Heavy Metals Content in Selected Medicinal Plants Produced and Consumed in Serbia and Their Daily Intake in Herbal Infusions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Herbal Samples for Determination of Heavy Metals
2.2. The Method and Standards for Determination of Heavy Metals
2.3. The Risk Assessment of Toxic Metals Intake through Herbal Infusion
2.3.1. Daily Intakes (D) of Heavy Metals by Consuming 200 mL Herbal Infusion
2.3.2. The Estimated Daily Intake (EDI) of Heavy Metals Based on the Ingestion Rate of Herbal Infusion
2.3.3. Health Risk of Individual Toxic Metals through Intake of Herbal Infusion
2.3.4. The Total Risk of Multiple Toxic Metals through Intake of Herbal Infusion
3. Results and Discussion
3.1. ICP-OES Analysis
3.1.1. Cadmium and Chromium
3.1.2. Nickel
3.1.3. Lead
3.1.4. Mercury
3.2. Analysis and Limits of Daily Toxic Metals Intake
3.2.1. Analysis and Limits of Daily Toxic Metals Intake by Consuming 200 mL Herbal Infusion
3.2.2. Analysis and Limits of Estimated Daily Intake (EDI) of Heavy Metals Based on the Ingestion Rate of the Herbal Infusion
3.2.3. Analysis of the Health Risk of the Individual Toxic Metal through Intake of Herbal Infusions
3.2.4. Analysis of Total Risk of Multiple Toxic Metals through Intake of Herbal Infusions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niketić, M.; Tomović, G.; Stevanović, V. Toward the annotated checklist of vascular flora of Serbia–objectives, methodology and challenges. Biol. Serbica 2018, 40, 4–15. [Google Scholar] [CrossRef]
- Dajić Stevanović, Z.; Petrović, M.; Aćić, S. Ethnobotanical knowledge and traditional use of plants in Serbia in relation to sustainable rural development. Ch. 12; In Ethnobotany and Biocultural Diversities in the Balkans; Pieroni, A., Quave, C.L., Eds.; Perspectives on Sustainable Rural Development and Reconciliation Publisher, Springer Science+Business Media: New York, NY, USA, 2014; pp. 229–252. [Google Scholar] [CrossRef]
- Fahad, S.M.; Abdin, M.J.; Hasan, M.M.; Rahman, M.O.; Islam, S.A.; Akramuzzaman, M.M.; Russell, M. Study of elemental profile of some medicinal plants of Bangladesh. J. Nucl. Part. Phys. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Bowen, H.J.M. Trace Elements in Biochemistry; Academic: London, UK, 1966; pp. 211–234. [Google Scholar]
- Soto-Jimenez, M.F. Trace element trophic transfer in aquatic food webs. Hidrobiológica 2011, 21, 239–248. [Google Scholar]
- Zhang, J.; Yang, R.; Chen, R.; Peng, Y.; Wen, X.; Gao, L. Accumulation of heavy metals in tea leaves and potential health risk assessment: A case study from Puan County, Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- European Food Safety Authority. Lead dietary exposure in the European population. EFSA J. 2012, 10, 2831–2859. [Google Scholar]
- European Food Safety Authority. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- European Food Safety Authority. Safety of chromium-enriched biomass of Yarrowia lipolytica as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2020, 18, 6005. [Google Scholar]
- European Food Safety Authority. Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, 6268. [Google Scholar]
- Dghaim, R.; Al Khatib, S.; Rasool, H.; Ali Khan, M. Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. J. Environ. Public Health 2015, 2015, 973878. [Google Scholar] [CrossRef] [Green Version]
- International Agency for Research on Cancer (IARC). Available online: https://www.iarc.who.int/ (accessed on 20 September 2022).
- Mirosławski, J.; Paukszto, A. Determination of the cadmium, chromium, nickel, and lead ions relays in selected polish medicinal plants and their infusion. Biol. Trace Elem. Res. 2018, 182, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Başgel, S.; Erdemoğlu, S.B. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci. Total Environ. 2006, 359, 82–89. [Google Scholar] [CrossRef]
- Kalny, P.; Fijałek, Z.; Daszczuk, A.; Ostapczuk, P. Determination of selected microelements in polish herbs and their infusions. Sci. Total Environ. 2007, 381, 99–104. [Google Scholar] [CrossRef]
- Suchacz, B.; Wesolowski, M. The analysis of heavy metals content in herbal infusions. Cent. Eur. J. Med. 2012, 7, 457–464. [Google Scholar] [CrossRef]
- Muntean, N.; Muntean, E.; Creta, C.; Duda, M. Heavy metals in some commercial herbal teas. ProEnvironment/ProMediu 2013, 6, 591–594. [Google Scholar]
- Ražić, S.; Kuntić, V. Diverse elements in herbal tea products consumed in Serbia using inductively coupled plasma mass spectrometry. Int. J. Food Prop. 2013, 16, 1–8. [Google Scholar] [CrossRef]
- Mihaljev, Z.; Zivkov-Balos, M.; Cupić, Z.; Jaksić, S. Levels of some microelements and essential heavy metals in herbal teas in Serbia. Acta Pol. Pharm. 2014, 71, 385–391. [Google Scholar]
- Mokgalaka, N.S.; McCrindle, R.I.; Botha, B.M. Multielement analysis of tea leaves by inductively coupled plasma optical emission spectrometry using slurry nebulisation. J. Anal. At. Spectrom. 2004, 19, 1375–1378. [Google Scholar] [CrossRef]
- Kandić, I.; Čeliković, I.; Kandić, A.; Gavrilović, M.; Janaćković, P. Assessment of annual effective dose due to ingestion of 137Cs, 40K and 210Pb in medicinal herbs from Serbia and from Montenegro. In Proceedings of the 27th International Conference Ecological Truth and Environmental Research, Bor Lake, Serbia, 18–21 June 2019. [Google Scholar]
- Kandić, I.; Kandić, A.; Čeliković, I.; Gavrilović, M.; Janaćković, P. Activity concentrations of 137Cs, 40K, and 210Pb radionuclides in selected medicinal herbs from Central Serbia and their effective dose due to ingestion. Sci. Total Environ. 2020, 701, 134554. [Google Scholar] [CrossRef]
- Republic of Serbia. Rulebook on the Quality of Tea, Herbal Tea, and Their Products of the Republic of Serbia, 4/2012; Official Gazette of the Republic of Serbia: Belgrade, Serbia, 2012.
