Electronic Cigarette Use during Pregnancy: Is It Harmful?
Abstract
:1. Introduction
2. History of Tobacco Use and Associated Perinatal Outcomes
Adverse Outcomes Associated with Smoking | Chemicals | References |
Development of a chemical dependence/physical addiction | Nicotine | Wittenberg, Wolfman et al. (2020) [20] |
Alteration of glucose homeostasis and increased risk of developing diabetes mellitus | Nicotine | Kondo, Nakano et al. (2019), Maddatu, Anderson-Baucum et al. (2017), [16,17] |
Upregulation of inflammatory cytokines | General cigarette smoke | Kondo, Nakano et al. (2019) [16] |
Progression of tumor growth and metastasis | General cigarette smoke | Walser, Cui et al. (2008) [15] |
Development of Chronic Obstructive Pulmonary Disease (COPD) | General cigarette smoke | Reynolds, Cosio et al. (2006) [14] |
Endothelial dysfunction | General cigarette smoke | Kondo, Nakano et al. (2019) [16] |
Increased risk of hypertension | General cigarette smoke | Kondo, Nakano et al. (2019) [16] |
Increased risk of cardiovascular disease | General cigarette smoke | Kondo, Nakano et al. (2019) [16] |
Increased risk of lung cancer | General cigarette smoke | Walser, Cui et al. (2008), Warren and Cummings (2013) [12,15] |
Adverse perinatal outcomes associated with smoking | Chemicals | References |
Increased maternal cortisol levels resulting in increased stress | Nicotine, general cigarette smoke | Gould, Havard et al. (2020) [30] |
Infant cotinine levels reflect maternal cotinine levels | Nicotine | Pichini, Basagaña et al. (2000) [25] |
Increased risk of being overweight or obese during childhood | Nicotine | Holbrook (2016) [31] |
Increased risk of spontaneous abortion and premature birth | Nicotine, cadmium, lead, general cigarette smoke | Berlin, Heilbronner et al. (2010), Caserta, Graziano et al. (2013), Chelchowska, Ambroszkiewicz et al. (2013), Rzymski, Tomczyk et al. (2015) [24,32,33,34] |
High maternal levels of oxidative stress biomarker (F2PG2a) and the inflammation marker (sICAM) | General cigarette smoke | Perez, Mead et al. (2021) [23] |
Increased risk of fetus developing neurological, developmental, and endocrine disorders | Cadmium, lead, mercury | Caserta, Graziano et al. (2013) [34] |
Increased concentrations of heavy metals in breast milk | General cigarette smoke | Szukalska, Merritt et al. (2021) [26] |
Deceased infant systolic blood pressure (SBP) | Manganese, general cigarette smoke | Zhang, Liu et al. (2021) [35] |
Decreased infant birth measurements (low birth weight, reduced abdominal circumference, reduced femur length, and reduced head circumference) | Cadmium, lead, general cigarette smoke | Newnham, Patterson et al. (1990), Orlebeke, Knol et al. (1999), Caserta, Graziano et al. (2013), Abraham, Alramadhan et al. (2017), Quelhas, Kompala et al. (2018) [28,29,34,36,37] |
3. Current Knowledge on the Health Effects of E-Cigarette Use
Adverse Outcomes Associated with Vaping | Chemical | Reference |
Development of a chemical dependence/physical addiction | Nicotine | Marques, Piqueras et al. (2021), Dinardo and Rome (2019) [73,74] |
Increased incidence of mental illness | Nicotine | Becker, Arnold et al. (2020) [53] |
Altered cardiovascular functioning including increase blood pressure, heart rate, and contractility | Nicotine | Merecz-Sadowska, Sitarek et al. (2020) [51] |
Altered glucose homeostasis and increased risk of developing diabetes mellitus | Nicotine | Maddatu, Anderson-Baucum et al. (2017), Kondo, Nakano et al. (2019) [16,17] |
Immunosuppression and altered immune function | Nicotine | Gotts, Jordt et al. (2019) [41] |
Cardiovascular inflammation | Carbonyl compounds, ultrafine particles | Benowitz and Fraiman (2017), Glantz and Bareham (2018) [57,58] |
Endothelial dysfunction | Carbonyl compounds, flavoring compounds | Kennedy, van Schalkwyk et al. (2019) [75] |
Increased risk of myocardial infarction | General e-cigarette aerosol | Lippi, Favaloro et al. (2014) [76] |
