A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission
Abstract
:1. Introduction
2. Methodology for the Study of Antibiotics, ARB, and ARGs
3. The Presence of Antibiotics, ARB, and ARGs in Aquaculture Environments
3.1. Type and Abundance of Antibiotics, ARB, and ARGs in Aquaculture Water
3.1.1. Antibiotics in Aquaculture Water
3.1.2. Occurrence of ARB and ARGs in Aquaculture Water
3.2. Type and Abundance of Antibiotics, ARB, and ARGs in Aquaculture Sediments
3.2.1. Occurrence of Antibiotics in Sediments
3.2.2. Status of ARB and ARGs in Aquaculture Sediments
3.3. Type and Abundance of Antibiotics, ARB, and ARGs in Aquaculture Organisms
3.3.1. Retention of Antibiotics in Aquaculture Organisms
3.3.2. Status of ARB and ARGs in Aquaculture Organisms
4. Association between Antibiotics, ARB, and ARGs in Aquaculture Ecosystems
4.1. Mechanism of Interaction between Antibiotics, ARB, and ARGs
4.2. Ecological Risks of Antibiotics Residues, ARB, and ARGs in Aquatic Ecosystems
- RQs, the risk quotients;
- PEC, the predicted environmental concentration;
- MEC, measured environmental concentration;
- PNEC, predicted no-effect concentration.
- LC50, half lethal concentration;
- EC50, half maximal effective concentration;
- AF, assessment factor.
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wenning, R. The state of world fisheries and aquaculture (sofia) 2020 report. Integr. Environ. Assess. Manag. 2020, 16, 800–801. [Google Scholar]
- Yılmaz, S.; Ergün, S.; Yiğit, M.; Yılmaz, E. An extensive review on the use of feed additives against fish diseases and improvement of health status of fish in turkish aquaculture sector. Aquac. Stud. 2022, 22, AQUAST710. [Google Scholar] [CrossRef]
- Assefa, A.; Abunna, F. Maintenance of fish health in aquaculture, review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int. 2018, 2018, 5432497. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Y.; Wang, J.; Zhang, Y.; Zhang, P.; Li, X.; Zou, J.X.; Zhou, A.J. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. J. Hazard. Mater. 2021, 403, 123961. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- Knapp, C.W.; Dolfing, J.; Ehlert, P.A.I.; Graham, D.W. Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940. Environ. Sci. Technol. 2010, 44, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nobrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings, a systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Yang, F.; Mao, D.; Luo, Y.; Wang, Q.; Mu, Q.H. Horizontal transfer of antibiotic resistance genes in the environment. Chin. J. Appl. Ecol. 2013, 24, 2993–3002. [Google Scholar]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments, Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Martinez, J.L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321, 365–367. [Google Scholar] [CrossRef]
- Martinez, J.L.; Baquero, F.; Andersson, D.I. Predicting antibiotic resistance. Nat. Rev. Microbiol. 2007, 5, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qiu, Y.; Song, Y.; Lin, H.; Yin, H. Dissecting horizontal and vertical gene transfer of antibiotic resistance plasmid in bacterial community using microfluidics. Environ. Int. 2019, 131, 105007. [Google Scholar] [CrossRef] [PubMed]
- Su, H.C.; Pan, C.G.; Ying, G.G.; Zhao, J.L.; Zhou, L.J.; Liu, Y.S.; Tao, R.; Zhang, R.Q.; He, L.Y. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. Sci. Total Environ. 2014, 490, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract, potential spread of antibiotic resistance genes. Infect. Drug Resist. 2014, 7, 167–176. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Li, F.; Hua, T.; Zhou, Q.; Ho, S.H. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment, a critical review. J. Hazard. Mater. 2021, 411, 125148. [Google Scholar] [CrossRef]
