Unveiling the LncRNA-miRNA-mRNA Regulatory Network in Arsenic-Induced Nerve Injury in Rats through High-Throughput Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Grouping
2.2. Main Reagents and Instruments
2.3. Execution of Experimental Animals and Sample Collection
2.4. Determination of Arsenic Content
2.5. Brain Histopathology Section and Nissl Staining
2.6. Transmission Electron Microscopy
2.7. High-Throughput Sequencing
2.8. Construction of Regulatory Network
2.9. Analysis of Network Key Nodes
2.10. Real-Time Quantitative PCR
2.11. Statistical Analysis
3. Results
3.1. Effects of Arsenic Exposure on Arsenic Levels in Rats
3.2. Morphological Damage to Hippocampal Neurons in Arsenic-Exposed Rats
3.3. Ultrastructural Damage of Hippocampal Neurons in Arsenic-Exposed Rats
3.4. Arsenic Exposure Induces RNA Expression Differences in Rat Hippocampus
3.5. Functional Enrichment of GO and KEGG for Differential mRNA Molecules
3.6. Functional Enrichment of GO and KEGG for Differential lncRNA Molecules
3.7. Construction of Lnc-mi-mRNA Regulatory Network
3.8. Screening of Key mRNA in the Lnc-mi-mRNA Regulatory Network
3.9. Validation of ceRNA Regulatory Networks
3.9.1. Validation Results of mRNA
3.9.2. Validation Results of miRNA
3.9.3. Validation Results of lncRNA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medina-Pizzali, M.; Robles, P.; Mendoza, M.; Torres, C. Arsenic Intake: Impact in Human Nutrition and Health. Rev. Peru. Med. Exp. Salud Publica 2018, 35, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Liu, G.; Chou, C.L.; Wong, M.H.; Zheng, L.; Ding, R. Arsenic in Chinese coals: Distribution, modes of occurrence, and environmental effects. Sci. Total Environ. 2011, 412–413, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Niazi, N.K.; Dumat, C.; Naidu, R.; Khalid, S.; Rahman, M.M.; Bibi, I. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ. Pollut. 2018, 242, 307–319. [Google Scholar] [CrossRef]
- Bundschuh, J.; Schneider, J.; Alam, M.A.; Niazi, N.K.; Herath, I.; Parvez, F.; Tomaszewska, B.; Guilherme, L.R.G.; Maity, J.P.; López, D.L.; et al. Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Sci. Total Environ. 2021, 780, 146274. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef]
- Bu, N.; Song, H.Y.; Wang, S.H. Research progress on the regulatory mechanism of non-coding RNA in arsenic toxicity. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2022, 40, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Sun, S.G.; Yue, Z.Q.; Bai, F. Role of lncRNA LUCAT1 in cancer. Biomed. Pharmacother. 2021, 134, 111158. [Google Scholar] [CrossRef]
- Wu, X.; Sui, Z.; Zhang, H.; Wang, Y.; Yu, Z. Integrated Analysis of lncRNA-Mediated ceRNA Network in Lung Adenocarcinoma. Front. Oncol. 2020, 10, 554759. [Google Scholar] [CrossRef] [PubMed]
- Panni, S.; Lovering, R.C.; Porras, P.; Orchard, S. Non-coding RNA regulatory networks. Biochim. Biophys. Acta Gene Regul. Mech. 2020, 1863, 194417. [Google Scholar] [CrossRef]