Lung epithelial cell inflammation | General e-cigarette aerosol | Muthumalage, Lamb et al. (2019) [56] |
Small airway and alveoli injury | Propylene glycol, glycerol, flavoring compounds, ultrafine particles | Carter, Tucker et al. (2017), Ghosh, Coakley et al. (2018), Reidel, Radicioni et al. (2018), Viswam, Trotter et al. (2018), Chaumont, van de Borne et al. (2019) [60,61,62,63,64] |
Increased airway resistance | General e-cigarette aerosol | Honeycutt, Huerne et al. (2022) [55] |
Increased incidence of asthma | General e-cigarette aerosol | McConnell, Barrington-Trimis et al. (2017), Schweitzer, Wills et al. (2017) [77,78] |
Increased incidence of chronic bronchitis | General e-cigarette aerosol | McConnell, Barrington-Trimis et al. (2017) [77] |
EVALI | Vitamin-E acetate, general e-cigarette aerosol | Crotty Alexander, Ware et al. (2020), Krishnasamy, Hallowell et al. (2020) [40,79] |
4. Alternative Tobacco Product Use during Pregnancy and Potential Health Risks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, N.; McKelvey, K.; Halpern-Felsher, B. Popular Flavors Used in Alternative Tobacco Products Among Young Adults. J. Adolesc. Health 2019, 65, 306–308. [Google Scholar] [CrossRef]
- Popova, L.; Ling, P.M. Alternative tobacco product use and smoking cessation: A national study. Am. J. Public Health 2013, 103, 923–930. [Google Scholar] [CrossRef]
- Gilreath, T.D.; Leventhal, A.; Barrington-Trimis, J.L.; Unger, J.B.; Cruz, T.B.; Berhane, K.; Huh, J.; Urman, R.; Wang, K.; Howland, S.; et al. Patterns of Alternative Tobacco Product Use: Emergence of Hookah and E-cigarettes as Preferred Products Amongst Youth. J. Adolesc. Health 2016, 58, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelius, M.E.; Loretan, C.G.; Wang, T.W.; Jamal, A.; Homa, D.M. Tobacco product use among adults—United States, 2020. Morb. Mortal. Wkly. Rep. 2022, 71, 397. [Google Scholar] [CrossRef] [PubMed]
- Azimi, P.; Keshavarz, Z.; Lahaie Luna, M.; Cedeno Laurent, J.G.; Vallarino, J.; Christiani, D.C.; Allen, J.G. An Unrecognized Hazard in E-Cigarette Vapor: Preliminary Quantification of Methylglyoxal Formation from Propylene Glycol in E-Cigarettes. Int. J. Environ. Res. Public Health 2021, 18, 385. [Google Scholar] [CrossRef]
- Gentzke, A.S.; Wang, T.W.; Cornelius, M.; Park-Lee, E.; Ren, C.; Sawdey, M.D.; Cullen, K.A.; Loretan, C.; Jamal, A.; Homa, D.M. Tobacco Product Use and Associated Factors Among Middle and High School Students—National Youth Tobacco Survey, United States, 2021. MMWR Surveill. Summ. 2022, 71, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, N.R.; Day, K.D.; Payakachat, N.; Franks, A.M.; McCain, K.R.; Ragland, D. Use and Risk Perception of Electronic Nicotine Delivery Systems and Tobacco in Pregnancy. Womens Health Issues 2018, 28, 251–257. [Google Scholar] [CrossRef]
- Kurti, A.N.; Redner, R.; Lopez, A.A.; Keith, D.R.; Villanti, A.C.; Stanton, C.A.; Gaalema, D.E.; Bunn, J.Y.; Doogan, N.J.; Cepeda-Benito, A.; et al. Tobacco and nicotine delivery product use in a national sample of pregnant women. Prev. Med. 2017, 104, 50–56. [Google Scholar] [CrossRef]
- Whittington, J.R.; Simmons, P.M.; Phillips, A.M.; Gammill, S.K.; Cen, R.; Magann, E.F.; Cardenas, V.M. The Use of Electronic Cigarettes in Pregnancy: A Review of the Literature. Obstet. Gynecol. Surv. 2018, 73, 544–549. [Google Scholar] [CrossRef]
- Obisesan, O.H.; Osei, A.D.; Uddin, S.M.I.; Dzaye, O.; Cainzos-Achirica, M.; Mirbolouk, M.; Orimoloye, O.A.; Sharma, G.; Al Rifai, M.; Stokes, A.; et al. E-Cigarette Use Patterns and High-Risk Behaviors in Pregnancy: Behavioral Risk Factor Surveillance System, 2016-2018. Am. J. Prev. Med. 2020, 59, 187–195. [Google Scholar] [CrossRef]
- Liber, A.C.; Warner, K.E. Has Underreporting of Cigarette Consumption Changed Over Time? Estimates Derived From US National Health Surveillance Systems Between 1965 and 2015. Am. J. Epidemiol. 2017, 187, 113–119. [Google Scholar] [CrossRef]
