Evaluating the Contamination by Indoor Dust in Dubai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Series
2.2. Sampling
2.3. Reagents, Standards and Laboratory Ware
2.4. Statistical Analysis
2.5. Pollution Indices
3. Results and Discussion
- ➢
- The k-means algorithm and hierarchical clustering provided the same clusters and dendrogram as in Figure 4, indicating that the removed series does not have a significant importance to lead to a difference between the sites.
- ➢
- The Nemerow indices computed with Set2 are the same (up to the third decimal) as those computed using Set1, while the CPI and AQI have higher values for Set2.
- ➢
- ➢
- The hierarchical clustering performed on the series of indices obtained from Set2 provided a cluster containing the series 1, 7–9, 11, 17, 19, and 20 which are also in the left-hand-side cluster from Figure 4b.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meza-Figueroa, D.; La O-Villanueva, M.D.; Parra, M.L.D. Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, Mexico. Atmos. Environ. 2007, 41, 276–288. [Google Scholar] [CrossRef]
- Darus, F.M.; Nasir, R.A.; Sumari, S.M.; Ismail, Z.S.; Omar, N.A. Heavy metals composition of indoor dust in nursery schools building. Procedia Soc. Behav. Sci. 2012, 38, 169–175. [Google Scholar] [CrossRef]
- Höppe, P.; Martinac, I. Indoor climate and air quality. Review of current and future topics in the field of ISB study group 10. Int. J. Biometeorol. 1998, 42, 1–7. [Google Scholar] [PubMed]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Jantunen, M.J.; Lai, H.K.; Nieuwenhuijsen, M.; Kunzli, N. Indoor time microenvironment-activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epid. 2007, 17, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, P.E.; Ovrevik, J.; Lag, M.; Refsnes, M.; Nafstad, P.; Hetland, R.B.; Dybing, E. Particulate matter properties and health effects: Consistency of epidemiological and toxicological studies. Human Exper. Toxicol. 2006, 25, 559–579. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.; Alleman, L.Y.; Coddeville, P.; Gallo, J.C. Elemental characterization and source identification of size resolved atmospheric particles in French classrooms. Atmos. Environ. 2012, 54, 250–259. [Google Scholar] [CrossRef]
- Franchi, M.; Carrer, P.; Kotzias, D.; Rameckers, E.M.A.L.; Seppänen, O.; van Bronswijk, J.E.M.H.; Viegi, G.; Towards Healthy Air in Dwellings in Europe. The THADE Report. Available online: https://ec.europa.eu/health/ph_projects/2001/pollution/fp_pollution_2001_frep_02.pdf (accessed on 15 October 2023).
- Al-Rajhi, M.A.; Seaward, M.R.D.; Al-Aamar, A.S. Metal levels in indoor and outdoor dust in Riyadh, Saudi Arabia. Environ. Int. 1996, 22, 315–324. [Google Scholar] [CrossRef]
- Exposure Factors Handbook: 2011 Edition (EPA/600/R-09/052F); United States Environmental Protection Agency: Washington, DC, USA, 2011.
- Wilson, R.; Jones-Otazo, H.A.; Petrovic, S.; Mitchell, I.; Bonvalot, Y.; Williams, D.; Richardson, G.M. Revisiting dust and soil ingestion rates based on hand-to-mouth transfer. Hum. Ecol. Risk Assess. 2013, 19, 158–188. [Google Scholar] [CrossRef]
- Rashed, M.N. Total and extractable heavy metals in indoor, outdoor and street dust from Aswan City, Egypt. Clean Soil Air Water 2008, 36, 850–857. [Google Scholar] [CrossRef]
- Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 2017, 22, 337–347. [Google Scholar] [CrossRef]
- Fisk, W.J. 10—Impact of ventilation and aircleaning on asthma. In Clearing the Air: Asthma and Indoor Air Exposure; National Academies Press: Washington, DC, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK224478/ (accessed on 12 November 2023).
