Prenatal Mercury Exposure and Infant Weight Trajectories in a UK Observational Birth Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Assessment
2.3. Outcome
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Exposure and Outcome Characteristics
3.3. Mercury, Selenium, and Change in Weight
3.4. Mercury and Weight at Specific Time Points
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eidelman, A.I.; Schanler, R.J. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, P.D. Postnatal weight monitoring should be routine. Arch. Dis. Child. 2007, 92, 374–375. [Google Scholar] [PubMed]
- Sellwood, M.; Huertas-Ceballos, A. Review of NICE guidelines on routine postnatal infant care. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F10. [Google Scholar] [CrossRef] [PubMed]
- National Guideline Alliance. National Institute for Health and Care Excellence: Clinical Guidelines. In Faltering Growth–Recognition and Management; National Institute for Health and Care Excellence: London, UK, 2017. [Google Scholar]
- Gonzalez-Viana, E.; Dworzynski, K.; Murphy, M.S.; Peek, R. Faltering growth in children: Summary of NICE guidance. BMJ 2017, 358, j4219. [Google Scholar] [CrossRef] [PubMed]
- Lezo, A.; Baldini, L.; Asteggiano, M. Failure to Thrive in the Outpatient Clinic: A New Insight. Nutrients 2020, 12, 2202. [Google Scholar] [CrossRef]
- Rudolf, M.C.J.; Logan, S. What is the long term outcome for children who fail to thrive? A systematic review. Arch. Dis. Child. 2005, 90, 925. [Google Scholar] [CrossRef]
- Perrin, E.C.; Cole, C.H.; Frank, D.A.; Glicken, S.R.; Guerina, N.; Petit, K.; Sege, R.; Volpe, M.V.; Lau, J.; McFadden, C.A.; et al. Criteria for determining disability in infants and children: Failure to thrive. Evid. Rep. Technol. Assess. Summ. 2003, 72, 1–5. [Google Scholar]
- Emond, A.M.; Blair, P.S.; Emmett, P.M.; Drewett, R.F. Weight Faltering in Infancy and IQ Levels at 8 Years in the Avon Longitudinal Study of Parents and Children. Pediatrics 2007, 120, e1051–e1058. [Google Scholar] [CrossRef]
- Corbett, S.S.; Drewett, R.F. To what extent is failure to thrive in infancy associated with poorer cognitive development? A review and meta-analysis. J. Child Psychol. Psychiatry 2004, 45, 641–654. [Google Scholar] [CrossRef]
- McAlpine, J.; Nielsen, D.K.; Lee, J.; Larsen, B.M. Growth Faltering: The New and the Old. Clin. Pediatr. 2019, 2, 10. [Google Scholar]
- Vilcins, D.; Sly, P.D.; Jagals, P. Environmental Risk Factors Associated with Child Stunting: A Systematic Review of the Literature. Ann. Global Health 2018, 84, 551–562. [Google Scholar] [CrossRef]
- Gardner, R.M.; Kippler, M.; Tofail, F.; Bottai, M.; Hamadani, J.; Grandér, M.; Nermell, B.; Palm, B.; Rasmussen, K.M.; Vahter, M. Environmental Exposure to Metals and Children’s Growth to Age 5 Years: A Prospective Cohort Study. Am. J. Epidemiol. 2013, 177, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.-A. Cadmium toxicity and treatment: An update. Caspian J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef] [Green Version]
- Futsaeter, G.; Wilson, S. The UNEP Global Mercury Assessment: Sources, Emissions and Transport. E3S Web Conf. 2013, 1, 36001. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environment Programme. World Health Organization. In Guidance for Identifying Populations at Risk from Mercury Exposure; UNEP: Nairobi, Kenya, 2008. [Google Scholar]
- Oliveira, C.S.; Nogara, P.A.; Ardisson-Araújo, D.M.P.; Aschner, M.; Rocha, J.B.T.; Dórea, J.G. Neurodevelopmental Effects of Mercury. Adv. Neurotoxicol. 2018, 2, 27–86. [Google Scholar] [CrossRef]