- Republic of Serbia. Law Regulating Food Safety of the Republic of Serbia 41/2009 and 17/2019; Official Gazette of the Republic of Serbia: Belgrade, Serbia, 2019.
- Ababneh, F.A. The hazard content of cadmium, lead, and other trace elements in some medicinal herbs and their water infusions. Int. J. Anal. Chem. 2017, 2017, 6971916. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Li, Y.C.; Peng, Y.; Wen, X.; Ni, X. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicol. Environ. Saf. 2020, 195, 110475. [Google Scholar] [CrossRef] [PubMed]
- Krstić, M.; Stupar, M.; Đukić-Ćosić, D.; Baralić, K.; Mračević, S.Đ. Health risk assessment of toxic metals and toxigenic fungi in commercial herbal tea samples from Belgrade, Serbia. J. Food Compos. Anal. 2021, 104, 104159. [Google Scholar] [CrossRef]
- Peng, C.Y.; Zhu, X.H.; Hou, R.Y.; Ge, G.F.; Hua, R.M.; Wan, X.C.; Cai, H.M. Aluminum and Heavy Metal Accumulation in Tea Leaves: An Interplay of Environmental and Plant Factors and an Assessment of Exposure Risks to Consumers. J. Food Sci. 2018, 83, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.M.; Das, S.; da Silva, E.B.; Gao, P.; Gress, J.; Liu, Y.; Ma, L.Q. Metal concentrations in traditional and herbal teas and their potential risks to human health. Sci. Total Environ. 2018, 633, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Popović, S.; Pantelić, A.; Milovanović, Z.; Milinkov, J.; Vidović, M. Analysis of Tea for Metals by Flame and Graphite Furnace Atomic Absorption Spectrometry with Multivariate Analysis. Anal. Lett. 2017, 50, 2619–2633. [Google Scholar] [CrossRef] [Green Version]
- Tokalıoğlu, Ş. Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 2012, 134, 2504–2508. [Google Scholar] [CrossRef]
- Cheng, S. Heavy metals in plants and phytoremediation. Environ. Sci. Pollut. Res. 2003, 10, 335–340. [Google Scholar] [CrossRef]
- Yang, G.L.; Meng-Meng, Z.; Ai-Juan, T.; Yu-Ting, L.; Dan, F.; Shi-Ming, L. Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. Biology 2021, 10, 544. [Google Scholar] [CrossRef]
- Ezeabara, C.A.; Okanume, O.E.; Emeka, A.N.; Okeke, C.U.; Mbaekwe, E.I. Heavy metal contamination of herbal drugs: Implication for human health-a review. Int. J. Trop. Dis. Health 2014, 4, 1044–1058. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar]
- Perić-Grujić, A.A.; Pocajt, V.V.; Ristić, M.Đ. Određivanje sadržaja teških metala u čajevima sa tržišta u Beogradu, Srbija. Hem. Ind. 2009, 63, 433–436. [Google Scholar]
- World Health Organization. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. 2007. Available online: https://apps.who.int/iris/handle/10665/43510 (accessed on 30 January 2023).