- Warren, G.W.; Cummings, K.M. Tobacco and Lung Cancer: Risks, Trends, and Outcomes in Patients with Cancer. Am. Soc. Clin. Oncol. Educ. Book 2013, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Fowles, J.; Dybing, E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob. Control 2003, 12, 424–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, P.R.; Cosio, M.G.; Hoidal, J.R. Cigarette smoke-induced Egr-1 upregulates proinflammatory cytokines in pulmonary epithelial cells. Am. J. Respir. Cell Mol. Biol. 2006, 35, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Walser, T.; Cui, X.; Yanagawa, J.; Lee, J.M.; Heinrich, E.; Lee, G.; Sharma, S.; Dubinett, S.M. Smoking and lung cancer: The role of inflammation. Proc. Am. Thorac. Soc. 2008, 5, 811–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, T.; Nakano, Y.; Adachi, S.; Murohara, T. Effects of Tobacco Smoking on Cardiovascular Disease. Circ. J. 2019, 83, 1980–1985. [Google Scholar] [CrossRef] [Green Version]
- Maddatu, J.; Anderson-Baucum, E.; Evans-Molina, C. Smoking and the risk of type 2 diabetes. Transl. Res. 2017, 184, 101–107. [Google Scholar] [CrossRef]
- Talhout, R.; Schulz, T.; Florek, E.; van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef]
- Hajdusianek, W.; Zorawik, A.; Waliszewska-Prosol, M.; Poreba, R.; Gac, P. Tobacco and Nervous System Development and Function-New Findings 2015–2020. Brain Sci 2021, 11, 797. [Google Scholar] [CrossRef]
- Wittenberg, R.E.; Wolfman, S.L.; De Biasi, M.; Dani, J.A. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 2020, 177, 108256. [Google Scholar] [CrossRef]
- He, H.; He, M.M.; Wang, H.; Qiu, W.; Liu, L.; Long, L.; Shen, Q.; Zhang, S.; Qin, S.; Lu, Z.; et al. In Utero and Childhood/Adolescence Exposure to Tobacco Smoke, Genetic Risk, and Lung Cancer Incidence and Mortality in Adulthood. Am. J. Respir. Crit. Care Med. 2023, 207, 173–182. [Google Scholar] [CrossRef]
- National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014. Table 4.4, Conclusions from Surgeon General’s Report on Active Cigarette Smoking and Adverse Reproductive Outcomes or Childhood Neurobehavioral Disorders. Available online: https://www.ncbi.nlm.nih.gov/books/NBK294317/table/ch4.t4/ (accessed on 20 February 2023).
- Perez, M.F.; Mead, E.L.; Atuegwu, N.C.; Mortensen, E.M.; Goniewicz, M.; Oncken, C. Biomarkers of Toxicant Exposure and Inflammation Among Women of Reproductive Age Who Use Electronic or Conventional Cigarettes. J. Womens Health 2021, 30, 539–550. [Google Scholar] [CrossRef]
- Berlin, I.; Heilbronner, C.; Georgieu, S.; Meier, C.; Spreux-Varoquaux, O. Newborns’ cord blood plasma cotinine concentrations are similar to that of their delivering smoking mothers. Drug Alcohol Depend. 2010, 107, 250–252. [Google Scholar] [CrossRef]
- Pichini, S.; Basagaña, X.B.; Pacifici, R.; Garcia, O.; Puig, C.; Vall, O.; Harris, J.; Zuccaro, P.; Segura, J.; Sunyer, J. Cord serum cotinine as a biomarker of fetal exposure to cigarette smoke at the end of pregnancy. Environ. Health Perspect. 2000, 108, 1079–1083. [Google Scholar] [CrossRef]
- Szukalska, M.; Merritt, T.A.; Lorenc, W.; Sroczyńska, K.; Miechowicz, I.; Komorowicz, I.; Mazela, J.; Barałkiewicz, D.; Florek, E. Toxic metals in human milk in relation to tobacco smoke exposure. Environ. Res. 2021, 197, 111090. [Google Scholar] [CrossRef] [PubMed]
- Gomółka, E.; Piekoszewski, W.; Florek, E.; Morawska, A.; Breborowicz, G.H.; Kramer, L. [The influence of tobacco smoking on the lead and cadmium concentration in the urine of pregnant women and the health state of newborn]. Przegl Lek 2006, 63, 985–992. [Google Scholar] [PubMed]
- Abraham, M.; Alramadhan, S.; Iniguez, C.; Duijts, L.; Jaddoe, V.W.; Den Dekker, H.T.; Crozier, S.; Godfrey, K.M.; Hindmarsh, P.; Vik, T.; et al. A systematic review of maternal smoking during pregnancy and fetal measurements with meta-analysis. PLoS ONE 2017, 12, e0170946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlebeke, J.F.; Knol, D.L.; Verhulst, F.C. Child behavior problems increased by maternal smoking during pregnancy. Arch. Environ. Health 1999, 54, 15–19. [Google Scholar] [CrossRef]