- Barone, G.; Storelli, A.; Meleleo, D.; Dambrosio, A.; Garofalo, R.; Busco, A.; Storelli, M.M. Levels of Mercury, Methylmercury and Selenium in Fish: Insights into Children Food Safety. Toxics 2021, 9, 39. [Google Scholar] [CrossRef]
- Golding, J.; Steer, C.D.; Hibbeln, J.R.; Emmett, P.M.; Lowery, T.; Jones, R. Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ. Health Perspect. 2013, 121, 1214–1218. [Google Scholar] [CrossRef] [Green Version]
- Love, T.M.; Wahlberg, K.; Pineda, D.; Watson, G.E.; Zareba, G.; Thurston, S.W.; Davidson, P.W.; Shamlaye, C.F.; Myers, G.J.; Rand, M.; et al. Contribution of child ABC-transporter genetics to prenatal MeHg exposure and neurodevelopment. Neurotoxicology 2022, 91, 228–233. [Google Scholar] [CrossRef]
- Carvalho, L.V.B.; Hacon, S.S.; Vega, C.M.; Vieira, J.A.; Larentis, A.L.; Mattos, R.C.O.C.; Valente, D.; Costa-Amaral, I.C.; Mourão, D.S.; Silva, G.P.; et al. Oxidative Stress Levels Induced by Mercury Exposure in Amazon Juvenile Populations in Brazil. Int. J. Environ. Res. Public Health 2019, 16, 2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reardon, A.M.; Bhat, H.K. Methylmercury neurotoxicity: Role of oxidative stress. Toxicol. Environ. Chem. 2007, 89, 535–554. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Reyes-Hernández, C.G.; López de Pablo, A.L.; González, M.C.; Arribas, S.M. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front. Physiol. 2018, 9, 602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peixoto, N.C.; Serafim, M.A.; Flores, E.M.; Bebianno, M.J.; Pereira, M.E. Metallothionein, zinc, and mercury levels in tissues of young rats exposed to zinc and subsequently to mercury. Life Sci. 2007, 81, 1264–1271. [Google Scholar] [CrossRef]
- Khan, F.; Momtaz, S.; Abdollahi, M. The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. J. Trace Elem. Med. Biol. 2019, 52, 37–47. [Google Scholar] [CrossRef]
- Liu, S.; Tsui, M.T.-K.; Lee, E.; Fowler, J.; Jia, Z. Uptake, efflux, and toxicity of inorganic and methyl mercury in the endothelial cells (EA.hy926). Sci. Rep. 2020, 10, 9023. [Google Scholar] [CrossRef]
- Burke, K.; Cheng, Y.; Li, B.; Petrov, A.; Joshi, P.; Berman, R.F.; Reuhl, K.R.; DiCicco-Bloom, E. Methylmercury elicits rapid inhibition of cell proliferation in the developing brain and decreases cell cycle regulator, cyclin E. Neurotoxicology 2006, 27, 970–981. [Google Scholar] [CrossRef] [Green Version]
- Cebulska-Wasilewska, A.; Panek, A.; Zabiński, Z.; Moszczyński, P.; Au, W.W. Occupational exposure to mercury vapour on genotoxicity and DNA repair. Mutat. Res. 2005, 586, 102–114. [Google Scholar] [CrossRef]
- Chen, Z.; Myers, R.; Wei, T.; Bind, E.; Kassim, P.; Wang, G.; Ji, Y.; Hong, X.; Caruso, D.; Bartell, T.; et al. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J. Expo Sci. Environ. Epidemiol. 2014, 24, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Cao, F.; Li, X. Epigenetic Programming and Fetal Metabolic Programming. Front. Endocrinol. 2019, 10, 764. [Google Scholar] [CrossRef] [Green Version]
- Bakir, F.; Damluji, S.F.; Amin-Zaki, L.; Murtadha, M.; Khalidi, A.; Al-Rawi, N.Y.; Tikriti, S.; Dhahir, H.I.; Clarkson, T.W.; Smith, J.C.; et al. Methylmercury Poisoning in Iraq. Science 1973, 181, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.A.; Chang, L.W.; Guo, G.L.; Aschner, M. Chapter 35—Fetal Minamata Disease: A Human Episode of Congenital Methylmercury Poisoning. In Handbook of Developmental Neurotoxicology, 2nd ed.; Slikker, W., Paule, M.G., Wang, C., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 399–406. [Google Scholar]