- Đurović, D.; Bulat, Z.; Buha, A.; Matović, V. Cadmium, mercury and lead in Hypericum perforatum L. collected in Western Serbia. In Proceedings of the 16th International Conference on Heavy Metals in the Environment, Rome, Italy, 23–27 September 2012; Volume 1. [Google Scholar]
- Sembratowicz, I.; Rusinek-Prystupa, E. Effects of Brewing Time on the Content of Minerals in Infusions of Medicinal Herbs. Pol. J. Environ. Stud. 2014, 23, 177–186. [Google Scholar]
- Karak, T.; Bhagat, R.M. Trace elements in tea leaves, made tea and tea infusion: A review. Food research international. 2010, 43, 2234–2252. [Google Scholar] [CrossRef]
- Korfali, S.; Mroueh, M.; Al-Zein, M.; Salem, R. Metal Concentration in Commonly Used Medicinal Herbs and Infusion by Lebanese Population: Health Impact. J. Food Res. 2013, 2, 70. [Google Scholar] [CrossRef] [Green Version]
- Đukić-Ćosić, D.; Stanojević, A.; Djekić-Ivanković, M.; Ćurčić, M.; Plamenac-Bulat, Z.; Antonijević, B.; Matović, V. Cadmium content in Hypericum perforatum L. and Thymus serpyllum L. from localities of the mountains Rtanj and Ozren. Vojnosanit. Pregl. 2011, 68, 930–934. [Google Scholar] [CrossRef]
- Sharma, A.; Kapoor, D.; Wang, J.; Shahzad, B.; Kumar, V.; Bali, A.S.; Jasrotia, S.; Zheng, B.; Yuan, H.; Yan, D. Chromium bioaccumulation and its impacts on plants: An overview. Plants 2020, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Ration, FL, USA; Taylor and Francis Group: London, UK, 2011. [Google Scholar] [CrossRef]
- Zhong, W.S.; Ren, T.; Zhao, L.J. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. J. Food Drug Anal. 2016, 24, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Alhusban, A.A.; Ata, S.A.; Shraim, S.A. The Safety Assessment of Toxic Metals in Commonly Used Pharmaceutical Herbal Products and Traditional Herbs for Infants in Jordanian Market. Biol. Trace Elem. Res. 2019, 187, 307–315. [Google Scholar] [CrossRef]
- Caldas, E.D.; Machado, L.L. Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem. Toxicol. 2004, 42, 599–603. [Google Scholar] [CrossRef]
- Kaličanin, B.; Velimirović, D. The content of lead in herbal drugs and tea samples. Open Life Sci. 2013, 8, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Ordak, M.; Wesolowski, M.; Radecka, I.; Muszynska, E.; Bujalska-Zazdrozny, M. Seasonal variations of mercury levels in selected medicinal plants originating from Poland. Biol. Trace Elem. Res. 2016, 173, 514–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenka, M.; Panda, K.K.; Panda, B.B. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. IV. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India. Arch. Environ. Contam. Toxicol. 1992, 22, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Dushenkov, V.; Kumar, P.N.; Motto, H.; Raskin, I. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 1995, 29, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Blazka, M.E.; Shaikh, Z.A. Cadmium and mercury accumulation in rat hepatocytes: Interactions with other metal ions. Toxicol. Appl. Pharmacol. 1992, 113, 118–125. [Google Scholar] [CrossRef]
- European Food Safety Authority. Collate the literature on toxicity data on mercury in experimental animals and humans (Part I–Data on organic mercury). EFSA 2012, 9, 297E. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Feng, X.; Wang, A.; Li, X.; Wang, D.; Fan, L. Mercury accumulation in vegetable Houttuynia cordata Thunb. from two different geological areas in southwest China and implications for human consumption. Sci. Rep. 2021, 11, 52. [Google Scholar] [CrossRef]