- Gould, G.S.; Havard, A.; Lim, L.L.; The Psanz Smoking In Pregnancy Expert, G.; Kumar, R. Exposure to Tobacco, Environmental Tobacco Smoke and Nicotine in Pregnancy: A Pragmatic Overview of Reviews of Maternal and Child Outcomes, Effectiveness of Interventions and Barriers and Facilitators to Quitting. Int. J. Environ. Res. Public Health 2020, 17, 2034. [Google Scholar] [CrossRef] [Green Version]
- Holbrook, B.D. The effects of nicotine on human fetal development. Birth Defects Res. Part C Embryo Today Rev. 2016, 108, 181–192. [Google Scholar] [CrossRef]
- Chelchowska, M.; Ambroszkiewicz, J.; Jablonka-Salach, K.; Gajewska, J.; Maciejewski, T.M.; Bulska, E.; Laskowska-Klita, T.; Leibschang, J. Tobacco Smoke Exposure During Pregnancy Increases Maternal Blood Lead Levels Affecting Neonate Birth Weight. Biol. Trace Elem. Res. 2013, 155, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Rzymski, P.; Tomczyk, K.; Rzymski, P.; Poniedziałek, B.; Opala, T.; Wilczak, M. Impact of heavy metals on the female reproductive system. Ann. Agric. Environ. Med. 2015, 22, 259–264. [Google Scholar] [CrossRef]
- Caserta, D.; Graziano, A.; Monte, G.L.; Bordi, G.; Moscarini, M. Heavy metals and placental fetal-maternal barrier: A mini-review on the major concerns. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2198–2206. [Google Scholar]
- Zhang, M.; Liu, T.; Wang, G.; Buckley, J.P.; Guallar, E.; Hong, X.; Wang, M.C.; Wills-Karp, M.; Wang, X.; Mueller, N.T. In Utero Exposure to Heavy Metals and Trace Elements and Childhood Blood Pressure in a U.S. Urban, Low-Income, Minority Birth Cohort. Environ. Health Perspect. 2021, 129, 67005. [Google Scholar] [CrossRef]
- Quelhas, D.; Kompala, C.; Wittenbrink, B.; Han, Z.; Parker, M.; Shapiro, M.; Downs, S.; Kraemer, K.; Fanzo, J.; Morris, S.; et al. The association between active tobacco use during pregnancy and growth outcomes of children under five years of age: A systematic review and meta-analysis. BMC Public Health 2018, 18, 1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newnham, J.P.; Patterson, L.; James, I.; Stanley, E.R. Effects of maternal cigarette smoking on ultrasonic measurements of fetal growth and on Doppler flow velocity waveforms. Early Hum. Dev. 1990, 24, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S. Vaper, Beware: The Unique Toxicological Profile of Electronic Cigarettes. Environ. Health Perspect. 2020, 128, 052001. [Google Scholar] [CrossRef]
- Vivarelli, F.; Granata, S.; Rullo, L.; Mussoni, M.; Candeletti, S.; Romualdi, P.; Fimognari, C.; Cruz-Chamorro, I.; Carrillo-Vico, A.; Paolini, M.; et al. On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms. Pharmacol. Res. 2022, 182, 106315. [Google Scholar] [CrossRef]
- Crotty Alexander, L.E.; Ware, L.B.; Calfee, C.S.; Callahan, S.J.; Eissenberg, T.; Farver, C.; Goniewicz, M.L.; Jaspers, I.; Kheradmand, F.; King, T.E., Jr.; et al. NIH Workshop Report: E-cigarette or Vaping Product Use Associated Lung Injury (EVALI): Developing a Research Agenda. Am. J. Respir. Crit. Care Med. 2020, 202, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Gotts, J.E.; Jordt, S.E.; McConnell, R.; Tarran, R. What are the respiratory effects of e-cigarettes? BMJ 2019, 366, l5275. [Google Scholar] [CrossRef] [Green Version]
- Goniewicz, M.L.; Gawron, M.; Smith, D.M.; Peng, M.; Jacob, P., 3rd; Benowitz, N.L. Exposure to Nicotine and Selected Toxicants in Cigarette Smokers Who Switched to Electronic Cigarettes: A Longitudinal Within-Subjects Observational Study. Nicotine Tob. Res. 2017, 19, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubinstein, M.L.; Delucchi, K.; Benowitz, N.L.; Ramo, D.E. Adolescent Exposure to Toxic Volatile Organic Chemicals from E-Cigarettes. Pediatrics 2018, 141, e20173557. [Google Scholar] [CrossRef] [Green Version]