- Li, B.; Huang, N.; Wei, S.; Xv, J.; Meng, Q.; Aschner, M.; Li, X.; Chen, R. lncRNA TUG1 as a ceRNA promotes PM exposure-induced airway hyper-reactivity. J. Hazard. Mater. 2021, 416, 125878. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.; Zhang, H.; Lu, X.; Wang, T.; Xu, S.; Kong, T.; Bo, C.; Li, L.; Ning, S.; et al. Construction of lncRNA-Mediated ceRNA Network for Investigating Immune Pathogenesis of Ischemic Stroke. Mol. Neurobiol. 2021, 58, 4758–4769. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, L.; Liu, Y.; Liu, Y.; Yu, W.; Zhao, Y. CircRNA-ceRNA Network Revealing the Potential Regulatory Roles of CircRNA in Alzheimer’s Disease Involved the cGMP-PKG Signal Pathway. Front. Mol. Neurosci. 2021, 14, 665788. [Google Scholar] [CrossRef]
- Xie, W.J.; Che, L.; Zhou, G.Y.; Yang, L.N.; Hu, M.Y. The bioconcentration ability of heavy metal research for 50 kinds of rice under the same test conditions. Environ. Monit. Assess. 2016, 188, 675. [Google Scholar] [CrossRef]
- Ding, B.; Ma, X.; Liu, Y.; Ni, B.; Lu, S.; Chen, Y.; Liu, X.; Zhang, W. Arsenic-Induced, Mitochondria-Mediated Apoptosis Is Associated with Decreased Peroxisome Proliferator-Activated Receptor γ Coactivator α in Rat Brains. Toxics 2023, 11, 576. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Chakraborti, D.; Rahman, M.M.; Mukherjee, A.; Alauddin, M.; Hassan, M.; Dutta, R.N.; Pati, S.; Mukherjee, S.C.; Roy, S.; Quamruzzman, Q.; et al. Groundwater arsenic contamination in Bangladesh-21 Years of research. J. Trace Elem. Med. Biol. 2015, 31, 237–248. [Google Scholar] [CrossRef]
- Yi, Y.; Gao, S.; Xia, J.; Li, C.; Zhao, Y.; Zhang, Y.; Liang, A.; Ji, S. Data on the sub-chronic toxicity in rats after 30 days of oral realgar administration and the accumulation and distribution of arsenic species. Data Brief 2019, 23, 103572. [Google Scholar] [CrossRef]
- Lisman, J.; Buzsáki, G.; Eichenbaum, H.; Nadel, L.; Ranganath, C.; Redish, A.D. Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 2017, 20, 1434–1447. [Google Scholar] [CrossRef]
- Swanson, L.W.; Cowan, W.M. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. Comp. Neurol. 1977, 172, 49–84. [Google Scholar] [CrossRef]
- Augulis, V.; Sepinwall, J. Brazilin-toluidine blue O and hematoxylin-darrow red methods for brain and spinal cord. Stain Technol. 1969, 44, 131–137. [Google Scholar] [CrossRef]
- Goto, N. Discriminative staining methods for the nervous system: Luxol fast blue--periodic acid-Schiff--hematoxylin triple stain and subsidiary staining methods. Stain Technol. 1987, 62, 305–315. [Google Scholar] [CrossRef]
- Xu, B.; Lian, S.; Guo, J.R.; Wang, J.F.; Zhang, L.P.; Li, S.Z.; Yang, H.M. Activation of the MAPK signaling pathway induces upregulation of pro-apoptotic proteins in the hippocampi of cold stressed adolescent mice. Neurosci. Lett. 2019, 699, 97–102. [Google Scholar] [CrossRef]
- Cui, B.; Wu, M.; She, X. Effects of chronic noise exposure on spatial learning and memory of rats in relation to neurotransmitters and NMDAR2B alteration in the hippocampus. J. Occup. Health 2009, 51, 152–158. [Google Scholar] [CrossRef]
- Liu, P.; Cui, L.; Liu, B.; Liu, W.; Hayashi, T.; Mizuno, K.; Hattori, S.; Ushiki-Kaku, Y.; Onodera, S.; Ikejima, T. Silibinin ameliorates STZ-induced impairment of memory and learning by up- regulating insulin signaling pathway and attenuating apoptosis. Physiol. Behav. 2020, 213, 112689. [Google Scholar] [CrossRef]