- Natasha, M.; Shahid, S.; Khalid, I.; Bibi, J.; Bundschuh, N.; Khan Niazi, C.; Dumat, C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Sci. Total Environ. 2020, 711, 134749. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, C.; Liu, H.; Li, P.; Hu, X.; Wang, H.; Chan, H.M.; Feng, X. Impact of low-level mercury exposure on intelligence quotient in children via rice consumption. Ecotoxicol. Environ. Saf. 2020, 202, 110870. [Google Scholar] [CrossRef]
- Gustin, K.; Barman, M.; Stråvik, M.; Levi, M.; Englund-Ögge, L.; Murray, F.; Jacobsson, B.; Sanberg, A.S.; Sandin, A.; Wold, A.E.; et al. Low-level maternal exposure to cadmium, lead, and mercury and birth outcomes in a Swedish prospective birth-cohort. Environ. Pollut. 2020, 265, 114986. [Google Scholar] [CrossRef]
- Gallaher, R.N.; Gallaher, K.; Marshall, A.J.; Marshall, A.C. Mineral analysis of ten types of commercially available tea. J. Food Compos. Anal. 2006, 19, S53–S57. [Google Scholar] [CrossRef]
- Szymczycha-Madeja, A.; Welna, M.; Pohl, P. Elemental analysis of teas and their infusions by spectrometric methods. TrAC Trends Anal. Chem. 2012, 35, 165–181. [Google Scholar] [CrossRef]
- Cai, L.; Wang, Q.; Luo, J.; Chen, L.; Zhu, R.; Wang, S.; Tang, C. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Sci. Total Environ. 2019, 650, 725–733. [Google Scholar] [CrossRef]
- Flora, S.D.; Camoirano, A.; Bagnasco, M.; Bennicelli, C.; Corbett, G.E.; Kerge, D.B. Estimates of the chromium(VI) reducing capacity in human body compartments as a mechanism for attenuating its potential toxicity and carcinogenicity. Carcinogenesis 1997, 18, 531–537. [Google Scholar] [CrossRef]
S. No. | Common English Name | Latin Name | Family Affiliation | Part of the Plant Investigated |
---|---|---|---|---|
1 | Chamomile | Matricaria chamomilla L. | Asteraceae | Inflorescences |
2 | Coltsfoot | Tussilago farfara L. | Asteraceae | Leaf |
3 | Marigold | Calendula officinalis L. | Asteraceae | Inflorescences |
4 | St John’s wort | Hypericum perforatum L. | Asteraceae | Leaf and flower |
5 | Wormwood | Artemisia absinthium L. | Asteraceae | Leaf |
6 | Comfrey | Symphytum officinale L. | Boraginaceae | Root |
7 | Common Juniper | Juniperus communis L. | Cupressaceae | Fruit |
8 | Blueberry | Vaccinium myrtillus L. | Ericaceae | Leaf |
9 | Linden | Tilia tomentosa L. | Malvaceae | Inflorescences |
10 | Common nettle | Urtica dioica L. | Urticaceae | Leaf |
11 | Lemon balm | Melissa officinalis L. | Lamiaceae | Leaf |
12 | Thyme | Thymus serpyllum L. | Lamiaceae | Leaf and flower |
13 | Winter savory | Satureja montana L. | Lamiaceae | Leaf |
14 | Dog rose | Rosa canina L. | Rosaceae | Fruit |
S. No. | Common English Name | Location | Cd | Cr | Ni | Hg | Pb |
---|---|---|---|---|---|---|---|
1 | Chamomile | Zlatar | LOD | 0.56 ± 0.02 | 5.21 ± 0.03 | LOD | 1.6 ± 0.1 |
Sokobanja | LOD | 1.1 ± 0.2 | 2.4 ± 0.5 | LOD | LOD | ||
Kopaonik | LOD | 0.41 ± 0.03 | 3.0 ± 0.1 | LOD | 1.0 ± 0.4 | ||
2 | Coltsfoot | Zlatar | LOD | 0.28 ± 0.04 | 1.27 ± 0.03 | LOD | 1.8 ± 0.4 |
Sokobanja | 0.62 ± 0.02 | 0.46 ± 0.03 | 2.5 ± 0.1 | LOD | 1.5 ± 0.2 | ||
Kopaonik | 0.25 ± 0.01 | 1.1 ± 0.1 | 2.0 ± 0.1 | LOD | 1.6 ± 0.2 | ||