- Gordon, T.; Karey, E.; Rebuli, M.E.; Escobar, Y.H.; Jaspers, I.; Chen, L.C. E-Cigarette Toxicology. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 301–322. [Google Scholar] [CrossRef]
- Al Rifai, M.; Merchant, A.T.; Nambi, V.; Jia, X.; Gulati, M.; Valero-Elizondo, J.; Nasir, K.; Ballantyne, C.M.; Virani, S.S. Temporal Trends in E-Cigarette Use Among U.S. Adults: Behavioral Risk Factor Surveillance System, 2016 to 2018. Am. J. Med. 2020, 133, e508–e511. [Google Scholar] [CrossRef]
- Creamer, M.R.; Wang, T.W.; Babb, S.; Cullen, K.A.; Day, H.; Willis, G.; Jamal, A.; Neff, L. Tobacco Product Use and Cessation Indicators Among Adults—United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 1013–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, P.; Buta, E.; Jackson, A.; Camenga, D.; Kong, G.; Morean, M.; Bold, K.; Davis, D.; Krishnan-Sarin, S.; Gueorguieva, R. The FIRST nicotine product tried is associated with current multiple nicotine product use and nicotine dependence among a nationally representative sample of U.S. youths. Prev. Med. 2023, 169, 107437. [Google Scholar] [CrossRef]
- Pennings, J.L.A.; Havermans, A.; Pauwels, C.G.G.M.; Krüsemann, E.J.Z.; Visser, W.F.; Talhout, R. Comprehensive Dutch market data analysis shows that e-liquids with nicotine salts have both higher nicotine and flavour concentrations than those with free-base nicotine. Tob. Control 2022. [Google Scholar] [CrossRef]
- Leventhal, A.M.; Madden, D.R.; Peraza, N.; Schiff, S.J.; Lebovitz, L.; Whitted, L.; Barrington-Trimis, J.; Mason, T.B.; Anderson, M.K.; Tackett, A.P. Effect of Exposure to e-Cigarettes With Salt vs Free-Base Nicotine on the Appeal and Sensory Experience of Vaping: A Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e2032757. [Google Scholar] [CrossRef]
- Talih, S.; Salman, R.; El-Hage, R.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.; Shihadeh, A. Effect of free-base and protonated nicotine on nicotine yield from electronic cigarettes with varying power and liquid vehicle. Sci. Rep. 2020, 10, 16263. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Zielinska-Blizniewska, H.; Malinowska, K.; Zajdel, K.; Zakonnik, L.; Zajdel, R. A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment. Int. J. Mol. Sci. 2020, 21, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath-Morrow, S.A.; Gorzkowski, J.; Groner, J.A.; Rule, A.M.; Wilson, K.; Tanski, S.E.; Collaco, J.M.; Klein, J.D. The Effects of Nicotine on Development. Pediatrics 2020, 145, e20191346. [Google Scholar] [CrossRef]
- Becker, T.D.; Arnold, M.K.; Ro, V.; Martin, L.; Rice, T.R. Systematic Review of Electronic Cigarette Use (Vaping) and Mental Health Comorbidity Among Adolescents and Young Adults. Nicotine Tob. Res. 2020, 23, 415–425. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services. E-Cigarette Use among Youth and Young Adults. A Report of the Surgeon General; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2016.
- Honeycutt, L.; Huerne, K.; Miller, A.; Wennberg, E.; Filion, K.B.; Grad, R.; Gershon, A.S.; Ells, C.; Gore, G.; Benedetti, A.; et al. A systematic review of the effects of e-cigarette use on lung function. npj Prim. Care Respir. Med. 2022, 32, 45. [Google Scholar] [CrossRef] [PubMed]
- Muthumalage, T.; Lamb, T.; Friedman, M.R.; Rahman, I. E-cigarette flavored pods induce inflammation, epithelial barrier dysfunction, and DNA damage in lung epithelial cells and monocytes. Sci. Rep. 2019, 9, 19035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L.; Fraiman, J.B. Cardiovascular effects of electronic cigarettes. Nat. Rev. Cardiol. 2017, 14, 447–456. [Google Scholar] [CrossRef]
- Glantz, S.A.; Bareham, D.W. E-Cigarettes: Use, Effects on Smoking, Risks, and Policy Implications. Annu. Rev. Public Health 2018, 39, 215–235. [Google Scholar] [CrossRef] [Green Version]
- Bonner, E.; Chang, Y.; Christie, E.; Colvin, V.; Cunningham, B.; Elson, D.; Ghetu, C.; Huizenga, J.; Hutton, S.J.; Kolluri, S.K.; et al. The chemistry and toxicology of vaping. Pharmacol. Ther. 2021, 225, 107837. [Google Scholar] [CrossRef]