- Perrone, S.; Negro, S.; Tataranno, M.L.; Buonocore, G. Oxidative stress and antioxidant strategies in newborns. J. Matern. Fetal Neonatal Med. 2010, 23 (Suppl. 3), 63–65. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.P.; Al-Hasan, Y. Impact of oxidative stress in fetal programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef] [PubMed]
- Dack, K.; Fell, M.; Taylor, C.M.; Havdahl, A.; Lewis, S.J. Mercury and Prenatal Growth: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7140. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; Golding, J.; Emond, A.M. Blood mercury levels and fish consumption in pregnancy: Risks and benefits for birth outcomes in a prospective observational birth cohort. Int. J. Hyg. Environ. Health 2016, 219, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.M.; Chen, M.H.; Chen, P.C.; Park, H.; Ha, M.; Kim, Y.; Hong, Y.C.; Kim, Y.J.; Ha, E.H. Path analysis of prenatal mercury levels and birth weights in Korean and Taiwanese birth cohorts. Sci. Total Environ. 2017, 605–606, 1003–1010. [Google Scholar] [CrossRef]
- Foldspang, A.; Hansen, J.C. Dietary intake of methylmercury as a correlate of gestational length and birth weight among newborns in Greenland. Am. J. Epidemiol. 1990, 132, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Bjerve, K.S.; Weihe, P.; Steuerwald, U. Birthweight in a fishing community: Significance of essential fatty acids and marine food contaminants. Int. J. Epidemiol. 2001, 30, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Murcia, M.; Ballester, F.; Enning, A.M.; Iñiguez, C.; Valvi, D.; Basterrechea, M.; Rebagliato, M.; Vioque, J.; Maruri, M.; Tardon, A.; et al. Prenatal mercury exposure and birth outcomes. Environ. Res. 2016, 151, 11–20. [Google Scholar] [CrossRef]
- Rand, M.D.; Caito, S.W. Variation in the biological half-life of methylmercury in humans: Methods, measurements and meaning. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129301. [Google Scholar] [CrossRef]
- Fisher, J.F.; World Health Organization. Elemental Mercury and Inorganic Mercury Compounds: Human Health Aspects; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Rooney, J.P.K. The retention time of inorganic mercury in the brain—A systematic review of the evidence. Toxicol. Appl. Pharmacol. 2014, 274, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-M.; Lee, B.-E.; Hong, Y.-C.; Park, H.; Ha, M.; Kim, Y.-J.; Kim, Y.; Chang, N.; Kim, B.-N.; Oh, S.-Y.; et al. Mercury levels in maternal and cord blood and attained weight through the 24months of life. Sci. Total Environ. 2011, 410–411, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, E.; Botton, J.; Caspersen, I.H.; Alexander, J.; Eggesbø, M.; Haugen, M.; Iszatt, N.; Jacobsson, B.; Knutsen, H.K.; Meltzer, H.M.; et al. Maternal seafood intake during pregnancy, prenatal mercury exposure and child body mass index trajectories up to 8 years. Int. J. Epidemiol. 2021, 50, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.K.; Wang, F. Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism. Environ. Toxicol. Chem. 2009, 28, 1567–1577. [Google Scholar] [CrossRef] [PubMed]
- Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake and Food Sources of Zinc, Selenium, and Vitamins A, E and C in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, C. Modification of Mercury Toxicity by Selenium: Practical Importance? Tohoku J. Exp. Med. 2002, 196, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gailer, J. Arsenic–selenium and mercury–selenium bonds in biology. Coord. Chem. Rev. 2007, 251, 234–254. [Google Scholar] [CrossRef]
- Hawkes, W.C.; Keim, N.L. Dietary Selenium Intake Modulates Thyroid Hormone and Energy Metabolism in Men. J. Nutr. 2003, 133, 3443–3448. [Google Scholar] [CrossRef] [Green Version]