3 | Marigold | Zlatar | LOD | 0.34 ± 0.01 | LOD | LOD | 2.9 ± 0.1 |
Sokobanja | 0.24 ± 0.03 | 0.50 ± 0.1 | 3.2 ± 0.2 | LOD | 3.6 ± 0.2 | ||
Kopaonik | 0.09 ± 0.01 | 2.7 ± 0.1 | 5.1 ± 0.2 | LOD | 2.3 ± 0.2 | ||
4 | St John’s wort | Zlatar | 2.00 ± 0.01 | 0.42 ± 0.03 | 5.0 ± 0.1 | LOD | LOD |
Sokobanja | 0.35 ± 0.03 | 0.4 ± 0.1 | LOD | LOD | 5.3 ± 0.2 | ||
Kopaonik | 0.83 ± 0.03 | LOD | 6.2 ± 0.1 | LOD | LOD | ||
5 | Wormwood | Zlatar | 0.17 ± 0.01 | LOD | 1.5 ± 0.1 | LOD | 2.44 ± 0.05 |
Sokobanja | 0.16 ± 0.01 | LOD | 2.1 ± 0.1 | LOD | 2.0 ± 0.2 | ||
Kopaonik | 0.30 ± 0.03 | 0.41 ± 0.02 | 2.4 ± 0.1 | LOD | 3.4 ± 0.4 | ||
6 | Comfrey | Zlatar | 0.07 ± 0.01 | 1.06 ± 0.03 | 2.2 ± 0.1 | LOD | LOD |
Sokobanja | 0.22 ± 0.02 | 2.4 ± 0.1 | 4.34 ± 0.05 | LOD | 2.5 ± 0.2 | ||
Kopaonik | 0.25 ± 0.02 | 1.43 ± 0.03 | 4.6 ± 0.1 | LOD | 2.1 | ||
7 | Juniper | Zlatar | 0.23 ± 0.01 | LOD | 4.9 ± 0.2 | LOD | 3.5 ± 0.1 |
Sokobanja | LOD | LOD | 2.02 ± 0.04 | LOD | 10.3 ± 0.4 | ||
Kopaonik | 0.19 ± 0.03 | 0.40 ± 0.1 | 1.26 ± 0.01 | LOD | LOD | ||
8 | Blueberry | Zlatar | LOD | 0.50 ± 0.1 | 2.1 ± 0.1 | LOD | 2.06 ± 0.1 |
Sokobanja | LOD | 0.67 ± 0.02 | 2.2 ± 0.1 | LOD | 2.3 ± 0.1 | ||
Kopaonik | LOD | 2.8 ± 0.1 | 2.7 ± 0.2 | LOD | 44.5 ± 2.3 | ||
9 | Linden | Zlatar | LOD | 0.65 ± 0.2 | LOD | LOD | LOD |
Sokobanja | 0.08 ± 0.01 | 0.3 ± 0.1 | 1.7 ± 0.1 | LOD | 1.4 ± 0.4 | ||
Kopaonik | 0.05 ± 0.01 | LOD | LOD | LOD | 2.4 ± 0.3 | ||
10 | Common nettle | Zlatar | LOD | 0.34 ± 0.03 | LOD | LOD | 1.0 ± 0.1 |
Sokobanja | LOD | 1.0 ± 0.03 | LOD | LOD | LOD | ||
Kopaonik | LOD | 0.57 ± 0.06 | LOD | LOD | 2.0 ± 0.1 | ||
11 | Lemon balm | Zlatar | LOD | 0.80 ± 0.1 | 2.6 ± 0.1 | LOD | 4.3 ± 0.2 |
Sokobanja | 0.17 ± 0.01 | 12.1 ± 0.6 | 3.7 ± 0.2 | LOD | 6.0 ± 0.4 | ||
Kopaonik | 0.20 ± 0.02 | 0.31 ± 0.03 | 4.0 ± 0.3 | LOD | 3.0 ± 0.1 | ||
12 | Thyme | Zlatar | 2.72 ± 0.03 | 1.32 ± 0.04 | 7.74 ± 0.02 | LOD | 49 ± 0.4 |
Sokobanja | LOD | 0.46 ± 0.03 | LOD | LOD | 4.0 ± 0.1 | ||
Kopaonik | LOD | 3.1 ± 0.1 | LOD | LOD | 22.2 ± 0.4 | ||
13 | Winter savory | Zlatar | 0.21 ± 0.02 | 4.8 ± 0.2 | 12.2 ± 0.6 | LOD | 6.0 ± 0.3 |
Sokobanja | LOD | 1.7 ± 0.3 | 3.7 ± 0.8 | LOD | LOD | ||
Kopaonik | LOD | LOD | 1.6 ± 0.1 | LOD | 6.2 ± 0.1 | ||
14 | Dog rose | Zlatar | 0.19 ± 0.01 | LOD | 1.42 ± 0.01 | LOD | 24 ± 0.2 |
Sokobanja | 0.16 ± 0.01 | LOD | 1.0 ± 0.1 | LOD | 7.0 ± 0.3 | ||
Kopaonik | 0.16 ± 0.01 | LOD | 1.4 ± 0.1 | LOD | 0.6 ± 0.2 |
Lead (Pb) | Cadmium (Cd) | Chromium (Cr) | Mercury (Hg) | Total Toxic Metals as Lead | ||
---|---|---|---|---|---|---|
For Herbal Medicines: | ||||||
Country | Type of product | |||||
Canada | Herbal material [mg/kg] | 10 | 0.3 | 2 | 0.2 | / |
Finished products [mg/day] | 0.02 | 0.006 | 0.02 | 0.02 | / | |
China | Herbal material [mg/kg] | 10 | 1 | / | 0.5 | 20 |
Malaysia | Finished herbal products [mg/kg] | 10 | / | / | 0.5 | / |
Republic of Korea | Herbal material [mg/kg] | / | / | / | / | 30 |
Singapore | Finished herbal products [mg/kg] | 20 | / | / | 0.5 | / |
Thailand | Herbal material and finished herbal products [mg/kg] | 10 | 0.3 | / | / | / |
WHO recommendation [mg/kg] | 10 | 0.3 | / | / | / | |
For other herbal products: | ||||||
National Sanitation Foundation Draft Proposal (raw dietary supplements) [mg/kg] | 10 | 0.3 | 2 | / | / | |