- Carter, T.; Tucker, D.; Kilic, A.; Papadimos, T.J.; Barlow, A.; Berry, E. Life-threatening Vesicular Bronchial Injury Requiring Veno-venous Extracorporeal Membrane Oxygenation Rescue in an Electronic Nicotine Delivery System User. Clin. Pract. Cases Emerg. Med. 2017, 1, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Chaumont, M.; van de Borne, P.; Bernard, A.; Van Muylem, A.; Deprez, G.; Ullmo, J.; Starczewska, E.; Briki, R.; de Hemptinne, Q.; Zaher, W.; et al. Fourth generation e-cigarette vaping induces transient lung inflammation and gas exchange disturbances: Results from two randomized clinical trials. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L705–L719. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Coakley, R.C.; Mascenik, T.; Rowell, T.R.; Davis, E.S.; Rogers, K.; Webster, M.J.; Dang, H.; Herring, L.E.; Sassano, M.F.; et al. Chronic E-Cigarette Exposure Alters the Human Bronchial Epithelial Proteome. Am. J. Respir. Crit. Care Med. 2018, 198, 67–76. [Google Scholar] [CrossRef]
- Reidel, B.; Radicioni, G.; Clapp, P.W.; Ford, A.A.; Abdelwahab, S.; Rebuli, M.E.; Haridass, P.; Alexis, N.E.; Jaspers, I.; Kesimer, M. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am. J. Respir. Crit. Care Med. 2018, 197, 492–501. [Google Scholar] [CrossRef]
- Viswam, D.; Trotter, S.; Burge, P.S.; Walters, G.I. Respiratory failure caused by lipoid pneumonia from vaping e-cigarettes. BMJ Case Rep. 2018, 2018. [Google Scholar] [CrossRef]
- Rebuli, M.E.; Rose, J.J.; Noel, A.; Croft, D.P.; Benowitz, N.L.; Cohen, A.H.; Goniewicz, M.L.; Larsen, B.T.; Leigh, N.; McGraw, M.D.; et al. The E-cigarette or Vaping Product Use-Associated Lung Injury Epidemic: Pathogenesis, Management, and Future Directions: An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2023, 20, 1–17. [Google Scholar] [CrossRef]
- Hayes, D., Jr.; Board, A.; Calfee, C.; Ellington, S.; Pollack, L.A.; Kathuria, H.; Eakin, M.N.; Weissman, D.N.; Callahan, S.J.; Esper, A.M.; et al. Pulmonary and Critical Care Considerations for E-Cigarette, or Vaping, Product Use-Associated Lung Injury. Chest 2022, 162, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canistro, D.; Vivarelli, F.; Cirillo, S.; Babot Marquillas, C.; Buschini, A.; Lazzaretti, M.; Marchi, L.; Cardenia, V.; Rodriguez-Estrada, M.T.; Lodovici, M.; et al. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci. Rep. 2017, 7, 2028. [Google Scholar] [CrossRef] [Green Version]
- Hess, C.A.; Olmedo, P.; Navas-Acien, A.; Goessler, W.; Cohen, J.E.; Rule, A.M. E-cigarettes as a source of toxic and potentially carcinogenic metals. Environ. Res. 2017, 152, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracken-Clarke, D.; Kapoor, D.; Baird, A.M.; Buchanan, P.J.; Gately, K.; Cuffe, S.; Finn, S.P. Vaping and lung cancer—A review of current data and recommendations. Lung Cancer 2021, 153, 11–20. [Google Scholar] [CrossRef]
- Bjurlin, M.A.; Matulewicz, R.S.; Roberts, T.R.; Dearing, B.A.; Schatz, D.; Sherman, S.; Gordon, T.; Shahawy, O.E. Carcinogen Biomarkers in the Urine of Electronic Cigarette Users and Implications for the Development of Bladder Cancer: A Systematic Review. Eur. Urol. Oncol. 2021, 4, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Fuller, T.W.; Acharya, A.P.; Meyyappan, T.; Yu, M.; Bhaskar, G.; Little, S.R.; Tarin, T.V. Comparison of bladder carcinogens in the urine of e-cigarette users versus non e-cigarette using controls. Sci. Rep. 2018, 8, 507. [Google Scholar] [CrossRef] [Green Version]
- Marques, P.; Piqueras, L.; Sanz, M.-J. An updated overview of e-cigarette impact on human health. Respir. Res. 2021, 22, 151. [Google Scholar] [CrossRef] [PubMed]
- Dinardo, P.; Rome, E.S. Vaping: The new wave of nicotine addiction. Clevel. Clin. J. Med. 2019, 86, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.D.; van Schalkwyk, M.C.I.; McKee, M.; Pisinger, C. The cardiovascular effects of electronic cigarettes: A systematic review of experimental studies. Prev. Med. 2019, 127, 105770. [Google Scholar] [CrossRef]