- Everson, T.M.; Kappil, M.; Hao, K.; Jackson, B.P.; Punshon, T.; Karagas, M.R.; Chen, J.; Marsit, C.J. Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. Environ. Res. 2017, 158, 233–244. [Google Scholar] [CrossRef]
- Wang, X.; Bao, R.; Fu, J. The Antagonistic Effect of Selenium on Cadmium-Induced Damage and mRNA Levels of Selenoprotein Genes and Inflammatory Factors in Chicken Kidney Tissue. Biol. Trace Elem. Res. 2018, 181, 331–339. [Google Scholar] [CrossRef]
- Branca, J.J.V.; Morucci, G.; Maresca, M.; Tenci, B.; Cascella, R.; Paternostro, F.; Ghelardini, C.; Gulisano, M.; Di Cesare Mannelli, L.; Pacini, A. Selenium and zinc: Two key players against cadmium-induced neuronal toxicity. Toxicol. Vitr. 2018, 48, 159–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiller, H.A. Rethinking mercury: The role of selenium in the pathophysiology of mercury toxicity. Clin. Toxicol. 2018, 56, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.; Golding, J.; Macleod, J.; Lawlor, D.A.; Fraser, A.; Henderson, J.; Molloy, L.; Ness, A.; Ring, S.; Davey Smith, G. Cohort Profile: The ‘children of the 90s’—The index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 2013, 42, 111–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, A.; Macdonald-Wallis, C.; Tilling, K.; Boyd, A.; Golding, J.; Davey Smith, G.; Henderson, J.; Macleod, J.; Molloy, L.; Ness, A.; et al. Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int. J. Epidemiol. 2013, 42, 97–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, C.M.; Golding, J.; Hibbeln, J.; Emond, A.M. Environmental factors predicting blood lead levels in pregnant women in the UK: The ALSPAC study. PLoS ONE 2013, 8, e72371. [Google Scholar] [CrossRef]
- Evans, D.M.; Zhu, G.; Dy, V.; Heath, A.C.; Madden, P.A.F.; Kemp, J.P.; McMahon, G.; St Pourcain, B.; Timpson, N.J.; Golding, J.; et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum. Mol. Genet. 2013, 22, 3998–4006. [Google Scholar] [CrossRef] [Green Version]
- Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Taylor, C.M.; Golding, J.; Kordas, K. Prenatal lead exposure: Associations with growth and anthropometry in early childhood in a UK observational birth cohort study [version 2; peer review: 1 approved, 1 approved with reservations]. Wellcome Open Res. 2021, 5. [Google Scholar] [CrossRef]
- Wilcox, A.J.; Weinberg, C.R.; Basso, O. On the pitfalls of adjusting for gestational age at birth. Am. J. Epidemiol. 2011, 174, 1062–1068. [Google Scholar] [CrossRef]
- Golding, J.; Gregory, S.; Iles-Caven, Y.; Hibbeln, J.; Emond, A.; Taylor, C.M. Associations between prenatal mercury exposure and early child development in the ALSPAC study. Neurotoxicology 2016, 53, 215–222. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing (Version 4.1.0); R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Chakrabarti, A.; Ghosh, J.K. AIC, BIC and Recent Advances in Model Selection. In Philosophy of Statistics; Bandyopadhyay, P.S., Forster, M.R., Eds.; North-Holland: Amsterdam, The Netherlands, 2011; Volume 7, pp. 583–605. [Google Scholar]
- Taylor, C.M.; Golding, J.; Emond, A.M. Lead, cadmium and mercury levels in pregnancy: The need for international consensus on levels of concern. J. Dev. Orig. Health Dis. 2014, 5, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.J.; Kim, B.G.; Jeon, M.J.; Kim, S.Y.; Kim, H.C.; Jang, T.W.; Chae, H.J.; Choi, W.J.; Ha, M.N.; Hong, Y.S. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann. Occup. Environ. Med. 2016, 28, 5. [Google Scholar] [CrossRef] [PubMed]
- Mercury in Canadians. Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/human-biomonitoring-resources/mercury-canadians.html (accessed on 13 December 2022).