National Sanitation Foundation Draft Proposal (finished dietary supplements) [mg/day] | 0.02 | 0.006 | 0.02 | 0.02 |
S. No. | Common English Name | Location | Cd | Cr | Ni | Hg | Pb |
---|---|---|---|---|---|---|---|
[µg/day] | |||||||
1 | Chamomile | Zlatar | - | 0.168 | 3.230 | - | 0.640 |
Sokobanja | - | 0.330 | 1.488 | - | - | ||
Kopaonik | - | 0.123 | 1.860 | - | 0.400 | ||
2 | Coltsfoot | Zlatar | - | 0.084 | 0.787 | - | 0.720 |
Sokobanja | 0.174 | 0.138 | 1.550 | - | 0.600 | ||
Kopaonik | 0.070 | 0.330 | 1.240 | - | 0.640 | ||
3 | Marigold | Zlatar | - | 0.102 | - | - | 1.160 |
Sokobanja | 0.067 | 0.150 | 1.984 | - | 1.440 | ||
Kopaonik | 0.025 | 0.810 | 3.162 | - | 0.920 | ||
4 | St John’s wort | Zlatar | 0.560 | 0.126 | 3.100 | - | - |
Sokobanja | 0.098 | 0.120 | - | - | 2.120 | ||
Kopaonik | 0.232 | - | 3.844 | - | - | ||
5 | Wormwood | Zlatar | 0.048 | - | 0.930 | - | 0.976 |
Sokobanja | 0.045 | - | 1.302 | - | 0.800 | ||
Kopaonik | 0.084 | 0.123 | 1.488 | - | 1.360 | ||
6 | Comfrey | Zlatar | 0.020 | 0.318 | 1.364 | - | |
Sokobanja | 0.062 | 0.720 | 2.691 | - | 1.000 | ||
Kopaonik | 0.070 | 0.429 | 2.852 | - | 0.840 | ||
7 | Juniper | Zlatar | 0.064 | - | 3.038 | - | 1.400 |
Sokobanja | - | - | 1.252 | - | 4.120 | ||
Kopaonik | 0.053 | 0.120 | 0.781 | - | - | ||
8 | Blueberry | Zlatar | - | 0.150 | 1.302 | - | 0.824 |
Sokobanja | - | 0.201 | 1.364 | - | 0.920 | ||
Kopaonik | - | 0.840 | 1.674 | - | 17.80 | ||
9 | Linden | Zlatar | - | 0.195 | - | - | - |
Sokobanja | 0.022 | 0.090 | 1.054 | - | 0.560 | ||
Kopaonik | 0.014 | - | - | - | 0.960 | ||
10 | Common nettle | Zlatar | - | 0.102 | - | - | 0.400 |
Sokobanja | - | 0.300 | - | - | - | ||
Kopaonik | - | 0.171 | - | - | 0.800 | ||
11 | Lemon balm | Zlatar | - | 0.240 | 1.612 | - | 1.720 |
Sokobanja | 0.048 | 3.630 | 2.294 | - | 2.400 | ||
Kopaonik | 0.056 | 0.093 | 2.480 | - | 1.200 | ||
12 | Thyme | Zlatar | 0.762 | 0.396 | 4.799 | - | 19.60 |
Sokobanja | - | 0.138 | - | - | 1.600 | ||
Kopaonik | - | 0.930 | - | - | 8.880 | ||
13 | Winter savory | Zlatar | 0.059 | 1.44 | 7.564 | - | 2.400 |
Sokobanja | - | 0.510 | 2.294 | - | - | ||
Kopaonik | - | - | 0.992 | - | 2.480 | ||
14 | Dog rose | Zlatar | 0.053 | - | 0.880 | - | 9.600 |
Sokobanja | 0.045 | - | 0.620 | - | 2.800 | ||
Kopaonik | 0.045 | - | 0.868 | - | 0.240 |
Heavy Metal | Limit [µg/day] | Estimated [µg/day] | Herb | Location |
---|---|---|---|---|
Cadmium (Cd) | 6 | 0.762 | Thyme | Zlatar |
Chromium (Cr) | 20 | 3.630 | Lemon balm | Sokobanja |
Nickel (Ni) | 20 | 7.564 | Winter savory | Zlatar |
Mercury (Hg) | 20 | LOD | All herbs | All three |
Lead (Pb) | 20 | 19.600 | Thyme | Zlatar |
S. No. | Common English Name | Location | Cd | Cr | Ni | Hg | Pb |
---|---|---|---|---|---|---|---|
[mg/kg/day] | |||||||
1 | Chamomile | Zlatar | 0 | 1.2 × 10−5 | 6.7 × 10−4 | 0 | 2.2 × 10−5 |
Sokobanja | 0 | 2.4 × 10−5 | 3.1 × 10−4 | 0 | 0 | ||
Kopaonik | 0 | 8.9 × 10−6 | 3.9 × 10−4 | 0 | 1.4 × 10−5 | ||
2 | Coltsfoot | Zlatar | 0 | 6.1 × 10−6 | 1.6 × 10−4 | 0 | 2.4 × 10−5 |
Sokobanja | 1.7 × 10−5 | 1.0 × 10−5 | 3.2 × 10−4 | 0 | 2.0 × 10−5 | ||
Kopaonik | 6.7 × 10−6 | 2.4 × 10−5 | 2.6 × 10−4 | 0 | 2.2 × 10−5 | ||
3 | Marigold | Zlatar | 0 | 7.4 × 10−6 | 0 | 0 | 3.9 × 10−5 |
Sokobanja | 6.5 × 10−6 | 1.1 × 10−5 | 4.1 × 10−4 | 0 | 4.8 × 10−5 | ||
Kopaonik | 2.4 × 10−6 | 5.9 × 10−5 | 6.6 × 10−4 | 0 | 3.1 × 10−5 | ||
