Potentially Toxic Element Contamination in Soils Affected by the Antimony Mine Spill in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Spots
2.2. Sample Collection and Analysis
2.3. Assessment of PTEs Contamination
2.3.1. Geo-Accumulation Index
2.3.2. Enrichment Factor
2.3.3. Ecological Risk Assessment
2.4. Assessment of Human Health Risks
2.5. Statistical Analysis
3. Results and Discussion
3.1. Content of PTEs in Soil
3.2. Assessment of PTE Contamination
3.2.1. Geo-Accumulation Index Analysis Results
3.2.2. Enrichment Factor Analysis Results
3.2.3. Results of Igeo and EF Spatial Distribution of As, Hg and Sb
3.3. Ecological Risk Assessment
3.4. Source Identification of PTEs
3.4.1. Correlation Analysis
3.4.2. Principal Component Analysis
3.4.3. Hierarchical Cluster Analysis
3.5. Health Risk Assessment
3.5.1. Non-Carcinogenic Risk
3.5.2. Carcinogenic Risk
4. Conclusions
- The concentration of Sb and Hg in the study area were relatively excessive due to the antimony mine tailings spill.
- As, Hg and Sb were responsible for high levels of ecological contamination and they are associated with potential ecological risk.
- The multivariate statistical analysis showed that the areas highly contaminated with Hg and Sb were mainly due to the tailings spill. As in the soil was mainly from agricultural activities.
- The results of the spatial distribution revealed that Sb and Hg showed a trend of high levels in the southwest and northeast of the sampling area, a pattern consistent with these levels being due to the tailings leakage. The levels of As were higher in the dense urban regions in the central part of the study area, associated with anthropogenic activities. This corroborates the conclusions of the multivariate statistical analysis.
- The non-carcinogenic or carcinogenic risk is too high in all populations except for the non-carcinogenic risk for adults. Of the three population groups, children are the most vulnerable group. Ingestion is the most significant exposure pathway for potentially toxic elements posing a threat to human health. Non-carcinogenic risk from Sb and non-carcinogenic and carcinogenic risks from As are the main contributors to the health risk. Furthermore, the risks associated with Sb and As at the sampling sites were verified and Sb originated from antimony mine spills and As originated from agricultural activities.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adebayo, A.S.; Olufemi, A.P.; Ogundele, L.T.; Okunnuwa, O.Q.; Toyeje, A.B.; Olowookere, C.J. Ecological and human health risk assessments of metals in soil and tailing from Ife-Ijesha gold mining area, Southwest Nigeria. Environ. Earth Sci. 2022, 81, 462. [Google Scholar] [CrossRef]
- Dusengemungu, L.; Mubemba, B.; Gwanama, C. Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects. Sci. Rep. 2022, 12, 11283. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Sanchez, O.; Garcia-Lorenzo, M.L.; Esbri, J.M.; Sanchez-Donoso, R.; Iglesias-Martinez, M.; Arroyo, X.; Crespo-Feo, E.; Ruiz-Costa, N.; Roca-Perez, L.; Castineiras, P. Soil and Freshwater Bioassays to Assess Ecotoxicological Impact on Soils Affected by Mining Activities in the Iberian Pyrite Belt. Toxics 2022, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Fiuza, A.; Futuro, A.; Gois, J.; Dinis, M.L.; Vila, C.; Carvalho, S.; Fernandes, A. The Legacy of Potential Environmental Soil Contamination in an Antimony Mining Heritage Area. Minerals 2023, 13, 257. [Google Scholar] [CrossRef]
- Simic, S.B.; Miljkovic, P.; Baumgertel, A.; Lukic, S.; Ljubicic, J.; Cakmak, D. Environmental and Health Risk Assessment Due to Potentially Toxic Elements in Soil near Former Antimony Mine in Western Serbia. Land 2023, 12, 421. [Google Scholar] [CrossRef]