- Lippi, G.; Favaloro, E.J.; Meschi, T.; Mattiuzzi, C.; Borghi, L.; Cervellin, G. E-Cigarettes and Cardiovascular Risk: Beyond Science and Mysticism. Semin. Thromb. Hemost. 2014, 40, 060–065. [Google Scholar]
- McConnell, R.; Barrington-Trimis, J.L.; Wang, K.; Urman, R.; Hong, H.; Unger, J.; Samet, J.; Leventhal, A.; Berhane, K. Electronic Cigarette Use and Respiratory Symptoms in Adolescents. Am. J. Respir. Crit. Care Med. 2017, 195, 1043–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweitzer, R.J.; Wills, T.A.; Tam, E.; Pagano, I.; Choi, K. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev. Med. 2017, 105, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Krishnasamy, V.P.; Hallowell, B.D.; Ko, J.Y.; Board, A.; Hartnett, K.P.; Salvatore, P.P.; Danielson, M.; Kite-Powell, A.; Twentyman, E.; Kim, L.; et al. Update: Characteristics of a Nationwide Outbreak of E-cigarette, or Vaping, Product Use-Associated Lung Injury—United States, August 2019–January 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapaya, M.; D’Angelo, D.V.; Tong, V.T.; England, L.; Ruffo, N.; Cox, S.; Warner, L.; Bombard, J.; Guthrie, T.; Lampkins, A.; et al. Use of Electronic Vapor Products Before, During, and After Pregnancy Among Women with a Recent Live Birth—Oklahoma and Texas, 2015. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 189–194. [Google Scholar] [CrossRef] [Green Version]
- McCubbin, A.; Fallin-Bennett, A.; Barnett, J.; Ashford, K. Perceptions and use of electronic cigarettes in pregnancy. Health Educ. Res 2017, 32, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Stroud, L.R.; Papandonatos, G.D.; Borba, K.; Kehoe, T.; Scott-Sheldon, L.A.J. Flavored electronic cigarette use, preferences, and perceptions in pregnant mothers: A correspondence analysis approach. Addict. Behav. 2019, 91, 21–29. [Google Scholar] [CrossRef]
- Krishnan-Sarin, S.; Green, B.G.; Kong, G.; Cavallo, D.A.; Jatlow, P.; Gueorguieva, R.; Buta, E.; O’Malley, S.S. Studying the interactive effects of menthol and nicotine among youth: An examination using e-cigarettes. Drug Alcohol Depend. 2017, 180, 193–199. [Google Scholar] [CrossRef]
- Oncken, C.; Feinn, R.; Covault, J.; Duffy, V.; Dornelas, E.; Kranzler, H.R.; Sankey, H.Z. Genetic Vulnerability to Menthol Cigarette Preference in Women. Nicotine Tob. Res. 2015, 17, 1416–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General; National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health: Atlanta, GA, USA, 2014.
- de Boo, H.A.; Harding, J.E. The developmental origins of adult disease (Barker) hypothesis. Aust. N. Z. J. Obstet. Gynaecol. 2006, 46, 4–14. [Google Scholar] [CrossRef]
- McDonnell, B.P.; Dicker, P.; Regan, C.L. Electronic cigarettes and obstetric outcomes: A prospective observational study. BJOG 2020, 127, 750–756. [Google Scholar] [CrossRef]
- Hawkins, S.S.; Wylie, B.J.; Hacker, M.R. Associations between electronic nicotine delivery systems and birth outcomes. J. Matern. Fetal Neonatal Med. 2021, 35, 6868–6875. [Google Scholar] [CrossRef]
- Regan, A.K.; Bombard, J.M.; O’Hegarty, M.M.; Smith, R.A.; Tong, V.T. Adverse Birth Outcomes Associated With Prepregnancy and Prenatal Electronic Cigarette Use. Obstet. Gynecol. 2021, 138, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, G.; Chan, Y.L.; Nguyen, T.; van Reyk, D.; Saad, S.; Oliver, B.G. Modulation of neural regulators of energy homeostasis, and of inflammation, in the pups of mice exposed to e-cigarettes. Neurosci. Lett. 2018, 84, 61–66. [Google Scholar] [CrossRef]
- Chen, H.; Li, G.; Chan, Y.L.; Chapman, D.G.; Sukjamnong, S.; Nguyen, T.; Annissa, T.; McGrath, K.C.; Sharma, P.; Oliver, B.G. Maternal E-Cigarette Exposure in Mice Alters DNA Methylation and Lung Cytokine Expression in Offspring. Am. J. Respir. Cell Mol. Biol. 2018, 58, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.E.; Kandalam, S.; Olivares-Navarrete, R.; Dickinson, A.J.G. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells. PLoS ONE 2017, 12, e0185729. [Google Scholar] [CrossRef] [Green Version]
