Mitigating Ecotoxicity Risks of Pesticides on Ornamental Plants Based on Life Cycle Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pesticide Usage Data Collection
2.2. Ecotoxicity Assessment of Pesticide Based on LCA
- Conducting an LCI analysis on the pesticide active ingredients by taking into account the application method, timing, quality, and crop growth stage of the pesticide to determine the proportion of pesticide active ingredient emissions in the field and off the field.
- Assessing the ecotoxicity characterization of the pesticide active ingredient in the LCIA stage.
- Establishing a correlation between the environmental compartment emission distribution in the LCI and LCIA stages and the toxicity characterization of the pesticide in different environmental compartments.
2.2.1. Goals, Functional Unit, and System Boundary
2.2.2. Life Cycle Inventory: Tracking the Environmental Fate of Pesticides
2.2.3. Life Cycle Impact Assessment: Assessing the Ecotoxicity of Pesticides
2.2.4. Hotspot Pesticide Identification
3. Result
3.1. Pesticide Usage and Ecotoxicity
3.2. Variation of Pesticide Usage and Ecotoxicity across Crop Types
3.3. Hotspot Identification
3.4. Mitigation of Pesticide Ecotoxicity Impact
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhuri, T.K.; Deka, K. Biodiversity and Conservation of Ornamental Crops. In Conservation and Utilization of Horticultural Genetic Resources; Rajasekharan, P.E., Rao, V.R., Eds.; Springer: Singapore, 2019; pp. 139–216. ISBN 9789811336690. [Google Scholar]
- Pudup, M.B. It Takes a Garden: Cultivating Citizen-Subjects in Organized Garden Projects. Geoforum 2008, 39, 1228–1240. [Google Scholar] [CrossRef]
- van Tuyl, J.M.; Arens, P.; Miller, W.B.; Anderson, N.O. The Role of Ornamentals in Human Life. In Horticulture: Plants for People and Places, Volume 1: Production Horticulture; Dixon, G.R., Aldous, D.E., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 407–433. ISBN 978-94-017-8578-5. [Google Scholar]
- Global Flower and Ornamental Plants Market|Expected to Reach USD 52384.85 Million in 2022|Growing at CAGR of 7.28%|Forecast Period 2023–2028. Available online: https://www.marketwatch.com/press-release/global-flower-and-ornamental-plants-market-expected-to-reach-usd-5238485-million-in-2022-growing-at-cagr-of-728-forecast-period-2023-2028-2023-01-23 (accessed on 18 February 2023).
- Pereira, P.C.G.; Parente, C.E.T.; Carvalho, G.O.; Torres, J.P.M.; Meire, R.O.; Dorneles, P.R.; Malm, O. A Review on Pesticides in Flower Production: A Push to Reduce Human Exposure and Environmental Contamination. Environ. Pollut. 2021, 289, 117817. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, N.; Mercier, F.; Chevrier, C.; Bonvallot, N.; Le Bot, B. Characterization of Multiple Pesticide Exposure in Pregnant Women in Brittany, France. J. Expo. Sci. Environ. Epidemiol. 2022, 1, 1–9. [Google Scholar] [CrossRef]
- Kendall, A.; McPherson, E.G. A Life Cycle Greenhouse Gas Inventory of a Tree Production System. Int. J. Life Cycle Assess. 2012, 17, 444–452. [Google Scholar] [CrossRef]
- Perrings, C.; Dehnen-Schmutz, K.; Touza, J.; Williamson, M. How to Manage Biological Invasions under Globalization. Trends Ecol. Evol. 2005, 20, 212–215. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive Species, Environmental Change and Management, and Health. Annu. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of Pesticide Pollution at the Global Scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Maggi, F.; Tang, F.H.M.; la Cecilia, D.; McBratney, A. PEST-CHEMGRIDS, Global Gridded Maps of the Top 20 Crop-Specific Pesticide Application Rates from 2015 to 2025. Sci. Data 2019, 6, 170. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.-C.; Tam, V.W.Y.; Xing, W.; Rina, D.; Chan, Z. Life Cycle Environmental Impacts of Cut Flowers: A Review. J. Clean. Prod. 2022, 369, 133415. [Google Scholar] [CrossRef]
- Wang, D.; White, J.C. Benefit of Nano-Enabled Agrochemicals. Nat. Food 2022, 3, 983–984. [Google Scholar] [CrossRef]