- Ettler, V.; Konecny, L.; Kovarova, L.; Mihaljevic, M.; Sebek, O.; Kribek, B.; Majer, V.; Veselovsky, F.; Penizek, V.; Vanek, A.; et al. Surprisingly contrasting metal distribution and fractionation patterns in copper smelter-affected tropical soils in forested and grassland areas (Mufulira, Zambian Copperbelt). Sci. Total Environ. 2014, 473, 117–124. [Google Scholar] [CrossRef]
- Gu, J.D. Mining, pollution and site remediation. Int. Biodeterior. Biodegrad. 2018, 128, 1–2. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, Z.W.; Li, Y.Y.; Ding, K.B.; Liu, W.S.; Liu, Y.; Yuan, Y.Q.; Zhang, M.Y.; Baker, A.J.M.; Yang, W.J.; et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J. Hazard Mater. 2020, 400, 123289. [Google Scholar] [CrossRef]
- Hatje, V.; Pedreira, R.M.A.; de Rezende, C.E.; Schettini, C.A.F.; de Souza, G.C.; Marin, D.C.; Hackspacher, P.C. The environmental impacts of one of the largest tailing dam failures worldwide. Sci. Rep. 2017, 7, 10706. [Google Scholar] [CrossRef] [Green Version]
- Moghtaderi, T.; Mahmoudi, S.; Shakeri, A.; Masihabadi, M.H. Heavy metals contamination and human health risk assessment in soils of an industrial area, Bandar Abbas-South Central Iran. Hum. Ecol. Risk Assess. 2018, 24, 1058–1073. [Google Scholar] [CrossRef]
- Nkansah, M.A.; Darko, G.; Dodd, M.; Opoku, F.; Essuman, T.B.; Antwi-Boasiako, J. Assessment of pollution levels, potential ecological risk and human health risk of heavy metals/metalloids in dust around fuel filling stations from the Kumasi Metropolis, Ghana. Cogent Environ. Sci. 2017, 3, 1412153. [Google Scholar] [CrossRef]
- Cai, L.M.; Xu, Z.C.; Ren, M.Z.; Guo, Q.W.; Hu, X.B.; Hu, G.C.; Wan, H.F.; Peng, P.G. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Q.; Zhu, Y.; Gu, Q.; Martín, J.D. Speciation, in vitro bioaccessibility and health risk of antimony in soils near an old industrial area. Sci. Total Environ. 2023, 854, 158767. [Google Scholar] [CrossRef]
- Zeng, D.F.; Zhou, S.J.; Ren, B.Z.; Chen, T.S. Bioaccumulation of Antimony and Arsenic in Vegetables and Health Risk Assessment in the Superlarge Antimony-Mining Area, China. J. Anal. Methods Chem. 2015, 2015, 909724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, X.Q.; Dong, Y.Q.; Feng, L.; Zhou, M.; Hou, H.B. Contamination and health risk assessment of heavy metals in China’s lead-zinc mine tailings: A meta-analysis. Chemosphere 2021, 267, 128909. [Google Scholar] [CrossRef] [PubMed]
- Onojake, M.C.; Frank, O. Assessment of heavy metals in a soil contaminated by oil spill: A case study in Nigeria. Chem. Ecol. 2013, 29, 246–254. [Google Scholar] [CrossRef]
- Fan, S.X.; Wang, X.D. Analysis and assessment of heavy metals pollution in soils around a Pb and Zn smelter in Baoji City, Northwest China. Hum. Ecol. Risk Assess. 2017, 23, 1099–1120. [Google Scholar] [CrossRef]
- Guan, Y.; Shao, C.F.; Ju, M.T. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas. Int. J. Environ. Res. Public Health 2014, 11, 7286–7303. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, R.; Kowalska, J.; Gasiorek, M.; Zadrozny, P.; Jozefowska, A.; Zaleski, T.; Kepka, W.; Tymczuk, M.; Orlowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
- Ma, L.; Sun, J.; Yang, Z.G.; Wang, L. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environ. Monit. Assess. 2015, 187, 731. [Google Scholar] [CrossRef]
- Rafiei, B.; Khodaei, A.S.; Khodabakhsh, S.; Hashemi, M.; Nejad, M.B. Contamination Assessment of Lead, Zinc, Copper, Cadmium, Arsenic and Antimony in Ahangaran Mine Soils, Malayer, West of Iran. Soil Sediment Contam. 2010, 19, 573–586. [Google Scholar] [CrossRef]
- USEPA. Exposure Factors Handbook, Volume 1: General Factors; United States Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1997.