- Cui, Y.H.; Zhou, S.F.; Liu, Y.; Wang, S.; Li, F.; Dai, R.P.; Hu, Z.L.; Li, C.Q. Injection of Anti-proBDNF Attenuates Hippocampal-Dependent Learning and Memory Dysfunction in Mice With Sepsis-Associated Encephalopathy. Front. Neurosci. 2021, 15, 665757. [Google Scholar] [CrossRef]
- Sheng, H.; Lu, D.; Qi, X.; Ling, Y.; Li, J.; Zhang, X.; Dong, W.; Chen, W.; Gao, S.; Gao, X.; et al. A neuron-specific Isca1 knockout rat developments multiple mitochondrial dysfunction syndromes. Anim. Models Exp. Med. 2023, 6, 155–167. [Google Scholar] [CrossRef]
- Han, J.X.; Wen, C.X.; Sun, R.; Tang, M.Y.; Li, X.M.; Lian, H. The dorsal hippocampal CA3 regulates spatial reference memory through the CtBP2/GluR2 pathway. FASEB J. 2022, 36, e22456. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, X.; Zhu, Z.; He, M.; Zheng, X.; Zhang, X. A New Potential Antidepressant: Dexmedetomidine Alleviates Neuropathic Pain-Induced Depression by Increasing Neurogenesis in the Hippocampus. Pharmacology 2022, 107, 317–329. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Q.; Cai, Y.; Sun, D.; He, X.; Wang, L.; Yu, D.; Li, X.; Xiong, X.; Xu, H.; et al. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget 2016, 7, 56045–56059. [Google Scholar] [CrossRef]
- Lou, Q.; Zhang, M.; Zhang, K.; Liu, X.; Zhang, Z.; Zhang, X.; Yang, Y.; Gao, Y. Arsenic exposure elevated ROS promotes energy metabolic reprogramming with enhanced AKT-dependent HK2 expression. Sci. Total Environ. 2022, 836, 155691. [Google Scholar] [CrossRef]
- Chandravanshi, L.P.; Gupta, R.; Shukla, R.K. Developmental Neurotoxicity of Arsenic: Involvement of Oxidative Stress and Mitochondrial Functions. Biol. Trace Elem. Res. 2018, 186, 185–198. [Google Scholar] [CrossRef]
- Guidarelli, A.; Fiorani, M.; Cerioni, L.; Cantoni, O. Calcium signals between the ryanodine receptor- and mitochondria critically regulate the effects of arsenite on mitochondrial superoxide formation and on the ensuing survival vs apoptotic signaling. Redox Biol. 2019, 20, 285–295. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, F.; Liao, Y.; Jin, Y.; Sun, G. Effects of arsenite in astrocytes on neuronal signaling transduction. Toxicology 2013, 303, 43–53. [Google Scholar] [CrossRef]
- Zhao, Q.; Pan, W.; Li, J.; Yu, S.; Liu, Y.; Zhang, X.; Qu, R.; Zhang, Q.; Li, B.; Yan, X.; et al. Effects of neuron autophagy induced by arsenic and fluoride on spatial learning and memory in offspring rats. Chemosphere 2022, 308, 136341. [Google Scholar] [CrossRef]
- Silm, K.; Yang, J.; Marcott, P.F.; Asensio, C.S.; Eriksen, J.; Guthrie, D.A.; Newman, A.H.; Ford, C.P.; Edwards, R.H. Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron 2019, 102, 786–800.e785. [Google Scholar] [CrossRef]
- Pereira, J.B.; Janelidze, S.; Ossenkoppele, R.; Kvartsberg, H.; Brinkmalm, A.; Mattsson-Carlgren, N.; Stomrud, E.; Smith, R.; Zetterberg, H.; Blennow, K.; et al. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer’s disease. Brain 2021, 144, 310–324. [Google Scholar] [CrossRef]
- Fonseca-Ornelas, L.; Viennet, T.; Rovere, M.; Jiang, H.; Liu, L.; Nuber, S.; Ericsson, M.; Arthanari, H.; Selkoe, D.J. Altered conformation of α-synuclein drives dysfunction of synaptic vesicles in a synaptosomal model of Parkinson’s disease. Cell Rep. 2021, 36, 109333. [Google Scholar] [CrossRef]