- Tsubata, R.; Sakaguchi, M.; Yoshizawa, S. Particle size of indoor airborne mite allergens (Der p 1 and Der f 1). Proc. Indoor Air’96 1996, 3, 155–160. [Google Scholar]
- Maertens, R.M.; Bailey, J.; White, P.A. The mutagenic hazards of settled house dust: A review. Mutat. Res. 2004, 567, 401–425. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.Y.; Lam, K.C. Home sweet home? A case study of household dust contamination in Hong Kong. Sci. Total Environ. 2000, 256, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.K.M. Metal concentrations and distribution in the household, stairs and entryway dust of some Egyptian homes. Atmos. Environ. 2012, 54, 207–215. [Google Scholar] [CrossRef]
- Praveena, S.M.; Abdul Mutalib, N.S.; Aris, A.Z. Determination of heavy metals in indoor dust from primary school (Sri Serdang, Malaysia): Estimation of the health risks. Environ. Forensics 2015, 16, 257–263. [Google Scholar] [CrossRef]
- Morawska, L.; Salthammer, T. Indoor Environment. Airborne Particles and Settled Dust; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Lioy, P.J.; Freeman, N.C.G.; Millette, J.R. Dust: A metric for use in residential and building exposure assessment and source characterization. Environ. Health Perspect. 2002, 110, 969–983. [Google Scholar] [CrossRef]
- Kang, Y.; Cheung, K.C.; Wong, M.H. Mutagenicity, genotoxicity and carcinogenic risk assessment of indoor dust from three major cities around the Pearl River Delta. Environ. Int. 2011, 37, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Popoola, O.E.; Bamgbose, O.; Okonkwo, O.J.; Arowolo, T.A.; Popoola, A.O.; Awofolu, O.R. Heavy metals content in classroom dust of some public primary schools in metropolitan Lagos, Nigeria. Res. J. Environ. Earth. Sci. 2012, 4, 460–465. [Google Scholar]
- Cao, S.; Duan, X.; Zhao, X.; Wang, B.; Ma, J.; Fan, D.; Sun, C.; He, B.; Wei, F.; Jiang, G. Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China. Environ. Pollut. 2015, 200, 16–23. [Google Scholar] [CrossRef]
- Rout, T.K.; Masto, R.E.; Ram, L.C.; George, J.; Padhy, P.K. Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area. Environ. Geochem. Health 2015, 35, 347–356. [Google Scholar] [CrossRef]
- Gbadebo, A.M.; Bankole, O.D. Analysis of potentially toxic metals in airborne cement dust around Sagamu, Southwestern Nigeria. J. Appl. Sci. 2007, 7, 35–40. [Google Scholar] [CrossRef]
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater. 2010, 174, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, B.; Liu, G.; Wang, R.; Imtiaz, M.; Rizwan, M.S.; Zia-ur-Rehman, M.; Qadir, A.; Si, Y. The importance of evaluating metal exposure and predicting human health risks in urban–periurban environments influenced by emerging industry. Chemosphere 2016, 150, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Nazzal, Y.; Howari, F.M.; Yaslam, A.; Iqbal, J.; Maloukh, L.; Ambika, L.K.; Al-Taani, A.A.; Ali, I.; Othman, E.M.; Jamal, A.; et al. A Methodological Review of Tools That Assess Dust Microbiomes, Metatranscriptomes and the Particulate Chemistry of Indoor Dust. Atmosphere 2022, 13, 1276. [Google Scholar] [CrossRef]
- Chattopadhyay, G.; Lin, K.C.P.; Feitz, A.J. Household dust metal levels in the Sydney metropolitan area. Environ. Res. 2003, 93, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, J.; Yan, H.; Ren, Y.; Wang, B.; Lin, C.; Liu, X. Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China. Ecotox. Environ. Saf. 2016, 126, 14–22. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Beauchemin, S.; Chénier, M.; Levesque, C.; MacLean, L.C.; Marro, L.; Jones-Otazo, H.; Petrovic, S.; McDonald, L.T.; Gardner, H.D. Canadian house dust study: Lead bioaccessibility and speciation. Environ. Sci. Technol. 2011, 45, 4959–4965. [Google Scholar] [CrossRef]
- Household Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 27 October 2023).