- Chen, J.; Huang, L.; Wang, Q.; Zeng, H.; Xu, J.; Chen, Z. Antibiotics in aquaculture ponds from Guilin, South of China, Occurrence, distribution, and health risk assessment. Environ. Res. 2022, 204, 112084. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z.L. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef]
- Kim, S.-C.; Carlson, K. Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed. Water Res. 2006, 40, 2549–2560. [Google Scholar] [CrossRef]
- Rezk, M.; Riad, S.; Khattab, F.; Marzouk, H. Multi-residues determination of antimicrobials in fish tissues by HPLC-ESI-MS/MS method. J. Chromatogr. B 2015, 978, 103–110. [Google Scholar] [CrossRef]
- Park, Y.K.; Fox, L.K.; Hancock, D.D.; McMahan, W.; Park, Y.H. Prevalence and antibiotic resistance of mastitis pathogens isolated from dairy herds transitioning to organic management. J. Vet. Sci. 2012, 13, 103–105. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, N.; Wang, Y.; Zhang, H.; Zhao, W.; Ma, L. Determination of tetracycline residues in Qinghai yak by time-resolved fluorescence immunochromatography. Vet. Guide 2021, 2021, 135–136. [Google Scholar]
- Liu, Y.; Li, B.; Qiu, Y.; Ding, H.; Wang, Y.; Wang, S.; Li, J. Distribution and removal characteristics of antibiotic resistant bacteria in wastewater treatment plants at Wuxi. Acta Sci. Circumstantiae 2017, 37, 2114–2121. [Google Scholar]
- Le, T.H.; Ng, C.; Chen, H.; Yi, X.Z.; Koh, T.H.; Barkham, T.M.S.; Zhou, Z.; Gin, K.Y.-H. Occurrences and characterization of antibiotic-resistant bacteria and genetic determinants of hospital wastewater in a tropical country. Antimicrob. Agents Chemother. 2016, 60, 7449–7456. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Xue, C.; Fan, H.; Wu, N. Research progress of antibiotic resistance genes in environment. Prev. Med. 2020, 32, 1121–1125+1129. [Google Scholar]
- Che, J.; Chen, X.; Li, J.; Lu, J. Application of different detection techniques for bacterial drug resistance test. Dis. Surveill. 2017, 32, 757–763. [Google Scholar]
- Dang, C.; Xia, Y.; Zheng, M.; Liu, T.; Liu, W.; Chen, Q.; Ni, J.R. Metagenomic insights into the profile of antibiotic resistomes in a large drinking water reservoir. Environ. Int. 2020, 136, 105449. [Google Scholar] [CrossRef]
- Su, J.; Huang, F.; Zhu, Y. Antibiotic resistance genes in the environment. Biodivers. Sci. 2013, 21, 481–487. [Google Scholar]
- An, X.L.; Su, J.Q.; Li, B.; Ouyang, W.Y.; Zhao, Y.; Chen, Q.L.; Cui, L.; Chen, H.; Gillings, M.R.; Zhang, T. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environ. Int. 2018, 117, 146–153. [Google Scholar] [CrossRef]
- Hu, H.Y.; Liu, H.M.; Meng, L.; Dong, L.; Lan, T.; Zheng, N.; Chen, J.B.; Wang, J.Q. Application of metagenomics in the detection of microbial antibiotic resistance genes. Microbiol. Chain. 2019, 46, 3110–3123. [Google Scholar]
- Sun, Y.; Clarke, B.; Clarke, J.; Li, X. Predicting antibiotic resistance gene abundance in activated sludge using shotgun metagenomics and machine learning. Water Res. 2021, 202, 117384. [Google Scholar] [CrossRef]
- Forsberg, K.J.; Reyes, A.; Wang, B.; Selleck, E.M.; Sommer, M.; Dantas, G. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science 2012, 337, 1107–1111. [Google Scholar] [CrossRef]
