Physical Exercises on Symptom Experiences and Health-related Quality of Life in People with Parkinson’s Disease: The Potential Mediating Roles of Anxiety and Depression. Ann. Behav. Med. 2022, 56, 1068–1081. [Google Scholar] [CrossRef]
- Reich, S.G.; Savitt, J.M. Parkinson’s Disease. Med. Clin. N. Am. 2019, 103, 337–350. [Google Scholar] [CrossRef]
- Lovejoy, P.C.; Foley, K.E.; Conti, M.M.; Meadows, S.M.; Bishop, C.; Fiumera, A.C. Genetic basis of susceptibility to low-dose paraquat and variation between the sexes in Drosophila melanogaster. Mol. Ecol. 2021, 30, 2040–2053. [Google Scholar] [CrossRef]
- Li, N.; Flanagan, B.A.; Partridge, M.; Huang, E.J.; Edmands, S. Sex differences in early transcriptomic responses to oxidative stress in the copepod Tigriopus californicus. BMC Genom. 2020, 21, 759. [Google Scholar] [CrossRef] [PubMed]
- Bassani, T.B.; Bartolomeo, C.S.; Oliveira, R.B.; Ureshino, R.P. Progestogen-Mediated Neuroprotection in Central Nervous System Disorders. Neuroendocrinology 2023, 113, 14–35. [Google Scholar] [CrossRef] [PubMed]
- Tsialtas, I.; Georgantopoulos, A.; Karipidou, M.E.; Kalousi, F.D.; Karra, A.G.; Leonidas, D.D.; Psarra, A.G. Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int. J. Mol. Sci. 2021, 22, 7620. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, M.; Guennoun, R.; Ghoumari, A.; Massaad, C.; Robert, F.; El-Etr, M.; Akwa, Y.; Rajkowski, K.; Baulieu, E.E. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr. Rev. 2007, 28, 387–439. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.J.; Hitchcott, P.K.; Umeda, E.A.; Arnold, A.P.; Taylor, J.R. Sex chromosome complement regulates habit formation. Nat. Neurosci. 2007, 10, 1398–1400. [Google Scholar] [CrossRef]
- Bang, Y.; Lim, J.; Choi, H.J. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson’s disease: Clues to early diagnosis and effective treatment. Arch. Pharmacal Res. 2021, 44, 588–604. [Google Scholar] [CrossRef]
- Kin, K.; Yasuhara, T.; Kameda, M.; Date, I. Animal Models for Parkinson’s Disease Research: Trends in the 2000s. Int. J. Mol. Sci. 2019, 20, 5402. [Google Scholar] [CrossRef]
- Singh, T.; Jauhari, A.; Pandey, A.; Singh, P.; Pant, A.B.; Parmar, D.; Yadav, S. Regulatory Triangle of Neurodegeneration, Adult Neurogenesis and MicroRNAs. CNS Neurol. Disord. Drug Targets 2014, 13, 96–103. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Q.; Chu, T.; Mo, Y.; Cai, S.; Chen, M.; Zhu, G. High-dose acute exposure of paraquat induces injuries of swim bladder, gastrointestinal tract and liver via neutrophil-mediated ROS in zebrafish and their relevance for human health risk assessment. Chemosphere 2018, 205, 662–673. [Google Scholar] [CrossRef]
- Patrick, K.L.; Bell, S.L.; Weindel, C.G.; Watson, R.O. Exploring the “Multiple-Hit Hypothesis” of Neurodegenerative Disease: Bacterial Infection Comes Up to Bat. Front. Cell. Infect. Microbiol. 2019, 9, 138. [Google Scholar] [CrossRef]
- Reuhl, K.R. Delayed expression of neurotoxicity: The problem of silent damage. Neurotoxicology 1991, 12, 341–346. [Google Scholar] [PubMed]
- Fan, L.-W.; Tiene, L.-T.; Zheng, B.; Pang, Y.; Lin, R.C.S.; Simpson, K.L.; Ma, T.; Rhodes, P.G.; Cai, Z. Dopaminergic neuronal injury in the adult rat brain following neonatal exposure to lipopolysaccharide and the silent neurotoxicity. Brain Behav. Immun. 2011, 25, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Tshala-Katumbay, D.; Mwanza, J.-C.; Rohlman, D.S.; Maestre, G.; Oria, R.B. A global perspective on the influence of environmental exposures on the nervous system. Nature 2015, 527, S187–S192. [Google Scholar] [CrossRef] [PubMed]
- Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci. 2007, 30, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Masato, A.; Plotegher, N.; Boassa, D.; Bubacco, L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol. Neurodegener. 2019, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, M.; Huss, A.; van der Mark, M.; Nijssen, P.C.G.; Mulleners, W.M.; Sas, A.M.G.; van Laar, T.; de Snoo, G.R.; Kromhout, H.; Vermeulen, R.C.H. Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ. Int. 2017, 107, 100–110. [Google Scholar] [CrossRef]
- Vellingiri, B.; Chandrasekhar, M.; Sri Sabari, S.; Gopalakrishnan, A.V.; Narayanasamy, A.; Venkatesan, D.; Iyer, M.; Kesari, K.; Dey, A. Neurotoxicity of pesticides—A link to neurodegeneration. Ecotoxicol. Environ. Saf. 2022, 243, 113972. [Google Scholar] [CrossRef]
- Rappold, P.M.; Cui, M.; Chesser, A.S.; Tibbett, J.; Grima, J.C.; Duan, L.; Sen, N.; Javitch, J.A.; Tieu, K. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc. Natl. Acad. Sci. USA 2011, 108, 20766–20771. [Google Scholar] [CrossRef]
- Widdowson, P.S.; Farnworth, M.J.; Simpson, M.G.; Lock, E.A. Influence of age on the passage of paraquat through the blood-brain barrier in rats: A distribution and pathological examination. Hum. Exp. Toxicol. 1996, 15, 231–236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Z.; Li, J.; Zhang, B.; Hang, A.; Wang, Q.; Xiong, G.; Tang, L.; Zhou, Z.; Chang, X. Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice. Toxics 2023, 11, 842. https://doi.org/10.3390/toxics11100842
Zuo Z, Li J, Zhang B, Hang A, Wang Q, Xiong G, Tang L, Zhou Z, Chang X. Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice. Toxics. 2023; 11(10):842. https://doi.org/10.3390/toxics11100842
Chicago/Turabian StyleZuo, Zhenzi, Jiayi Li, Bing Zhang, Ai Hang, Qiaoxu Wang, Guiya Xiong, Liming Tang, Zhijun Zhou, and Xiuli Chang. 2023. "Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice" Toxics 11, no. 10: 842. https://doi.org/10.3390/toxics11100842
APA StyleZuo, Z., Li, J., Zhang, B., Hang, A., Wang, Q., Xiong, G., Tang, L., Zhou, Z., & Chang, X. (2023). Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice. Toxics, 11(10), 842. https://doi.org/10.3390/toxics11100842