4 | St John’s wort | Zlatar | 5.4 × 10−5 | 9.1 × 10−6 | 6.4 × 10−4 | 0 | 0 |
Sokobanja | 9.4 × 10−6 | 8.7 × 10−6 | 0 | 0 | 7.2 × 10−5 | ||
Kopaonik | 2.2 × 10−5 | 0 | 8.0 × 10−4 | 0 | 0 | ||
5 | Wormwood | Zlatar | 4.6 × 10−6 | 0 | 1.9 × 10−4 | 0 | 3.3 × 10−5 |
Sokobanja | 4.3 × 10−6 | 0 | 2.7 × 10−4 | 0 | 2.7 × 10−5 | ||
Kopaonik | 8.1 × 10−6 | 8.9 × 10−6 | 3.1 × 10−4 | 0 | 4.6 × 10−5 | ||
6 | Comfrey | Zlatar | 1.9 × 10−6 | 2.3 × 10−5 | 2.8 × 10−4 | 0 | 0 |
Sokobanja | 5.9 × 10−6 | 5.2 × 10−5 | 5.6 × 10−4 | 0 | 3.3 × 10−5 | ||
Kopaonik | 6.7 × 10−6 | 3.1 × 10−5 | 5.9 × 10−4 | 0 | 2.8 × 10−5 | ||
7 | Juniper | Zlatar | 6.2 × 10−6 | 0 | 6.3 × 10−4 | 0 | 4.7 × 10−5 |
Sokobanja | 0 | 0 | 2.6 × 10−4 | 0 | 1.4 × 10−4 | ||
Kopaonik | 5.1 × 10−6 | 8.7 × 10−6 | 1.6 × 10−4 | 0 | 0 | ||
8 | Blueberry | Zlatar | 0 | 1.1 × 10−5 | 2.7 × 10−4 | 0 | 2.8 × 10−5 |
Sokobanja | 0 | 1.5 × 10−5 | 2.8 × 10−4 | 0 | 3.1 × 10−5 | ||
Kopaonik | 0 | 6.1 × 10−5 | 3.5 × 10−4 | 0 | 6.0 × 10−4 | ||
9 | Linden | Zlatar | 0 | 1.4 × 10−5 | 0 | 0 | 0 |
Sokobanja | 2.2 × 10−6 | 6.5 × 10−6 | 2.2 × 10−4 | 0 | 1.4 × 10−5 | ||
Kopaonik | 1.3 × 10−6 | 0 | 0 | 0 | 3.2 × 10−5 | ||
10 | Common nettle | Zlatar | 0 | 7.4 × 10−6 | 0 | 0 | 1.4 × 10−5 |
Sokobanja | 0 | 2.2 × 10−5 | 0 | 0 | 0 | ||
Kopaonik | 0 | 1.2 × 10−5 | 0 | 0 | 2.7 × 10−5 | ||
11 | Lemon balm | Zlatar | 0 | 1.7 × 10−5 | 3.3 × 10−4 | 0 | 5.8 × 10−5 |
Sokobanja | 4.6 × 10−6 | 2.6 × 10−4 | 4.8 × 10−4 | 0 | 8.1 × 10−5 | ||
Kopaonik | 5.4 × 10−6 | 6.7 × 10−6 | 5.1 × 10−4 | 0 | 4.1 × 10−5 | ||
12 | Thyme | Zlatar | 7.3 × 10−5 | 2.9 × 10−5 | 1.0 × 10−3 | 0 | 6.6 × 10−4 |
Sokobanja | 0 | 1.0 × 10−5 | 0 | 0 | 5.4 × 10−5 | ||
Kopaonik | 0 | 6.7 × 10−5 | 0 | 0 | 3.0 × 10−4 | ||
13 | Winter savory | Zlatar | 5.7 × 10−6 | 1.0 × 10−4 | 1.6 × 10−3 | 0 | 8.1 × 10−5 |
Sokobanja | 0 | 3.7 × 10−5 | 4.8 × 10−4 | 0 | 0 | ||
Kopaonik | 0 | 0 | 2.1 × 10−4 | 0 | 8.4 × 10−5 | ||
14 | Dog rose | Zlatar | 5.1 × 10−6 | 0 | 1.8 × 10−4 | 0 | 3.4 × 10−4 |
Sokobanja | 4.3 × 10−6 | 0 | 1.3 × 10−4 | 0 | 9.4 × 10−5 | ||
Kopaonik | 4.3 × 10−6 | 0 | 1.8 × 10−4 | 0 | 8.1 × 10−6 |
S. No. | Common English Name | Location | Target Hazard Quotient (THQ) | Hazard Index (HI) | ||||
---|---|---|---|---|---|---|---|---|
Cd | Cr | Ni | Hg | Pb | ||||
1 | Chamomile | Zlatar | 0 | 8.1 × 10−6 | 3.3 × 10−2 | 0 | 1.5 × 10−2 | 4.8 × 10−2 |
Sokobanja | 0 | 1.6 × 10−5 | 1.6 × 10−2 | 0 | 0 | 1.6 × 10−2 | ||
Kopaonik | 0 | 5.9 × 10−6 | 2.0 × 10−2 | 0 | 9.0 × 10−3 | 2.9 × 10−2 | ||
2 | Coltsfoot | Zlatar | 0 | 4.1 × 10−6 | 8.0 × 10−3 | 0 | 1.6 × 10−2 | 2.4 × 10−2 |
Sokobanja | 3.4 × 10−2 | 6.7 × 10−6 | 1.6 × 10−2 | 0 | 1.3 × 10−2 | 6.3 × 10−2 | ||
Kopaonik | 1.3 × 10−2 | 1.6 × 10−5 | 1.3 × 10−2 | 0 | 1.5 × 10−2 | 4.1 × 10−2 | ||
3 | Marigold | Zlatar | 0 | 4.9 × 10−6 | 0 | 0 | 2.6 × 10−2 | 2.6 × 10−2 |
Sokobanja | 1.3 × 10−2 | 7.3 × 10−6 | 2.1 × 10−2 | 0 | 3.2 × 10−2 | 6.6 × 10−2 | ||
Kopaonik | 4.9 × 10−3 | 3.9 × 10−5 | 3.3 × 10−2 | 0 | 2.1 × 10−2 | 5.8 × 10−2 | ||
4 | St John’s wort | Zlatar | 0.108 | 6.1 × 10−6 | 3.2 × 10−2 | 0 | 0 | 0.14 |
Sokobanja | 1.9 × 10−2 | 5.8 × 10−6 | 0 | 0 | 4.8 × 10−2 | 6.7 × 10−2 | ||
Kopaonik | 4.4 × 10−2 | 0 | 4.0 × 10−2 | 0 | 0 | 8.4 × 10−2 | ||
5 | Wormwood | Zlatar | 9.2 × 10−3 | 0 | 9.5 × 10−3 | 0 | 2.2 × 10−2 | 4.1 × 10−2 |
Sokobanja | 8.6 × 10−3 | 0 | 1.4 × 10−2 | 0 | 1.4 × 10−2 | 3.7 × 10−2 | ||