- Casado, J.; Brigden, K.; Santillo, D.; Johnston, P. Screening of Pesticides and Veterinary Drugs in Small Streams in the European Union by Liquid Chromatography High Resolution Mass Spectrometry. Sci. Total Environ. 2019, 670, 1204–1225. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide Decline of the Entomofauna: A Review of Its Drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Hayes, T.B.; Collins, A.; Lee, M.; Mendoza, M.; Noriega, N.; Stuart, A.A.; Vonk, A. Hermaphroditic, Demasculinized Frogs after Exposure to the Herbicide Atrazine at Low Ecologically Relevant Doses. Proc. Natl. Acad. Sci. USA 2002, 99, 5476–5480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Prisco, G.; Cavaliere, V.; Annoscia, D.; Varricchio, P.; Caprio, E.; Nazzi, F.; Gargiulo, G.; Pennacchio, F. Neonicotinoid Clothianidin Adversely Affects Insect Immunity and Promotes Replication of a Viral Pathogen in Honey Bees. Proc. Natl. Acad. Sci. USA 2013, 110, 18466–18471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linguadoca, A.; Jürison, M.; Hellström, S.; Straw, E.A.; Šima, P.; Karise, R.; Costa, C.; Serra, G.; Colombo, R.; Paxton, R.J.; et al. Intra-Specific Variation in Sensitivity of Bombus Terrestris and Osmia Bicornis to Three Pesticides. Sci. Rep. 2022, 12, 17311. [Google Scholar] [CrossRef]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent Developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef]
- Hellweg, S.; Milà i Canals, L. Emerging Approaches, Challenges and Opportunities in Life Cycle Assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef]
- Salehpour, T.; Khanali, M.; Rajabipour, A. Environmental Impact Assessment for Ornamental Plant Greenhouse: Life Cycle Assessment Approach for Primrose Production. Environ. Pollut. 2020, 266, 115258. [Google Scholar] [CrossRef]
- van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards Better Representation of Organic Agriculture in Life Cycle Assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Barizon, R.R.M. PestLCI Model: Parameterization for Scenarios of Brazilian Agricultural Production; Embrapa Environment: Brasilia, Brazil, 2021. [Google Scholar]
- Gentil-Sergent, C.; Basset-Mens, C.; Gaab, J.; Mottes, C.; Melero, C.; Fantke, P. Quantifying Pesticide Emission Fractions for Tropical Conditions. Chemosphere 2021, 275, 130014. [Google Scholar] [CrossRef]
- Nemecek, T.; Antón, A.; Basset-Mens, C.; Gentil-Sergent, C.; Renaud-Gentié, C.; Melero, C.; Naviaux, P.; Peña, N.; Roux, P.; Fantke, P. Operationalising Emission and Toxicity Modelling of Pesticides in LCA: The OLCA-Pest Project Contribution. Int. J. Life Cycle Assess. 2022, 27, 527–542. [Google Scholar] [CrossRef]
- Wei, X.; Khachatryan, H.; Hodges, A.; Hall, C.; Palma, M.; Torres, A.; Brumfield, R. Exploring Market Choices in the US Ornamental Horticulture Industry. Agribusiness 2023, 39, 65–109. [Google Scholar] [CrossRef]
- USDA—National Agricultural Statistics Service—Surveys—Agricultural Chemical Use Program. Available online: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/ (accessed on 15 February 2023).
- Birkved, M.; Hauschild, M.Z. PestLCI—A Model for Estimating Field Emissions of Pesticides in Agricultural LCA. Ecol. Model. 2006, 198, 433–451. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Anton, A.; Bengoa, X.; Bjørn, A.; Brain, R.; Bulle, C.; Cosme, N.; Dijkman, T.J.; Fantke, P.; Felix, M.; et al. The Glasgow Consensus on the Delineation between Pesticide Emission Inventory and Impact Assessment for LCA. Int. J. Life Cycle Assess. 2015, 20, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Fantke, P.; Bijster, M.; Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; Kounina, A.; Magaud, V.; Margni, M.; McKone, T.E.; Rosenbaum, R.K.; et al. USEtox® 2.0 Documentation (Version 1.00); Technical University of Denmark (DTU): Copenhagen, Denmark, 2017. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 18 February 2023).