- Xihe County People’s Government. Introduction to Xihe [EB/OL]. (February 2023). Available online: http://www.xihe.gov.cn/mlxh/xhjj/index.html (accessed on 28 March 2023).
- Zhang, X.J. Antimony pollution accident of Gansu Longxing enterprise and emergent water supply in Guangyuan City. Water Wastewater Eng. 2016, 42, 9–20. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. Gansu Longxing Antimony Industry Limited Liability Company “11.23” Tailings Pond Leakage Secondary Major Environmental Emergencies Investigation Report [EB/OL]. (12 March 2021). Available online: https://www.mee.gov.cn/home/ztbd/2021/yacjtshjyjnl/yacjdxal/202103/t20210312_824442.shtml (accessed on 28 March 2023).
- China. The Technical Specification for Soil Environmental Monitoring (HJ/T 166–2004); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2004. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200412/t20041209_63367.shtml (accessed on 28 March 2023).
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geo. J. 1969, 2, 108–118. [Google Scholar]
- Oyebanniji, A.; Annanannbu, A.; Zafar, T.; Adewumi, A.J.; Akinyemi, D.S. Expected impacts of active mining on the distribution of heavy metals in soils around Iludun-Oro and its environs, Southwestern Nigeria. Cogent Environ. Sci. 2018, 4, 1495046. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution-control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Fan, S.X.; Wang, X.D.; Lei, J.; Ran, Q.Q.; Ren, Y.X.; Zhou, J.H. Spatial distribution and source identification of heavy metals in a typical Pb/Zn smelter in an arid area of northwest China. Hum. Ecol. Risk Assess. 2019, 25, 1661–1687. [Google Scholar] [CrossRef]
- Buatmenard, P.; Chesselet, R. Variable influence of the atmosphere flux on the trace-metal chemistry of oceanic suspended mater. Earth Planet Sci. Lett. 1979, 42, 399–411. [Google Scholar] [CrossRef]
- Yu, J.; Huang, Z.Y.; Chen, T.; Qin, D.P.; Zeng, X.C.; Huang, Y.F. Evaluation of ecological risk and source of heavy metals in vegetable-growing soils in Fujian province, China. Environ. Earth Sci. 2012, 65, 29–37. [Google Scholar] [CrossRef]
- Long, Z.J.; Huang, Y.; Zhang, W.; Shi, Z.L.; Yu, D.M.; Chen, Y.; Liu, C.; Wang, R. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.Q.; Wang, S.J.; Bai, X.Y.; Zhou, D.Q.; Luo, G.J.; Yang, Y.J.; Hu, Z.Y.; Li, C.J.; Deng, Y.H.; Lu, Q. Ecological security and health risk assessment of soil heavy metals on a village-level scale, based on different land use types. Environ. Geochem. Health 2020, 42, 3393–3413. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.T.; Li, Y.; Yang, J.Y.; Lei, K.G.; Li, Y.; Li, F.; Zheng, D.F.; Fang, X.Q.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Tan, D.; Deng, S.H.; Lei, M. Pollution and ecological risk assessment of antimony and other heavy metals in soils from the world’s largest antimony mine area, China. Hum. Ecol. Risk Assess. 2018, 24, 679–690. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A); US Environmental Protection Agency: Washington, DC, USA, 1989.
- USEPA. Exposure Factors Handbook, Final ed.; United States Environmental Protection Agency: Washington, DC, USA, 2011.
- Duan, X.L. Chinese Population Exposure Parameters Manual (Children Volume Summary); China Environment Press: Beijing, China, 2016. [Google Scholar]
- Zhao, X.G.; Duan, X.L. Chinese Population Exposure Parameters Manual (Adult Volume); China Environment Press: Beijing, China, 2014. [Google Scholar]
- Alsafran, M.; Usman, K.; Al Jabri, H.; Rizwan, M. Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar. Toxics 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Gad, A.; Saleh, A.; Farhat, H.I.; Dawood, Y.H.; Abd El Bakey, S.M. Spatial Distribution, Contamination Levels, and Health Risk Assessment of Potentially Toxic Elements in Household Dust in Cairo City, Egypt. Toxics 2022, 10, 466. [Google Scholar] [CrossRef]
- USEPA. Risk-Based Concentration Table; United States Environmental Protection Agency: Washington, DC, USA, 2002.