- Mahaffey, K.R.; Clickner, R.P.; Bodurow, C.C. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ. Health Perspect. 2004, 112, 562–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solan, T.D.; Lindow, S.W. Mercury exposure in pregnancy: A review. J. Perinat. Med. 2014, 42, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Hindmarsh, P.C.; Geary, M.P.P.; Rodeck, C.H.; Kingdom, J.C.P.; Cole, T.J. Factors Predicting Ante- and Postnatal Growth. Pediatr. Res. 2008, 63, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Eriksson, B.; Petzold, M.; Bondjers, G.; Tran, T.K.; Nguyen, L.T.; Ascher, H. Factors associated with physical growth of children during the first two years of life in rural and urban areas of Vietnam. BMC Pediatr. 2013, 13, 149. [Google Scholar] [CrossRef] [Green Version]
- Sjöström, E.S.; Öhlund, I.; Ahlsson, F.; Norman, M.; Engström, E.; Hellström, A.; Fellman, V.; Olhager, E.; Domellöf, M. 349 Effects of Postnatal Energy and Macronutrient Intakes on Growth in Extremely Preterm Infants: A Population-Based Study. Arch. Dis. Child. 2012, 97, A102. [Google Scholar] [CrossRef] [Green Version]
- Iszatt, N.; Stigum, H.; Verner, M.-A.; White, R.A.; Govarts, E.; Murinova, L.P.; Schoeters, G.; Trnovec, T.; Legler, J.; Pelé, F.; et al. Prenatal and Postnatal Exposure to Persistent Organic Pollutants and Infant Growth: A Pooled Analysis of Seven European Birth Cohorts. Environ. Health Perspect. 2015, 123, 730–736. [Google Scholar] [CrossRef]
- Strain, J.J.; Davidson, P.W.; Bonham, M.P.; Duffy, E.M.; Stokes-Riner, A.; Thurston, S.W.; Wallace, J.M.W.; Robson, P.J.; Shamlaye, C.F.; Georger, L.A.; et al. Associations of maternal long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study. Neurotoxicology 2008, 29, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, T.W.; Strain, J.J. Nutritional Factors May Modify the Toxic Action of Methyl Mercury in Fish-Eating Populations. J. Nutr. 2003, 133, 1539S–1543S. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.J.; Kit, B.K.; Aoki, Y.; Ogden, C.L. Seafood consumption and blood mercury concentrations in adults aged ≥20 y, 2007–2010. Am. J. Clin. Nutr. 2014, 99, 1066–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, B.P.; Ganguly, S.; Karunakaran, D.; Chakraborty, K.; Sharma, A.P.; Mohapatra, P.K.R.; Nayak, N.R. Maternal Fish Consumption and Prevention of Low Birth Weight in the Developing World. Natl. Acad. Sci. Lett. 2012, 35, 433–438. [Google Scholar] [CrossRef]