- Garcia-Galan, M.J.; Villagrasa, M.; Diaz-Cruz, M.S.; Barcelo, D. LC-QqLIT MS analysis of nine sulfonamides and one of their acetylated metabolites in the Llobregat River basin. Quantitative determination and qualitative evaluation by IDA experiments. Anal. Bioanal. Chem. 2010, 397, 1325–1334. [Google Scholar] [CrossRef]
- Hedberg, N.; Stenson, I.; Pettersson, M.N.; Warshan, D.; Nguyen-Kim, H.; Tedengren, M.; Kautsky, N. Antibiotic use in Vietnamese fish and lobster sea cage farms; implications for coral reefs and human health. Aquaculture 2018, 495, 366–375. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.Z.; Li, H.M.; Xu, N.; Zhang, R.J.; Chen, X.J.; Sun, W.L.; Wen, D.H.; He, S.L.; Pan, J.G.; et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China. Sci. Total Environ. 2018, 636, 1009–1019. [Google Scholar] [CrossRef]
- Kim, S.-C.; Carlson, K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ. Sci. Technol. 2007, 41, 50–57. [Google Scholar] [CrossRef]
- Ruan, Y.; Chen, J.; Guo, C.; Chen, S.; Wang, S.; Wang, Y. Distribution characteristics of typical antibiotics in surface water and sediments from freshwater aquaculture water in Tianjin suburban areas, China. J. Agro-Environ. Sci. 2011, 30, 2586–2593. [Google Scholar]
- Sargenti, M.; Bartolacci, S.; Luciani, A.; Biagio, K.D.; Baldini, M.; Galarini, R.; Giusepponi, D.; Capuccella, M. Investigation of the correlation between the use of antibiotics in aquaculture systems and their detection in aquatic environments, a case study of the Nera River aquafarms in Italy. Sustainability 2020, 12, 5176. [Google Scholar] [CrossRef]
- Song, R.; Guo, X.; Lu, S.; Liu, X.; Wang, X. Occurrence and source analysis of antibiotics and antibiotic resistance genes in surface water of East Dongting Lake basin. Res. Environ. Sci. 2021, 34, 2143–2153. [Google Scholar]
- Pereira, A.M.; Silva, L.J.; Meisel, L.M.; Pena, A. Fluoroquinolones and tetracycline antibiotics in a Portuguese aquaculture system and aquatic surroundings, occurrence and environmental impact. J. Toxicol. Environ. Health A 2015, 78, 959–975. [Google Scholar] [CrossRef]
- Rico, A.; Oliveira, R.; McDonough, S.; Matser, A.; Khatikarn, J.; Satapornvanit, K.; Nogueira, A.J.A.; Soares, A.M.V.M.; Domingues, I.; Van den Brink, P.J. Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environ. Pollut. 2014, 191, 8–16. [Google Scholar] [CrossRef]
- Hamscher, G.; Priess, B.; Nau, H. A survey of the occurrence of various sulfonamides and tetracyclines in water and sediment samples originating from aquaculture systems in Northern Germany in summer 2005. Arch. Lebensm. 2006, 57, 97–101. [Google Scholar]
- Le, T.X.; Munekage, Y. Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Mar. Pollut. Bull. 2004, 49, 922–929. [Google Scholar] [CrossRef]
- Zhang, R.; Pei, J.; Zhang, R.; Wang, S.; Zeng, W.; Huang, D.; Wang, Y.; Zhang, Y.Y.; Wang, Y.H.; Yu, K.F. Occurrence and distribution of antibiotics in mariculture farms, estuaries and the coast of the Beibu Gulf, China, Bioconcentration and diet safety of seafood. Ecotoxicol. Environ. Saf. 2018, 154, 27–35. [Google Scholar] [CrossRef]
- Patangia, D.V.; Ryan, C.A.; Dempsey, E.; Stanton, C.; Ross, R.P. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis. Trends Microbiol. 2021, 30, 47–56. [Google Scholar] [CrossRef]
- Zhou, A.; Xie, S.; Junaid, M.; Sun, D.; Tang, H.; Chuan, J.; Li, X.; Xu, G.H.; Zou, J.X. First insight into the environmental microbial communities associated with potentially pathogenic strains in pond cultured tilapia (Oreochromis niloticus) at various growth stages based on 16S, 18S, and ITS2 rRNA gene amplicons sequencing. Aquaculture 2021, 532, 736007. [Google Scholar] [CrossRef]