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; US Environmental Protection Agency: Washington, DC, USA, 2001.
- Xiao, X.; Zhang, J.X.; Wang, H.; Han, X.X.; Ma, J.; Ma, Y.; Luan, H.J. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Sci. Total Environ. 2020, 713, 135292. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund: Volume III Part A, Process for Conducting Probabilistic Risk Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2011.
- Wang, F.F.; Guan, Q.Y.; Tian, J.; Lin, J.K.; Yang, Y.Y.; Yang, L.Q.; Pan, N.H. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena 2020, 191, 104573. [Google Scholar] [CrossRef]
- Jiang, H.H.; Cai, L.M.; Wen, H.H.; Hu, G.C.; Chen, L.G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.T.; Zeng, G.M.; Gao, X.; Zhong, M.Z.; Li, X.D.; Li, X.; He, X.Y.; Fang, Y.L. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- State Environmental Protection Administration of the People’s Republic of China. Environmental Quality Standard for Soils (GB 15618–1995); State Environmental Protection Administration of the People’s Republic of China: Beijing, China, 1995. [Google Scholar]
- Zhang, X.W.; Yang, L.S.; Li, Y.H.; Li, H.R.; Wang, W.Y.; Ye, B.X. Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess. 2012, 184, 2261–2273. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Alexakis, D. Diagnosis of stream sediment quality and assessment of toxic element contamination sources in East Attica, Greece. Environ. Earth Sci. 2011, 63, 1369–1383. [Google Scholar] [CrossRef]
- Luo, N.; Yu, R.; Wen, B.; Li, X.; Liu, X.; Li, X. Identifying Anthropogenic Sources of Heavy Metals in Alpine Peatlands over the Past 150 Years: Examples from Typical Peatlands in Altay Mountains, Northwest China. Int. J. Environ. Res. Public Health 2023, 20, 5013. [Google Scholar] [CrossRef]
- Alharbi, T.; El-Sorogy, A.S. Spatial distribution and risk assessment of heavy metals pollution in soils of marine origin in central Saudi Arabia. Mar. Pollut. Bull. 2021, 170, 112605. [Google Scholar] [CrossRef]
- Dhakate, R.; Ratnalu, G.V.; Laxmankumar, D. Evaluation of heavy metals contamination in soils at Peenya Industrial Area, Bengarulu, India. Arab. J. Geosci. 2020, 13, 880. [Google Scholar] [CrossRef]
- Tadesse, A.W.; Gereslassie, T.; Xu, Q.; Tang, X.J.; Wang, J. Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China. Int. J. Environ. Res. Public Health 2018, 15, 2873. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.A.H.; Karmaker, S.C.; Bodrud-Doza, M.; Rakib, M.A.; Saha, B.B. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM, PMF and GIS methods. Chemosphere 2021, 263, 128339. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, H.J.; Peng, T.J.; Ding, W.J.; Liu, B.; Liu, Q. Comprehensive evaluation of environmental availability, pollution level and leaching heavy metals behavior in non-ferrous metal tailings. J. Environ. Manag. 2021, 290, 112639. [Google Scholar] [CrossRef] [PubMed]
- Farhat, H.I.; Gad, A.; Saleh, A.; Abd El Bakey, S.M. Risks Assessment of Potentially Toxic Elements’ Contamination in the Egyptian Red Sea Surficial Sediments. Land 2022, 11, 1560. [Google Scholar] [CrossRef]