- Indoor Air Pollution. Available online: https://www.who.int/news-room/questions-and-answers/item/air-pollution-indoor-air-pollution (accessed on 27 October 2023).
- Popovici, B.; Postolache, F. MAOS—Oxygen minimum amount calculation software for thermodynamics processes. Sci. Bull. Naval Acad. 2018, XXI, 430–433. [Google Scholar]
- Popa, I.; Sporiș, A.; Mărășescu, D.; Postolache, F.; Volintiru, O.N. Termodinamically process for atmospheric fresh water production. Sci. Bull. Naval Acad. 2022, XXV, 37–44. [Google Scholar]
- United States Environmental Protection Agency. Code of Federal Regulations: Priority Pollutants List. 2014. Available online: https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol29/xml/CFR-2014-title40-vol29-part423-appA.xml (accessed on 11 November 2023).
- Sen, S.; Bizimis, M.; Tripathi, S.N.; Paul, D. Lead isotopic finger-printing of aerosols to characterize the sources of atmospheric lead in an industrial city of India. Atmos. Environ. 2016, 129, 27–33. [Google Scholar] [CrossRef]
- Peixoto, M.S.; de Oliveira Galvao, M.F.; Batistuzzo de Medeiros, S.R. Cell death pathways of particulate matter toxicity. Chemosphere 2017, 188, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Morakinyo, O.M.; Mukhola, M.S.; Mokgobu, M.I. Health Risk Analysis of Elemental Components of an Industrially Emitted Respirable Particulate Matter in an Urban Area. Int. J. Environ. Res. Public Health 2021, 18, 3653. [Google Scholar] [CrossRef] [PubMed]
- Sanborn, M.D.; Abelsohn, A.; Campbell, M.; Weir, E. Identifying and managing adverse environmental health effects: 3. Lead exposure. Can. Med. Assoc. J. 2002, 166, 1287–1292. [Google Scholar]
- Faiz, Y.; Tufail, M.; Javed, M.T.; Chaudhry, M.M.; Siddique, N. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem. J. 2009, 92, 186–192. [Google Scholar] [CrossRef]
- Turner, A.; Hefzi, B. Levels and bioaccessibilities of metals in dusts from an arid environment. Water Air Soil Poll. 2010, 210, 483–491. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Nazzal, Y.; Howari, F. Statistical analysis and estimation of the regional trend of aerosol size over the Arabian Gulf Region during 2002–2016. Sci. Rep. 2018, 8, 9571. [Google Scholar] [CrossRef]
- Nazzal, Y.; Bărbulescu, A.; Howari, F.M.; Yousef, A.; Al-Taani, A.A.; Al Aydaroos, F.; Naseem, M. New insight to dust storm from historical records, UAE. Arab. J. Geosci. 2019, 12, 396. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Nazzal, Y. Statistical analysis of the dust storms in the United Arab Emirates. Atmos. Res. 2020, 231, 104669. [Google Scholar] [CrossRef]
- Nazzal, Y.H.; Bărbulescu, A.; Howari, F.; Al-Taani, A.A.; Iqbal, J.; Xavier, C.M.; Sharma, M.; Dumitriu, C.S. Assessment of metals concentrations in soils of Abu Dhabi Emirate using pollution indices and multivariate statistics. Toxics 2021, 9, 95. [Google Scholar] [CrossRef]
- Nazzal, Y.; Bou Orm, N.; Bărbulescu, A.; Howari, F.; Sharma, M.; Badawi, A.; Al-Taani, A.A.; Iqbal, J.; El Ktaibi, F.; Xavier, C.M.; et al. Study of atmospheric pollution and health risk assessment A case study for the Sharjah and Ajman Emirates (UAE). Atmosphere 2021, 12, 1442. [Google Scholar] [CrossRef]
- Yeatts, K.B.; El-Sadig, M.; Leith, D.; Kalsbeek, W.; Al-Maskari, F.; Couper, D.; Funk, W.E.; Zoubeidi, T.; Chan, R.L.; Trent, C.B.; et al. Indoor air pollutants and health in the United Arab Emirates. Environ. Health Perspect. 2012, 120, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Alqassimi, N.; El Samanoudy, G. The comparative analysis of the indoor air pollutants in occupied apartments at residential area and industrial area in Dubai, United Arab Emirates. Front. Built Environ. 2022, 8, 998858. [Google Scholar] [CrossRef]
- Mfarrej, B.; Qafisheh, N.A.; Bahloul, M.M. Investigation of Indoor Air Quality inside Houses From UAE. Air Soil Water Resear. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Greywolf Sensing Solutions. Indoor Air Quality (IAQ) Meters, Monitors for Handheld, Semi-Permanent and Long-Term IAQ Measurement. Available online: https://graywolfsensing.com/iaq/?gad_source=1&gclid=CjwKCAiA6byqBhAWEiwAnGCA4GrTejNDxyRzkNIWFkHzN7VQCwwFmry9m5ksqtSG2hxtb--ljiU8txoCU-8QAvD_BwE (accessed on 10 October 2023).