- Suyamud, B.; Lohwacharin, J.; Yang, Y.; Sharma, V.K. Antibiotic resistant bacteria and genes in shrimp aquaculture water, Identification and removal by ferrate (VI). J. Hazard. Mater. 2021, 420, 126572. [Google Scholar] [CrossRef]
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotic resistance genes as emerging contaminants, Studies in northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, L.; Zhou, J.; Zhao, H. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China. Sci. Total Environ. 2017, 580, 1175–1184. [Google Scholar] [CrossRef]
- Jang, H.; Kim, Y.; Choi, S.; Lee, Y.; Shin, S.; Unno, T.; Kim, Y.M. Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environ. Pollut. 2018, 233, 1049–1057. [Google Scholar] [CrossRef]
- Makowska, N.; Koczura, R.; Mokracka, J. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Chemosphere 2016, 144, 1665–1673. [Google Scholar] [CrossRef]
- Jiang, C.; Li, P.; Li, S.; Diiao, X.; Huang, W.; Wang, D.; Ye, C.X. Pollution characteristics of antibiotic resistance genes in seawater and sediment of Dongzhai Harbor, Hainan Province. Ecol. Environ. Sci. 2019, 28, 128–135. [Google Scholar]
- Liang, X.; Nie, X.; Shi, Z. Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the Pearl River Estuary. Environ. Sci. 2013, 34, 4073–4080. [Google Scholar]
- Shen, X.; Jin, G.; Zhao, Y.; Shao, X. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment. Sci. Total Environ. 2020, 711, 134626. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, G.; Manage, P.M. Occurrence and distribution of tetracycline resistance determinants and their pollution profile in selected aquaculture environments in Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2019, 47, 455–465. [Google Scholar] [CrossRef]
- Huang, L.; Xu, Y.; Xu, J.; Ling, J.; Chen, J.; Zhou, J.; Zheng, L.; Du, Q.P. Antibiotic resistance genes (ARGs) in duck and fish production ponds with integrated or non-integrated mode. Chemosphere 2017, 168, 1107–1114. [Google Scholar] [CrossRef]
- Nonaka, L.; Maruyama, F.; Suzuki, S.; Masuda, M. Novel macrolide-resistance genes, mef (C) and mph (G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. Lett. Appl. Microbiol. 2015, 61, 1–6. [Google Scholar] [CrossRef]
- Su, H.; Hu, X.; Wang, L.; Xu, W.; Xu, Y.; Wen, G.; Li, Z.J.; Cao, Y.C. Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm, source tracking of ARGs in reared aquatic organisms. J. Environ. Sci. Health B 2020, 55, 220–229. [Google Scholar] [CrossRef]
- Yuan, J.; Ni, M.; Liu, M.; Zheng, Y.; Gu, Z. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China. Mar. Pollut. Bull. 2019, 138, 376–384. [Google Scholar] [CrossRef]
- Su, H.C.; Liu, S.; Hu, X.J.; Xu, X.R.; Xu, W.J.; Xu, Y.; Li, Z.J.; Wen, G.L.; Liu, Y.S.; Cao, Y.C. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture, ARGs dissemination from farming source to reared organisms. Sci. Total Environ. 2017, 607, 357–366. [Google Scholar] [CrossRef]
- Sanawar, H.; Xiong, Y.; Alam, A.; Croué, J.P.; Hong, P.Y. Chlorination or monochloramination, balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters. Aquaculture 2017, 480, 94–102. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Ma, D. Research progress on environmental effect of antibiotic agents in marine aquaculture. Mar. Environ. Sci. 2004, 23, 76–80. [Google Scholar]