- Li, P.; Jia, Y.; Tang, W.; Cui, Q.; Liu, M.; Jiang, J. Roles of Non-coding RNAs in Central Nervous System Axon Regeneration. Front. Neurosci. 2021, 15, 630633. [Google Scholar] [CrossRef]
- Chen, L.; Feng, P.; Zhu, X.; He, S.; Duan, J.; Zhou, D. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells. J. Cell. Mol. Med. 2016, 20, 2102–2110. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef]
- Militello, G.; Weirick, T.; John, D.; Döring, C.; Dimmeler, S.; Uchida, S. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief. Bioinform. 2017, 18, 780–788. [Google Scholar] [CrossRef]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef]
- Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022, 185, 62–76. [Google Scholar] [CrossRef]
- Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022, 11, 4. [Google Scholar] [CrossRef]
- Jin, W. Regulation of BDNF-TrkB Signaling and Potential Therapeutic Strategies for Parkinson’s Disease. J. Clin. Med. 2020, 9, 257. [Google Scholar] [CrossRef]
- Mattson, M.P.; Camandola, S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Investig. 2001, 107, 247–254. [Google Scholar] [CrossRef]
- Guan, W.; Xu, D.W.; Ji, C.H.; Wang, C.N.; Liu, Y.; Tang, W.Q.; Gu, J.H.; Chen, Y.M.; Huang, J.; Liu, J.F.; et al. Hippocampal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF. Pharmacol. Res. 2021, 174, 105932. [Google Scholar] [CrossRef]
- Peng, D.; Wang, Y.; Xiao, Y.; Peng, M.; Mai, W.; Hu, B.; Jia, Y.; Chen, H.; Yang, Y.; Xiang, Q.; et al. Extracellular vesicles derived from astrocyte-treated with haFGF(14-154) attenuate Alzheimer phenotype in AD mice. Theranostics 2022, 12, 3862–3881. [Google Scholar] [CrossRef]
- Tu, W.; Yue, J.; Li, X.; Wu, Q.; Yang, G.; Li, S.; Sun, Q.; Jiang, S. Electroacupuncture Alleviates Neuropathic Pain through Regulating miR-206-3p Targeting BDNF after CCI. Neural Plast. 2022, 2022, 1489841. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, F.; Lu, C.; Jiao, Z.; Yang, W.; Yang, X.; Ma, H.; Yu, H.; Wang, S.; Li, Y.; Sun, D.; et al. Unveiling the LncRNA-miRNA-mRNA Regulatory Network in Arsenic-Induced Nerve Injury in Rats through High-Throughput Sequencing. Toxics 2023, 11, 953. https://doi.org/10.3390/toxics11120953
Chu F, Lu C, Jiao Z, Yang W, Yang X, Ma H, Yu H, Wang S, Li Y, Sun D, et al. Unveiling the LncRNA-miRNA-mRNA Regulatory Network in Arsenic-Induced Nerve Injury in Rats through High-Throughput Sequencing. Toxics. 2023; 11(12):953. https://doi.org/10.3390/toxics11120953
Chicago/Turabian StyleChu, Fang, Chunqing Lu, Zhe Jiao, Wenjing Yang, Xiyue Yang, Hao Ma, Hao Yu, Sheng Wang, Yang Li, Dianjun Sun, and et al. 2023. "Unveiling the LncRNA-miRNA-mRNA Regulatory Network in Arsenic-Induced Nerve Injury in Rats through High-Throughput Sequencing" Toxics 11, no. 12: 953. https://doi.org/10.3390/toxics11120953
APA StyleChu, F., Lu, C., Jiao, Z., Yang, W., Yang, X., Ma, H., Yu, H., Wang, S., Li, Y., Sun, D., & Sun, H. (2023). Unveiling the LncRNA-miRNA-mRNA Regulatory Network in Arsenic-Induced Nerve Injury in Rats through High-Throughput Sequencing. Toxics, 11(12), 953. https://doi.org/10.3390/toxics11120953