- High-Precision Handheld GIS Data Collector-SOUTH S750. Available online: https://pdf.directindustry.com/pdf/south-surveying-mapping-instrument-co-ltd/high-precision-handheld-gis-data-collector-south-s750/160571-732546.html (accessed on 11 October 2023).
- Dyson V15 Detect. Available online: https://www.dyson.com/vacuum-cleaners/cordless/v15/detect/yellow-iron (accessed on 11 October 2023).
- Method 3050B: Acid Digestion of Sludges, Sediments, and Soils, Revision 2; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 1996.
- Code of Federal Regulations (Annual Edition)—Title 40: Protection of Environment, Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants. 2022. Available online: https://www.govinfo.gov/app/search/%7B%22query%22%3A%2240%20CFR%20Part%20136%20Appendix%20B%2C%20Revision%202%22%2C%22offset%22%3A0%7D (accessed on 12 November 2023).
- Calculating & Using Method Detection Limits. Available online: https://www.wef.org/globalassets/assets-wef/2-resources/online-education/webcasts/presentation-handouts/mdl-webcast-16july20.pdf (accessed on 12 November 2023).
- Daburra, I. K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks. Available online: https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a (accessed on 18 June 2023).
- Hierarchical Clustering in, R. Available online: https://www.datacamp.com/tutorial/hierarchical-clustering-R (accessed on 18 September 2023).
- K-Mean: Getting the Optimal Number of Clusters. Available online: https://www.analyticsvidhya.com/blog/2021/05/k-mean-getting-the-optimal-number-of-clusters/ (accessed on 16 June 2023).
- Rousseeuw, P. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Farris, J.S. On the cophenetic correlation coefficient. Syst. Zool. 1969, 18, 279–285. [Google Scholar] [CrossRef]
- Murphy, P. Clustering Data in R. Available online: https://rstudio-pubs-static.s3.amazonaws.com/599072_93cf94954aa64fc7a4b99ca524e5371c.html#Visualize (accessed on 14 October 2023).
