Novel Adsorbents and Adsorption Methods for Pollutant Removal
Conflicts of Interest
References
- Jiang, T.; Ning, S.; Yu, T.; Wang, J.; Wei, Y.; Wu, Y.; He, H.; Chen, F.; Wang, Q. Separation of Minor Actinides from High-Level Liquid Waste Using Novel Silica-Based Butyl-BTP Adsorbents. Toxics 2022, 10, 741. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.F.; Abu Khoziem, H.A.; Khalafalla, M.S.; Abdellah, W.M.; Zaki, D.I.; Althumayri, K.; Wei, Y. Ecofriendly Composite as a Promising Material for Highly-Performance Uranium Recovery from Different Solutions. Toxics 2022, 10, 490. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Hu, K.; Li, X.; Wang, Y.; Ouyang, J.; Zhou, L.; Liu, Z. Mineralogical Properties of a Refractory Tantalum-Niobium Slag and the Effect of Roasting on the Leaching of Uranium-Thorium. Toxics 2022, 10, 469. [Google Scholar] [CrossRef] [PubMed]
- Sang, H.; Mao, C.; Wu, Y.; Wei, Y. Study on the Effect of Gamma-Ray Irradiation on the Adsorption of 99Tc and Re by a Silica-Based Pyridine Resin. Toxics 2022, 10, 638. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Hu, Y.; Xie, M.; Xue, L.; Liao, C.; Yang, F. Highly Selective Adsorption of 99TcO4−/ReO4− by a Novel Polyamide-Functionalized Polyacrylamide Polymer Material. Toxics 2022, 10, 630. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Wu, Y.; Xu, L. Radiation Resistance and Adsorption Behavior of Aluminum Hexacyanoferrate for Pd. Toxics 2023, 11, 321. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Zeng, X.; Zhao, Y.; Li, X.; Huang, X.; Fujita, T.; Wang, X. Removal of the Homolog Tellurium of Polonium by SiO2 Nanofiber Filter for Lead Alloy-Cooled Reactors. Toxics 2022, 10, 275. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.H.; Nguyen, X.-T.T.; Long, V.D.; Wei, Y.; Fujita, T. A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. Toxics 2022, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Samrot, A.V.; Bavanilatha, M.; Krithika Shree, S.; Sathiyasree, M.; Vanjinathan, J.; Shobana, N.; Thirugnanasambandam, R.; Kumar, C.; Wilson, S.; Rajalakshmi, D.; et al. Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model. Toxics 2022, 10, 742. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.I.; Shahid, S.; Mansoor, S.; Javed, M.; Iqbal, S.; Hakami, O.; Yousef, E.S.; Al-Fawzan, F.F.; Elkaeed, E.B.; Pashameah, R.A.; et al. Fabrication of a Ternary Nanocomposite g-C3N4/Cu@CdS with Superior Charge Separation for Removal of Organic Pollutants and Bacterial Disinfection from Wastewater under Sunlight Illumination. Toxics 2022, 10, 657. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, S.; Chen, W.; Xiong, W.; Zhang, A.; Yu, Z.; Lian, B.; Lee, C.-P. Study on Tritium and Iodine Species Transport through Porous Granite: A Non-Sorption Effect by Anion Exclusion. Toxics 2022, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, S.; Wu, E.; Wang, L.; Chen, W.; Xiong, W.; Zhang, Y.; Zhang, A.; Lian, B. Advection–Dispersion Behavior for Simulation of H-3 and Pu-238 Transport in Undisturbed Argillaceous Shale of a Near-Surface Repository. Toxics 2023, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, F.; Wang, X.; Ning, X.; Wang, K.; Wang, X.; Wei, Y.; Fujita, T. Detection of Cd2+ in Aqueous Solution by the Fluorescent Probe of CdSe/CdS QDs Based on OFF–ON Mode. Toxics 2022, 10, 367. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Y.; Zheng, C.; Jiang, Y.; Liao, Y.; Huang, J.; Fujita, T.; Wei, Y.; Ma, S. Utilization of Waste Amine-Oxime (WAO) Resin to Generate Carbon by Microwave and Its Removal of Pb(II) in Water. Toxics 2022, 10, 489. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, H.; Tang, X.; Kuang, D.; Zhou, J.; Yang, F. Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe3O4-Sunflower Straw Biochar. Toxics 2022, 10, 534. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Wang, C.; Gong, L.; Zhu, X.; Yan, J.; Lu, J.; Zhang, W. Potential Application of Discarded Natural Coal Gangue for the Removal of Tetracycline Hydrochloride (TC) from an Aqueous Solution. Toxics 2023, 11, 20. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Wu, Y.; Wang, X. Novel Adsorbents and Adsorption Methods for Pollutant Removal. Toxics 2023, 11, 954. https://doi.org/10.3390/toxics11120954
Wei Y, Wu Y, Wang X. Novel Adsorbents and Adsorption Methods for Pollutant Removal. Toxics. 2023; 11(12):954. https://doi.org/10.3390/toxics11120954
Chicago/Turabian StyleWei, Yuezhou, Yan Wu, and Xinpeng Wang. 2023. "Novel Adsorbents and Adsorption Methods for Pollutant Removal" Toxics 11, no. 12: 954. https://doi.org/10.3390/toxics11120954
APA StyleWei, Y., Wu, Y., & Wang, X. (2023). Novel Adsorbents and Adsorption Methods for Pollutant Removal. Toxics, 11(12), 954. https://doi.org/10.3390/toxics11120954