- Schmidt Rivera, X.C.; Bacenetti, J.; Fusi, A.; Niero, M. The Influence of Fertiliser and Pesticide Emissions Model on Life Cycle Assessment of Agricultural Products: The Case of Danish and Italian Barley. Sci. Total Environ. 2017, 592, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Abhilash, P.C.; Singh, N. Pesticide Use and Application: An Indian Scenario. J. Hazard. Mater. 2009, 165, 1–12. [Google Scholar] [CrossRef]
- Chatzimichael, K.; Genius, M.; Tzouvelekas, V. Pesticide Use, Health Impairments and Economic Losses under Rational Farmers Behavior. Am. J. Agric. Econ. 2022, 104, 765–790. [Google Scholar] [CrossRef]
- Kah, M.; Hofmann, T. Nanopesticide Research: Current Trends and Future Priorities. Environ. Int. 2014, 63, 224–235. [Google Scholar] [CrossRef]
- Kookana, R.S.; Boxall, A.B.A.; Reeves, P.T.; Ashauer, R.; Beulke, S.; Chaudhry, Q.; Cornelis, G.; Fernandes, T.F.; Gan, J.; Kah, M.; et al. Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. J. Agric. Food Chem. 2014, 62, 4227–4240. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-Enabled Pesticides for Sustainable Agriculture and Global Food Security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Jiang, Y.; Guo, Y.; Desneux, N. Widespread Adoption of Bt Cotton and Insecticide Decrease Promotes Biocontrol Services. Nature 2012, 487, 362–365. [Google Scholar] [CrossRef]
- Borel, B. CRISPR, Microbes and More Are Joining the War against Crop Killers. Nature 2017, 543, 302–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhsh, A.; Khabbazi, S.D.; Baloch, F.S.; Demirel, U.; Çalişkan, M.E.; Hatipoğlu, R.; Özcan, S.; Özkan, H. Insect-Resistant Transgenic Crops: Retrospect and Challenges. Turk. J. Agric. For. 2015, 39, 531–548. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, L.; Coppola, G.; Zelasco, S. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants. Trends Biotechnol. 2016, 34, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Barrera Necha, L.L.; Bautista-Baños, S. Chapter 8—Prospects for the Use of Chitosan and Other Alternatives in Ornamental Conservation. In Chitosan in the Preservation of Agricultural Commodities; Bautista-Baños, S., Romanazzi, G., Jiménez-Aparicio, A., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 221–249. ISBN 978-0-12-802735-6. [Google Scholar]
- Eddleston, M.; Karalliedde, L.; Buckley, N.; Fernando, R.; Hutchinson, G.; Isbister, G.; Konradsen, F.; Murray, D.; Piola, J.C.; Senanayake, N.; et al. Pesticide Poisoning in the Developing World—A Minimum Pesticides List. Lancet 2002, 360, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G. Neurotoxicity of Pesticides: A Brief Review. Front. Biosci. 2008, 13, 1240. [Google Scholar] [CrossRef] [Green Version]
- London, L.; Beseler, C.; Bouchard, M.F.; Bellinger, D.C.; Colosio, C.; Grandjean, P.; Harari, R.; Kootbodien, T.; Kromhout, H.; Little, F.; et al. Neurobehavioral and Neurodevelopmental Effects of Pesticide Exposures. Neurotoxicology 2012, 33, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Larsen, A.E.; Claire Powers, L.; McComb, S. Identifying and Characterizing Pesticide Use on 9000 Fields of Organic Agriculture. Nat. Commun. 2021, 12, 5461. [Google Scholar] [CrossRef]
Category | Plants or Crops | Number of AIs |
---|---|---|
Floriculture | Cut Greens | 20 |
Floriculture | Bedding Annual | 39 |
Floriculture | Foliage Plants | 32 |
Floriculture | Bedding Perennial | 34 |
Floriculture | Flowering Potted | 40 |
Floriculture | Cut Flowers | 52 |
Nursery | Ornamental Grasses | 8 |
Nursery | Palms | 12 |
Nursery | Deciduous Shade Trees | 36 |
Nursery | Deciduous Shrubs | 38 |
Nursery | Evergreens, Broadleaf | 45 |
Nursery | Deciduous Flowering Trees | 26 |
Nursery | Other Woody and Vines | 46 |
Nursery | Christmas Trees | 32 |
Nursery | Evergreens, Coniferous | 41 |
Field crops | Wheat | 53 |
Field crops | Rice | 33 |
Field crops | Soybeans | 69 |
Field crops | Corn | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Feng, L.; Gong, Y. Mitigating Ecotoxicity Risks of Pesticides on Ornamental Plants Based on Life Cycle Assessment. Toxics 2023, 11, 360. https://doi.org/10.3390/toxics11040360
Yin X, Feng L, Gong Y. Mitigating Ecotoxicity Risks of Pesticides on Ornamental Plants Based on Life Cycle Assessment. Toxics. 2023; 11(4):360. https://doi.org/10.3390/toxics11040360
Chicago/Turabian StyleYin, Xinhan, Lei Feng, and Yi Gong. 2023. "Mitigating Ecotoxicity Risks of Pesticides on Ornamental Plants Based on Life Cycle Assessment" Toxics 11, no. 4: 360. https://doi.org/10.3390/toxics11040360
APA StyleYin, X., Feng, L., & Gong, Y. (2023). Mitigating Ecotoxicity Risks of Pesticides on Ornamental Plants Based on Life Cycle Assessment. Toxics, 11(4), 360. https://doi.org/10.3390/toxics11040360