- Tong, M.; Yu, J.; Liu, M.; Li, Z.; Wang, L.; Yin, C.; Ren, A.; Chen, L.; Jin, L. Total mercury concentration in placental tissue, a good biomarker of prenatal mercury exposure, is associated with risk for neural tube defects in offspring. Environ. Int. 2021, 150, 106425. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M. Placental to fetal transfer of mercury and fetotoxicity. Tohoku J. Exp. Med. 2002, 196, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, M.; Pedroso, T.F.; Oliveira, C.S.; Oliveira, V.A.; do Santos, R.F.; Bizzi, C.A.; Pereira, M.E. Effects of zinc against mercury toxicity in female rats 12 and 48 hours after HgCl2 exposure. EXCLI J. 2016, 15, 256–267. [Google Scholar] [CrossRef]
- Golding, J.; Taylor, C.; Iles-Caven, Y.; Gregory, S. The benefits of fish intake: Results concerning prenatal mercury exposure and child outcomes from the ALSPAC prebirth cohort. Neurotoxicology 2022, 91, 22–30. [Google Scholar] [CrossRef]
Variable | All ALSPAC | Mercury Samples | Mercury and Child Weight |
---|---|---|---|
Mother | |||
Number of births | 14,062 | 3844 | 544 |
Maternal age (years) | 28 (6) | 28 (6) | 28 (6.5) |
Parity | |||
0 | 5585 (44.8%) | 1597 (44.4%) | 243 (46.0%) |
1 | 4361 (35.0%) | 1233 (34.3%) | 171 (32.4%) |
2+ | 2522 (20.2%) | 765 (21.3%) | 111 (21.0%) |
Highest level of education | |||
O-level/below | 7755 (64.6%) | 2137 (61.6%) | 306 (59.0%) |
A-level/degree | 4241 (35.4%) | 1333 (38.4%) | 212 (40.8%) |
Pre-pregnancy BMI (kg/m2) | 22.2 (3.9) | 22.3 (4.0) | 22.5 (4.1) |
Smoker at 8 weeks’ gestation | |||
No | 9348 (79.4%) | 2803 (79.4%) | 439 (85.9%) |
Yes | 2432 (20.6%) | 727 (20.6%) | 71 (13.9%) |
Drank alcohol at 8 weeks’ gestation | |||
No | 7932 (69.8%) | 2351 (69.3%) | 314 (64.5%) |
Yes | 3427 (30.2%) | 1042 (30.7%) | 172 (35.3%) |
Oily fish consumption | |||
No | 4961 (42.3%) | 1463 (42.7%) | 199 (38.9%) |
Yes | 6769 (57.7%) | 1965 (57.3%) | 312 (61.1%) |
White fish consumption | |||
No | 2157 (18.4%) | 639 (18.6%) | 89 (17.4%) |
Yes | 9573 (81.6%) | 2789 (81.4%) | 422 (82.6%) |
Shellfish consumption | |||
No | 9451 (80.6%) | 2740 (79.9%) | 391 (76.5%) |
Yes | 2279 (19.4%) | 688 (20.1%) | 121 (23.5%) |
Whole blood metal | |||
Mercury (µg/L) | 1.88 (1.17) | 1.88 (1.17) | 1.91 (1.13) |
Selenium (µg/L) | 108.4 (25.3) | 108.4 (25.3) | 109.7 (26.3) |
Child | |||
Male | 6934 (51.5%) | 1985 (51.6%) | 299 (55.0%) |
Female | 6535 (48.5%) | 1859 (48.3%) | 245 (45.0%) |
Birthweight (g) | 3440 (640) | 3440 (650) | 3500 (620) |
Gestational age (days) | 280 (14) | 281 (14) | 282 (11) |
Predictor | Unadjusted (n = 544) | Adjusted (n = 544) | ||
---|---|---|---|---|
Coefficient | 95% CI | Coefficient | 95% CI | |