- Fu, S.; Wei, C.Y. Multivariate and spatial analysis of heavy metal sources and variations in a large old antimony mine, China. J. Soils Sediments 2013, 13, 106–116. [Google Scholar] [CrossRef]
- Islam, M.S.; Hossain, M.B.; Matin, A.; Sarker, M.S.I. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere 2018, 202, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shan, B.Q.; Tang, W.Z.; Dong, L.X.; Zhang, W.Q.; Pei, Y.S. Heavy metal concentrations and speciation in riverine sediments and the risks posed in three urban belts in the Haihe Basin. Ecotoxicol. Environ. Saf. 2017, 139, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Yang, L.Y.; Kong, L.H.; Liu, E.F.; Wang, L.F.; Zhu, J.R. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Streets, D.G.; Hao, J.M.; Wu, Y.; Jiang, J.K.; Chan, M.; Tian, H.Z.; Feng, X.B. Anthropogenic mercury emissions in China. Atmos Environ. 2005, 39, 7789–7806. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.L.; Zhi, Y.Y.; Yang, L.P.; Shi, J.C.; Zeng, L.Z.; Wu, L.S. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China). Environ. Sci. Pollut. Res. 2014, 21, 7698–7707. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Welch, A.H.; Stollenwerk, K.G.; McLaughlin, M.J.; Bundschuh, J.; Panaullah, G. Arsenic in the environment: Biology and Chemistry. Sci. Total Environ. 2007, 379, 109–120. [Google Scholar] [CrossRef]
- Nziguheba, G.; Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 2008, 390, 53–57. [Google Scholar] [CrossRef]
- Alexakis, D.E. Multielement Contamination of Land in the Margin of Highways. Land 2021, 10, 230. [Google Scholar] [CrossRef]
- Yu, R.; Cui, Z.W.; Luo, N.N.; Yu, Y. Detection and Assessments of Sources and Health Hazards Caused by Heavy Metals in the Dust of Urban Streets in Harbin, Northeast China. Sustainability 2022, 14, 11657. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.Z.; Duan, X.L.; Ma, Y.Q.; Zhao, X.G.; Qin, Y.W.; Liu, Y.; Li, S.; Zheng, B.H.; Wei, F.S. Health benefit from decreasing exposure to heavy metals and metalloid after strict pollution control measures near a typical river basin area in China. Chemosphere 2017, 184, 866–878. [Google Scholar] [CrossRef] [PubMed]
Enrichment Factor (EF) | Degree of Pollution | Geo-Accumulation Index (Igeo) | Degree of Pollution | Individual Potential Ecological | Degree of Pollution | Comprehensive Potential Ecological Risk Index (RI) | Degree of Pollution |
---|---|---|---|---|---|---|---|
EF < 2 | No or minimal pollution | Igeo < 0 | Practically uncontaminated | < 40 | Low risk | RI < 150 | Low risk |
2 ≤ EF < 5 | Moderate pollution | 0 ≤ Igeo < 1 | Uncontaminated to moderately contaminated | 40 ≤ < 80 | Moderate risk | 150 ≤ RI < 300 | Moderate risk |
5 ≤ EF < 20 | Notable pollution | 1 ≤ Igeo < 2 | Moderately contaminated | 80 ≤ < 160 | Considerable risk | 300 ≤ RI < 600 | Considerable risk |
20 ≤ EF < 40 | High pollution | 2 ≤ Igeo < 3 | Moderately to heavily contaminated | 160 ≤ < 320 | High risk | RI ≥ 600 | High risk |
EF ≥ 40 | Extreme pollution | 3 ≤ Igeo < 4 | Heavily contaminated | ≥ 320 | Very-high risk | ||
4 ≤ Igeo < 5 | Heavily to extremely contaminated | ||||||
Igeo ≥ 5 | Extremely contaminated |