- Lauterstein, D.E.; Tijerina, P.B.; Corbett, K.; Akgol Oksuz, B.; Shen, S.S.; Gordon, T.; Klein, C.B.; Zelikoff, J.T. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages. Int. J. Environ. Res. Public Health 2016, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- Palpant, N.J.; Hofsteen, P.; Pabon, L.; Reinecke, H.; Murry, C.E. Cardiac Development in Zebrafish and Human Embryonic Stem Cells Is Inhibited by Exposure to Tobacco Cigarettes and E-Cigarettes. PLoS ONE 2015, 10, e0126259. [Google Scholar] [CrossRef] [Green Version]
- Greene, R.M.; Pisano, M.M. Developmental toxicity of e-cigarette aerosols. Birth Defects Res. 2019, 111, 1294–1301. [Google Scholar] [CrossRef]
- Rollins, L.G.; Sokol, N.A.; McCallum, M.; England, L.; Matteson, K.; Werner, E.; Stroud, L.R. Electronic Cigarette Use During Preconception and/or Pregnancy: Prevalence, Characteristics, and Concurrent Mental Health Conditions. J. Womens Health 2020, 29, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Lorkiewicz, P.; Riggs, D.W.; Keith, R.J.; Conklin, D.J.; Xie, Z.; Sutaria, S.; Lynch, B.; Srivastava, S.; Bhatnagar, A. Comparison of Urinary Biomarkers of Exposure in Humans Using Electronic Cigarettes, Combustible Cigarettes, and Smokeless Tobacco. Nicotine Tob. Res. 2019, 21, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Schick, S.F.; Blount, B.C.; Jacob, P.R.; Saliba, N.A.; Bernert, J.T.; El Hellani, A.; Jatlow, P.; Pappas, R.S.; Wang, L.; Foulds, J.; et al. Biomarkers of exposure to new and emerging tobacco delivery products. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L425–L452. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.H.; Huang, S.; Kerr, D. Biomarkers in clinical medicine. IARC Sci. Publ. 2011, 163, 303–322. [Google Scholar]
- Kim, H.J.; Shin, H.S. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1291, 48–55. [Google Scholar] [CrossRef]
- Stokes, A.C.; Xie, W.; Wilson, A.E.; Yang, H.; Orimoloye, O.A.; Harlow, A.F.; Fetterman, J.L.; DeFilippis, A.P.; Benjamin, E.J.; Robertson, R.M.; et al. Association of Cigarette and Electronic Cigarette Use Patterns With Levels of Inflammatory and Oxidative Stress Biomarkers Among US Adults: Population Assessment of Tobacco and Health Study. Circulation 2021, 143, 869–871. [Google Scholar] [CrossRef]
- Sakamaki-Ching, S.; Williams, M.; Hua, M.; Li, J.; Bates, S.M.; Robinson, A.N.; Lyons, T.W.; Goniewicz, M.L.; Talbot, P. Correlation between biomarkers of exposure, effect and potential harm in the urine of electronic cigarette users. BMJ Open Respir. Res. 2020, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.P.; Lawyer, G.; Muthumalage, T.; Maremanda, K.P.; Khan, N.A.; McDonough, S.R.; Ye, D.; McIntosh, S.; Rahman, I. Systemic biomarkers in electronic cigarette users: Implications for noninvasive assessment of vaping-associated pulmonary injuries. ERJ Open Res. 2019, 5, 00182-2019. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilcassim, M.J.R.; Stowe, S.; Majumder, R.; Subramaniam, A.; Sinkey, R.G. Electronic Cigarette Use during Pregnancy: Is It Harmful? Toxics 2023, 11, 278. https://doi.org/10.3390/toxics11030278
Vilcassim MJR, Stowe S, Majumder R, Subramaniam A, Sinkey RG. Electronic Cigarette Use during Pregnancy: Is It Harmful? Toxics. 2023; 11(3):278. https://doi.org/10.3390/toxics11030278
Chicago/Turabian StyleVilcassim, M. J. Ruzmyn, Samuel Stowe, Rachel Majumder, Akila Subramaniam, and Rachel G. Sinkey. 2023. "Electronic Cigarette Use during Pregnancy: Is It Harmful?" Toxics 11, no. 3: 278. https://doi.org/10.3390/toxics11030278
APA StyleVilcassim, M. J. R., Stowe, S., Majumder, R., Subramaniam, A., & Sinkey, R. G. (2023). Electronic Cigarette Use during Pregnancy: Is It Harmful? Toxics, 11(3), 278. https://doi.org/10.3390/toxics11030278