Mercury (1.048 μg/L) | −0.02 | −0.09 to 0.06 | −0.02 | −0.10 to 0.06 |
Mercury * selenium interaction | 0.00 | −0.10 to 0.09 | 0.01 | −0.09 to 0.12 |
Clinic Age | Mean Weight (kg) | n | Coefficient | 95% CI |
---|---|---|---|---|
4 months | 6.67 | 381 | −0.01 | −0.09 to 0.07 |
8 months | 8.90 | 497 | −0.02 | −0.12 to 0.07 |
12 months | 10.27 | 484 | 0.02 | −0.09 to 0.14 |
18 months | 11.49 | 445 | 0.03 | −0.09 to 0.16 |
25 months | 12.83 | 425 | 0.05 | −0.10 to 0.20 |
31 months | 14.11 | 438 | 0.10 | −0.07 to 0.27 |
37 months | 15.22 | 418 | 0.12 | −0.07 to 0.30 |
43 months | 16.41 | 413 | 0.14 | −0.06 to 0.34 |
49 months | 17.40 | 393 | 0.12 | −0.11 to 0.35 |
61 months | 19.69 | 381 | 0.33 | −0.00 to 0.67 |
Clinic Age | Mean Weight (kg) | 1st–9th Deciles Maternal Hg | 10th Decile Maternal Hg | ||||
---|---|---|---|---|---|---|---|
n | Coefficient | 95% CI | n | Coefficient | 95% CI | ||
4 months | 6.67 | 338 | 0.03 | −0.11 to 0.17 | 43 | −0.05 | −0.33 to 0.22 |
8 months | 8.90 | 444 | 0.05 | −0.12 to 0.21 | 53 | −0.18 | −0.49 to 0.12 |
12 months | 10.27 | 430 | 0.05 | −0.13 to 0.23 | 54 | −0.08 | −0.45 to 0.30 |
18 months | 11.49 | 397 | 0.06 | −0.15 to 0.26 | 48 | −0.22 | −0.70 to 0.22 |
25 months | 12.83 | 379 | 0.14 | −0.10 to 0.39 | 46 | −0.34 | −0.86 to 0.17 |
31 months | 14.11 | 388 | 0.12 | −0.16 to 0.40 | 50 | −0.20 | −0.78 to 0.37 |
37 months | 15.22 | 371 | 0.25 | −0.06 to 0.60 | 47 | −0.09 | −0.42 to 0.60 |
43 months | 16.41 | 362 | 0.22 | −0.13 to 0.56 | 50 | −0.21 | −0.82 to 0.41 |
49 months | 17.40 | 349 | 0.22 | −0.15 to 0.60 | 44 | −0.26 | −1.03 to 0.51 |
61 months | 19.69 | 337 | 0.50 | −0.02 to 1.01 | 44 | −0.01 | −1.74 to 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dack, K.; Wootton, R.E.; Taylor, C.M.; Lewis, S.J. Prenatal Mercury Exposure and Infant Weight Trajectories in a UK Observational Birth Cohort. Toxics 2023, 11, 10. https://doi.org/10.3390/toxics11010010
Dack K, Wootton RE, Taylor CM, Lewis SJ. Prenatal Mercury Exposure and Infant Weight Trajectories in a UK Observational Birth Cohort. Toxics. 2023; 11(1):10. https://doi.org/10.3390/toxics11010010
Chicago/Turabian StyleDack, Kyle, Robyn E. Wootton, Caroline M. Taylor, and Sarah J. Lewis. 2023. "Prenatal Mercury Exposure and Infant Weight Trajectories in a UK Observational Birth Cohort" Toxics 11, no. 1: 10. https://doi.org/10.3390/toxics11010010
APA StyleDack, K., Wootton, R. E., Taylor, C. M., & Lewis, S. J. (2023). Prenatal Mercury Exposure and Infant Weight Trajectories in a UK Observational Birth Cohort. Toxics, 11(1), 10. https://doi.org/10.3390/toxics11010010