Values | As | Cu | Hg | Ni | Pb | Sb | Zn | Al |
---|---|---|---|---|---|---|---|---|
Maximum | 146.28 | 44.7 | 2.92 | 45.3 | 33.2 | 238.2 | 176.2 | 99,096 |
Minimum | 27.46 | 24.4 | 0.19 | 20.6 | 7.2 | 3.2 | 55.3 | 50,774.2 |
Mean | 116.40 | 30.42 | 0.84 | 28.78 | 16.89 | 33.34 | 82.49 | 65,253.93 |
SD | 32.28 | 4.90 | 0.75 | 4.79 | 6.51 | 52.64 | 28.83 | 9347.84 |
CV | 0.28 | 0.16 | 0.89 | 0.17 | 0.39 | 1.58 | 0.35 | 0.14 |
Gansu a | 11.1 | 21.4 | 0.03 | 28.8 | 21.4 | 1.34 | 69.4 | 68,300 |
Tailing b | 156.6 | 14.9 | 7.85 | – | 112.1 | 2493.3 | 38.7 | – |
Grade II | 20–25 | 100 | 0.5–1.0 | 50–60 | 300–350 | – | 250–300 | – |
Region | Index | As | Cu | Hg | Ni | Pb | Sb | Zn | Reference |
---|---|---|---|---|---|---|---|---|---|
Xihe County, China | Concentration (mg kg−1) | 116.40 | 30.42 | 0.84 | 28.78 | 16.89 | 33.34 | 82.49 | This study |
The East Attica region, Greece | 41.8 | 31.9 | – | 172 | 217 | 3.5 | 170 | [55] | |
The Jiadengyu Peatlands in the Altay Mountains, China | 3.75 | 37.60 | 0.26 | 19.62 | 25.57 | 0.67 | 46.17 | [56] | |
Al Uyaynah–Al Jubailah region, Saudi Arabia | 13.8 | 10.56 | 0.11 | 19.25 | 28.48 | 0.067 | 64.33 | [57] | |
Xihe County, China | Igeo | 2.71 | -0.09 | 3.76 | −0.60 | −1.03 | 2.84 | −0.40 | This study |
The Peenya Industrial Area, Bengarulu, India | −0.05 | 9.39 | – | – | 8.77 | − 0.57 | 12 | [58] | |
Huangpi district, Wuhan, China | −0.53 | 0.21 | −0.58 | 0.99 | 0.5 | −2.09 | −5.5 | [59] | |
Xihe County, China | EF | 11.08 | 1.49 | 29.43 | 1.05 | 0.84 | 25.21 | 1.24 | This study |
Al Uyaynah–Al Jubailah region, Saudi Arabia | 2.79 | 0.37 | 2.11 | 0.91 | 1.47 | 1.49 | 1.25 | [57] | |
Huangpi district, Wuhan, China | 1.36 | 2.13 | 2.02 | 3.44 | 2.99 | 0.38 | 0.04 | [59] | |
Xihe County, China | 104.86 | 7.11 | 1118.87 | 5.00 | 3.95 | 248.84 | 1.19 | This study | |
Al Uyaynah–Al Jubailah region, Saudi Arabia | 20.20 | 1.36 | 62.29 | 3.28 | 5.27 | 0.50 | 0.90 | [57] | |
Huangpi district, Wuhan, China | 10.39 | 10.39 | 40 | 14.89 | 10.59 | 5.27 | 0.03 | [59] |
As | Cu | Hg | Ni | Pb | Sb | Zn | |
---|---|---|---|---|---|---|---|
As | 1 | 0.21 | 0.21 | −0.23 | 0.39 * | 0.37 | 0.27 |
Cu | 1 | 0.14 | 0.68 ** | 0.10 | 0.07 | 0.51 ** | |
Hg | 1 | −0.02 | 0.31 | 0.82 ** | 0.41 * | ||
Ni | 1 | 0.13 | −0.16 | 0.48 * | |||
Pb | 1 | 0.35 | 0.23 | ||||
Sb | 1 | 0.47 * | |||||
Zn | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Y.; Guo, F. Potentially Toxic Element Contamination in Soils Affected by the Antimony Mine Spill in Northwest China. Toxics 2023, 11, 359. https://doi.org/10.3390/toxics11040359
Chai Y, Guo F. Potentially Toxic Element Contamination in Soils Affected by the Antimony Mine Spill in Northwest China. Toxics. 2023; 11(4):359. https://doi.org/10.3390/toxics11040359
Chicago/Turabian StyleChai, Yongzhen, and Fei Guo. 2023. "Potentially Toxic Element Contamination in Soils Affected by the Antimony Mine Spill in Northwest China" Toxics 11, no. 4: 359. https://doi.org/10.3390/toxics11040359
APA StyleChai, Y., & Guo, F. (2023). Potentially Toxic Element Contamination in Soils Affected by the Antimony Mine Spill in Northwest China. Toxics, 11(4), 359. https://doi.org/10.3390/toxics11040359