- Jolliffe, I. Principal Component Analysis; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology, 2nd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1982. [Google Scholar]
- Kolsi, S.H.; Bouri, S.; Hachicha, W.; Dhia, H.B. Implementation and evaluation of multivariate analysis for groundwater hydrochemistry assessment in arid environments: A case study of Hajeb Elyoun–Jelma, Central Tunisia. Environ. Earth Sci. 2013, 70, 2215–2224. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree Test for The Number of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef]
- Al-Hejuje, M.M.; Al-Saad, H.T.; Hussain, N.A. Application of geo-accumulation index (I-geo) for assessment the sediments contamination with heavy metals at Shatt Al-Arab River-Iraq. J. Sci. Eng. Res. 2018, 5, 342–351. [Google Scholar]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Lindsay, W.L. Chemical Equilibrium in Soils; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- Kabata-Pendias, A. Trace Elements of Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2011. [Google Scholar]
- Selvam, A.P.; Priya, S.L.; Banerjee, K.; Hariharan, G.; Purvaja, R.; Ramesh, R. Heavy Metal Assessment Using Geochemical and Statistical Tools in the Surface Sediments of Vembanad Lake, Southwest Coast of India. Environ. Monit. Assess. 2012, 184, 5899–5915. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Deng, J.; Xiang, Y.; Wang, Q.; Yang, L. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J. China Univ. Geosci. 2008, 19, 230–241. [Google Scholar]
- Pramanik, A.K.; Majumdar, D.; Chatterjee, A. Factors affecting lean, wet-season water quality of Tilaiya reservoir in Koderma District, India during 2013–2017. Water Sci. 2020, 34, 85–97. [Google Scholar] [CrossRef]
- Cude, C.G. Oregon water quality index: A tool for evaluating water quality management effectiveness. J. Am. Water Resour. Assoc. 2001, 37, 125–137. [Google Scholar] [CrossRef]
- Howari, F.M.; Ghrefat, H.; Nazzal, Y.; Galmed, M.A.; Abdelghany, O.; Fowler, A.R.; Sharma, M.; AlAygaroos, F.; Xavier, C.M. Delineation of Copper Mineralization Zones at Wadi Ham, Northern Oman Mountains, United Arab Emirates Using Multispectral Landsat 8 (OLI) Data. Front. Earth Sci. 2020, 8, 578075. [Google Scholar] [CrossRef]
- Manganese Ore in United Arab Emirates. Available online: https://oec.world/en/profile/bilateral-product/manganese-ore/reporter/are (accessed on 14 October 2023).
- Iron Ore in United Arab Emirates. Available online: https://oec.world/en/profile/bilateral-product/iron-ore/reporter/are (accessed on 14 October 2023).
- 5 Largest Aluminum Producing Countries in the World. Available online: https://www.insidermonkey.com/blog/5-largest-aluminum-producing-countries-in-the-world-1159098/ (accessed on 14 October 2023).
- Baek, S.O.; Kim, Y.S.; Perry, R. Indoor air quality in homes, offices, and restaurants in Korean urban areas—Indoor/outdoor relationships. Atmos. Environ. 1997, 31, 529–544. [Google Scholar] [CrossRef]
- Jones, N.C.; Thornton, C.A.; Mark, D.; Harrison, R.M. Indoor/outdoor relationships of particulate matter in domestic. Atmos. Environ. 2000, 34, 2603–2612. [Google Scholar] [CrossRef]