- Chen, H.; Liu, S.; Xu, X.; Liu, S.; Zhou, G.; Sun, K.; Zhao, J.L.; Ying, G.G. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China, Occurrence, bioaccumulation and human dietary exposure. Mar. Pollut. Bull. 2015, 90, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, M.; Wang, L.; Wang, X.; Jeppesen, E.; Zhang, W. Metagenomic analysis to determine the characteristics of antibiotic resistance genes in typical antibiotic-contaminated sediments. J. Environ. Sci. 2023, 128, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Czekalski, N.; Gascon Diez, E.; Burgmann, H. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME J. 2014, 8, 1381–1390. [Google Scholar] [CrossRef]
- Siedlewicz, G.; Borecka, M.; Białk-Bielińska, A.; Sikora, K.; Stepnowski, P.; Pazdro, K. Determination of antibiotic residues in southern Baltic Sea sediments using tandem solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry. Oceanologia 2016, 58, 221–234. [Google Scholar] [CrossRef]
- Bai, Y.; Meng, W.; Xu, J.; Zhang, Y.; Guo, C. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China. Environ. Sci. Process Impacts 2014, 16, 586–593. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Jiang, X.; Ke, Y.; He, T.; Xie, S. Metagenomic insights into the profile of antibiotic resistomes in sediments of aquaculture wastewater treatment system. J. Environ. Sci. 2022, 113, 345–355. [Google Scholar] [CrossRef]
- Feng, Y.; Hu, J.; Chen, Y.; Xu, J.; Yang, B.; Jiang, J. Ecological effects of antibiotics on aquaculture ecosystems based on microbial community in sediments. Ocean Coast. Manag. 2022, 224, 106173. [Google Scholar] [CrossRef]
- Cui, B.; Gao, T.; Chen, L. Typical pathogenic microorganisms detection and bacterial community analysis of gibel carp (Carassius auratus gibelio) breeding environment. Microbiol. Chain. 2019, 46, 3363–3377. [Google Scholar]
- Li, X.; Li, B.; Dong, Y.; Zhu, J. Analysis of sediment microbial communities in Megalobrama amblycephala intensive rearing pond. J. Fish. China 2014, 38, 218–227. [Google Scholar]
- Su, H.; Hu, X.; Xu, W.; Xu, Y.; Wen, G.; Cao, Y. Metagenomic analysis of the abundances, diversity, and distribution of antibiotic resistance genes and their potential bacterial hosts in two types of shrimp-rearing farms in South China. Ecotoxicol. Environ. Saf. 2022, 241, 113801. [Google Scholar] [CrossRef] [PubMed]
- Samuelsen, O.B. Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture 1989, 83, 7–16. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the aquatic environments, a review of lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Bekele, T.; Zhao, H.; Cai, X.; Chen, J. Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou Bay, North China. Sci. Total Environ. 2018, 631, 1398–1405. [Google Scholar] [CrossRef]
- Han, Y.; Wang, J.; Zhao, Z.; Chen, J.; Lu, H.; Liu, G. Combined impact of fishmeal and tetracycline on resistomes in mariculture sediment. Environ. Pollut. 2018, 242, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E.; Saluveer, M.; Sidaoui-Haddad, G. Microplastics in fish and fishmeal, an emerging environmental challenge? Sci. Rep. 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Naylor, R.; Henriksson, P.; Leadbitter, D.; Metian, M.; Troell, M.; Zhang, W.B. China’s aquaculture and the world’s wild fisheries. Science 2015, 347, 133–135. [Google Scholar] [CrossRef]
- Han, Y.; Wang, J.; Zhao, Z.; Chen, J.; Lu, H.; Liu, G. Fishmeal application induces antibiotic resistance gene propagation in mariculture sediment. Environ. Sci. Technol. 2017, 51, 10850–10860. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, J.; Feng, Y.; Wu, Z.; Ma, L.; Liu, J.; Wang, Y.; Jia, L.; Gao, L.J.; Shao, P.; et al. Determination of 32 kinds of antibiotic residues in fish intestinal content by high performance liquid chromatography-tandem mass spectrometry. J. Food Saf. Qual. 2022, 13, 1141–1149. [Google Scholar]