Kopaonik | 1.6 × 10−2 | 5.9 × 10−6 | 1.6 × 10−2 | 0 | 3.3 × 10−2 | 6.5 × 10−2 | ||
6 | Comfrey | Zlatar | 3.2 × 10−3 | 1.5 × 10−5 | 1.4 × 10−2 | 0 | 0 | 1.7 × 10−2 |
Sokobanja | 1.2 × 10−2 | 3.5 × 10−5 | 2.8 × 10−2 | 0 | 2.2 × 10−2 | 6.2 × 10−2 | ||
Kopaonik | 1.3 × 10−2 | 2.1 × 10−5 | 3.0 × 10−2 | 0 | 1.9 × 10−2 | 6.2 × 10−2 | ||
7 | Juniper | Zlatar | 1.2 × 10−2 | 0 | 3.2 × 10−2 | 0 | 3.1 × 10−2 | 7.5 × 10−2 |
Sokobanja | 0 | 0 | 1.3 × 10−2 | 0 | 9.0 × 10−3 | 2.2 × 10−2 | ||
Kopaonik | 1.0 × 10−2 | 5.8 × 10−6 | 8.0 × 10−3 | 0 | 0 | 1.8 × 10−2 | ||
8 | Blueberry | Zlatar | 0 | 7.3 × 10−6 | 1.4 × 10−2 | 0 | 1.9 × 10−2 | 3.3 × 10−2 |
Sokobanja | 0 | 1.0 × 10−5 | 1.4 × 10−2 | 0 | 2.1 × 10−2 | 3.5 × 10−2 | ||
Kopaonik | 0 | 4.1 × 10−5 | 1.8 × 10−2 | 0 | 4.0E−01 | 4.2 × 10−1 | ||
9 | Linden | Zlatar | 0 | 9.3 × 10−6 | 0 | 0 | 0 | 9.3 × 10−6 |
Sokobanja | 4.4 × 10−3 | 4.3 × 10−5 | 1.1 × 10−2 | 0 | 9.0 × 10−3 | 2.4 × 10−2 | ||
Kopaonik | 2.6 × 10−3 | 0 | 0 | 0 | 2.1 × 10−2 | 2.4 × 10−2 | ||
10 | Common nettle | Zlatar | 0 | 4.9 × 10−6 | 0 | 0 | 9.0 × 10−3 | 9.0 × 10−3 |
Sokobanja | 0 | 1.5 × 10−5 | 0 | 0 | 0 | 1.5 × 10−5 | ||
Kopaonik | 0 | 8.0 × 10−6 | 0 | 0 | 1.8 × 10−2 | 1.8 × 10−2 | ||
11 | Lemon balm | Zlatar | 0 | 1.1 × 10−5 | 1.7 × 10−2 | 0 | 3.9 × 10−2 | 5.6 × 10−2 |
Sokobanja | 9.2 × 10−3 | 1.7 × 10−4 | 2.4 × 10−2 | 0 | 5.4 × 10−2 | 8.7 × 10−2 | ||
Kopaonik | 1.1 × 10−2 | 4.5 × 10−6 | 2.6 × 10−2 | 0 | 2.7 × 10−2 | 6.4 × 10−2 | ||
12 | Thyme | Zlatar | 0.146 | 1.9 × 10−5 | 5.0 × 10−2 | 0 | 4.4 × 10−1 | 0.63 |
Sokobanja | 0 | 6.7 × 10−6 | 0 | 0 | 3.6 × 10−2 | 3.6 × 10−2 | ||
Kopaonik | 0 | 4.5 × 10−5 | 0 | 0 | 2.0 × 10−1 | 2.0 × 10−1 | ||
13 | Winter savory | Zlatar | 1.1 × 10−2 | 6.7 × 10−5 | 8.0 × 10−2 | 0 | 5.4 × 10−2 | 1.5 × 10−1 |
Sokobanja | 0 | 2.5 × 10−5 | 2.4 × 10−2 | 0 | 0 | 2.4 × 10−2 | ||
Kopaonik | 0 | 0 | 1.1 × 10−2 | 0 | 5.6 × 10−2 | 6.7 × 10−2 | ||
14 | Dog rose | Zlatar | 1.0 × 10−2 | 0 | 9.0 × 10−3 | 0 | 2.3 × 10−1 | 2.5 × 10−1 |
Sokobanja | 8.6 × 10−3 | 0 | 6.5 × 10−3 | 0 | 6.3 × 10−2 | 7.8 × 10−2 | ||
Kopaonik | 8.6 × 10−3 | 0 | 9.0 × 10−3 | 0 | 5.4 × 10−3 | 2.3 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandić, I.; Kragović, M.; Petrović, J.; Janaćković, P.; Gavrilović, M.; Momčilović, M.; Stojmenović, M. Heavy Metals Content in Selected Medicinal Plants Produced and Consumed in Serbia and Their Daily Intake in Herbal Infusions. Toxics 2023, 11, 198. https://doi.org/10.3390/toxics11020198
Kandić I, Kragović M, Petrović J, Janaćković P, Gavrilović M, Momčilović M, Stojmenović M. Heavy Metals Content in Selected Medicinal Plants Produced and Consumed in Serbia and Their Daily Intake in Herbal Infusions. Toxics. 2023; 11(2):198. https://doi.org/10.3390/toxics11020198
Chicago/Turabian StyleKandić, Irina, Milan Kragović, Jelena Petrović, Peđa Janaćković, Milan Gavrilović, Miloš Momčilović, and Marija Stojmenović. 2023. "Heavy Metals Content in Selected Medicinal Plants Produced and Consumed in Serbia and Their Daily Intake in Herbal Infusions" Toxics 11, no. 2: 198. https://doi.org/10.3390/toxics11020198
APA StyleKandić, I., Kragović, M., Petrović, J., Janaćković, P., Gavrilović, M., Momčilović, M., & Stojmenović, M. (2023). Heavy Metals Content in Selected Medicinal Plants Produced and Consumed in Serbia and Their Daily Intake in Herbal Infusions. Toxics, 11(2), 198. https://doi.org/10.3390/toxics11020198