- Kuo, H.W.; Shen, H.Y. Indoor and outdoor PM2.5 and PM10 concentration in the air during a dust storm. Build. Environ. 2010, 45, 610–614. [Google Scholar] [CrossRef]
- Meadow, J.F.; Altrichter, A.E.; Kembel, S.W.; Kline, J.; Mhuireach, G.; Moriyama, M.; Northcutt, D.; O’Connor, T.K.; Womack, A.M.; Brown, G.Z.; et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 2014, 24, 41–48. [Google Scholar] [CrossRef]
- Fung, C.C.; Yang, P.; Zhu, Y.F. Infiltration of Diesel Exhaust into a Mechanically Ventilated Building. In Proceedings of the Indoor Air 2014—13th International Conference on Indoor Air Quality and Climate, Hong Kong, 7–12 July 2014. Paper#HP0626. [Google Scholar]
- Ai, Z.T.; Mak, C.M. From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: Issues and possibilities for improvement. Build. Environ. 2015, 94, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.; Schindler, C.; Eeftens, M.; Aguilera, I.; Ducret-Stich, R.E.; Ineichen, A.; Davey, M.; Phuleria, H.C.; Probst-Hensch, N.; Tsai, M.Y.; et al. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzeland. Environ. Int. 2015, 82, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Calautit, J. Quantifying the Transmission of Outdoor Pollutants into the Indoor Environment and Vice Versa—Review of Influencing Factors, Methods, Challenges and Future Direction. Sustainability 2022, 14, 10880. [Google Scholar] [CrossRef]
- Härdle, W.; Simar, L. Applied Multivariate Statistical Analysis, 2nd ed.; Springer: Berlin Heidelberg, Germany, 2007. [Google Scholar]
- Müller, G. Heavy Metals in the Sediments of the Rhine: Changes since 1971. A look around. Sci. Technol. 1979, 79, 778–783. [Google Scholar]
Cu | Ni | Pb | Zn | Co | Cr | Ba | Fe | Mn | |
min | 3.04 | 29.85 | 0.05 | 25.81 | 0.16 | 19.14 | 28.96 | 568.36 | 66.38 |
mean | 94.30 | 52.14 | 4.62 | 247.08 | 1.85 | 56.96 | 85.17 | 997.28 | 126.58 |
max | 309.58 | 93.50 | 28.82 | 397.11 | 3.62 | 298.47 | 309.94 | 1572.14 | 186.24 |
median | 53.54 | 47.10 | 2.37 | 255.84 | 1.91 | 33.27 | 74.36 | 979.05 | 133.08 |
Std.dev. | 97.74 | 18.80 | 6.72 | 92.52 | 0.95 | 63.60 | 55.28 | 263.67 | 43.47 |
CV | 1.04 | 0.36 | 1.46 | 0.37 | 0.52 | 1.12 | 0.65 | 0.26 | 0.34 |
Skewness coef. | 1.53 | 0.72 | 2.86 | −0.57 | 0.04 | 3.06 | 3.54 | 0.40 | −0.04 |
Kurtosis | 0.65 | −0.57 | 8.47 | 0.10 | −0.76 | 10.31 | 14.39 | −0.03 | −1.71 |
Mg | Sr | Na | Al | Ca | K | As | Cd | ||
min | 834.32 | 11.44 | 188.15 | 349.33 | 8033.17 | 3918.61 | 0.64 | 6.26 | |
mean | 1876.22 | 47.50 | 561.39 | 1033.78 | 14,170.02 | 9159.12 | 3.89 | 6.73 | |
max | 4972.55 | 120.35 | 1606.82 | 1883.38 | 20,421.29 | 17,984.38 | 5.61 | 7.45 | |
median | 1843.27 | 44.64 | 493.99 | 965.54 | 14,436.28 | 8661.69 | 4.26 | 6.68 | |
Std.dev. | 928.09 | 23.21 | 295.98 | 391.79 | 3085.02 | 2873.00 | 1.41 | 0.32 | |
CV | 0.49 | 0.49 | 0.53 | 0.38 | 0.22 | 0.31 | 0.36 | 0.05 | |
Skewness coef | 1.86 | 1.43 | 2.43 | 0.70 | −0.36 | 1.28 | −0.85 | 0.46 | |
Kurtosis | 5.10 | 3.52 | 7.29 | 0.60 | 0.04 | 3.52 | −0.01 | −0.43 |
Cu | Ni | Pb | Zn | Co | Cr | Ba | Fe | Mn | Mg | Sr | Na | Al | Ca | K | As | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni | 0.465 | |||||||||||||||
Pb | 0.118 | 0.104 | ||||||||||||||
Zn | 0.105 | 0.484 | 0.945 | |||||||||||||
Co | 0.386 | 0.000 | 0.153 | 0.537 | ||||||||||||
Cr | 0.280 | 0.546 | 0.101 | 0.930 | 0.825 | |||||||||||
Ba | 0.936 | 0.446 | 0.869 | 0.966 | 0.300 | 0.705 | ||||||||||
Fe | 0.961 | 0.000 | 0.605 | 0.267 | 0.000 | 0.955 | 0.400 | |||||||||
Mn | 0.817 | 0.000 | 0.226 | 0.011 | 0.000 | 0.862 | 0.881 | 0.000 | ||||||||
Mg | 0.391 | 0.035 | 0.867 | 0.093 | 0.146 | 0.495 | 0.833 | 0.012 | 0.000 | |||||||
Sr | 0.882 | 0.007 | 0.763 | 0.106 | 0.009 | 0.924 | 0.637 | 0.027 | 0.011 | 0.272 | ||||||
Na | 0.285 | 0.734 | 0.314 | 0.109 | 0.822 | 0.676 | 0.590 | 0.433 | 0.164 | 0.469 | 0.401 | |||||
Al | 0.937 | 0.001 | 0.949 | 0.302 | 0.002 | 0.351 | 0.387 | 0.000 | 0.001 | 0.011 | 0.168 | 0.838 | ||||
Ca | 0.963 | 0.159 | 0.587 | 0.002 | 0.202 | 0.824 | 0.783 | 0.068 | 0.000 | 0.066 | 0.030 | 0.005 | 0.100 | |||
K | 0.880 | 0.596 | 0.924 | 0.257 | 0.276 | 0.923 | 0.957 | 0.396 | 0.847 | 0.717 | 0.978 | 0.336 | 0.372 | 0.108 | ||
As | 0.784 | 0.816 | 0.200 | 0.671 | 0.705 | 0.739 | 0.909 | 0.416 | 0.700 | 0.265 | 0.516 | 0.116 | 0.188 | 0.804 | 0.389 | |
Cd | 0.816 | 0.000 | 0.461 | 0.076 | 0.002 | 0.493 | 0.890 | 0.000 | 0.000 | 0.016 | 0.003 | 0.125 | 0.001 | 0.004 | 0.493 | 0.829 |
PC1 | PC2 | PC3 | PC4 | PC5 | |
---|---|---|---|---|---|
Standard deviation | 1.314 | 0.536 | 0.463 | 0.271 | 0.249 |
Proportion of Variance | 0.6935 | 0.1152 | 0.0858 | 0.0294 | 0.0249 |
Cumulative Proportion | 0.6935 | 0.8087 | 0.8946 | 0.9241 | 0.9489 |
Igeo Class | Igeo Value | Contamination Level | Contamination Level at the Study Sites |
---|---|---|---|
0 | Igeo ≤ 0 | Uncontaminated | Cu, Ni, Pb, Co, Cr, Ba, Sr, Mn, Sa Cd—all sitesZn: 1–6, 12–14, 16–19; Na: 1–6, 8–19; Al: 9–19, As, Cd |
1 | 0 < Igeo < 1 | Uncontaminated/Moderately contaminated | Zn: 7–11, 15, 20; Na: 7, 20; Fe: 7, 9, 17; Mg: 17; Al: 1, 3, 7, 8, 10–18, 20 |
2 | 1 ≤ Igeo < 2 | Moderately contaminated | Fe: 1, 3–5, 8, 10–16, 18–20; Mg: 1, 7–9, 11, 18–20; Al: 2, 4–6; K: 17 |
3 | 2 ≤ Igeo < 3 | Moderately/Strongly contaminated | Fe: 2, 6; Mg: 2, 4–6, 10, 12–16; K: 1, 3, 4, 8, 9, 11–13, 15, 20 |
4 | 3 ≤ Igeo < 4 | Strongly contaminated | Mg: 3; K: 2, 5, 7, 9, 15, 18, 19; |
5 | 4 ≤ Igeo < 5 | Strongly/Extremely contaminated | Ca: 1, 6–11, 14, 15, 17–20 |
6 | Igeo ≥ 5 | Extremely contaminated | Ca: 2–5, 12, 13, 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazzal, Y.; Bărbulescu, A.; Sharma, M.; Howari, F.; Naseem, M. Evaluating the Contamination by Indoor Dust in Dubai. Toxics 2023, 11, 933. https://doi.org/10.3390/toxics11110933
Nazzal Y, Bărbulescu A, Sharma M, Howari F, Naseem M. Evaluating the Contamination by Indoor Dust in Dubai. Toxics. 2023; 11(11):933. https://doi.org/10.3390/toxics11110933
Chicago/Turabian StyleNazzal, Yousef, Alina Bărbulescu, Manish Sharma, Fares Howari, and Muhammad Naseem. 2023. "Evaluating the Contamination by Indoor Dust in Dubai" Toxics 11, no. 11: 933. https://doi.org/10.3390/toxics11110933
APA StyleNazzal, Y., Bărbulescu, A., Sharma, M., Howari, F., & Naseem, M. (2023). Evaluating the Contamination by Indoor Dust in Dubai. Toxics, 11(11), 933. https://doi.org/10.3390/toxics11110933