- Li, W.; Li, Y.; Zheng, N.; Ge, C.; Yao, H. Occurrence and distribution of antibiotics and antibiotic resistance genes in the guts of shrimp from different coastal areas of China. Sci. Total Environ. 2022, 815, 152756. [Google Scholar] [CrossRef]
- Siew, S.W.; Choo, M.Y.; Marshall, I.P.G.; Hamid, H.A.; Kamal, S.S.; Nielsen, D.S.; Ahmad, H.F. Gut microbiome and metabolome of sea cucumber (Stichopus ocellatus) as putative markers for monitoring the marine sediment pollution in Pahang, Malaysia. Mar. Pollut. Bull. 2022, 182, 114022. [Google Scholar]
- Xiong, X.; Zhao, Y.; Wang, Z. Analysis of microbial community structure of channel catfish ictalurus punctatus intestine and culture water. Fish. Sci. 2022, 41, 589–596. [Google Scholar]
- Sherif, A.H.; Gouda, M.; Darwish, S.; Abdelmohsin, A. Prevalence of antibiotic-resistant bacteria in freshwater fish farms. Aquac. Res. 2021, 52, 2036–2047. [Google Scholar] [CrossRef]
- Liu, K.; Han, J.; Li, S.; Liu, L.; Lin, W.; Luo, J. Insight into the diversity of antibiotic resistance genes in the intestinal bacteria of shrimp Penaeus vannamei by culture-dependent and independent approaches. Ecotoxicol. Environ. Saf. 2019, 172, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kwon, T.H.; Jung, S.M.; Cho, S.H.; Jin, S.Y.; Park, N.H.; Kim, C.G.; Kim, J.S. Antibiotic Resistance of Bacteria Isolated from the Internal Organs of Edible Snow Crabs. PLoS ONE. 2013, 8, e70887. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Zhao, Z.; Duan, C.; Chen, H.; Wang, M.; Ren, H.Q.; Yin, Y.; Ye, L. Metagenomic analysis revealed the prevalence of antibiotic resistance genes in the gut and living environment of freshwater shrimp. J. Hazard. Mater. 2018, 350, 10–18. [Google Scholar] [CrossRef]
- Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 2012, 46, 2355–2364. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Li, T. Research Progress on Antibiotic Tolerance Mechanism and Treatment of Bacteria in VBNC State. World Notes Antibiot. 2022, 43, 1–9. [Google Scholar]
- Bush, N.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones, mechanism, lethality and their contributions to antibiotic resistance. Molecules 2020, 25, 5662. [Google Scholar] [CrossRef]
- Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 1995, 39, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline antibiotics, mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S. Drugs that changed society: History and current status of the early antibiotics: Salvarsan, sulfonamides, and β-lactams. Molecules 2021, 26, 6057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Song, X.; Huang, C.; Jin, A.; Tian, C.; Zhang, D.; Liu, M.C. Progress on antimicrobial resistance mediated by changes of target protein in bacteria. Prog. Vet. Med. 2017, 38, 74–77. [Google Scholar]
- Tian, Z.; Zhang, Y.; Yu, B.; Yang, M. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic. Water Res. 2016, 98, 261–269. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Q.; Zhang, C.; Shi, Z.; Peng, S.; Wang, J. Current status and prospect of antibiotic resistance genes (ARGs) pollution in the aquaculture. Mar. Fish. 2017, 39, 351–360. [Google Scholar]
- Soler, N.; Forterre, P. Vesiduction, the fourth way of HGT. Environ. Microbiol. 2020, 22, 2457–2460. [Google Scholar] [CrossRef]
- McInnes, R.S.; McCallum, G.E.; Lamberte, L.E.; Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 2020, 53, 35–43. [Google Scholar] [CrossRef]
- Jiang, Q.; Feng, M.; Ye, C.; Yu, X. Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. Sci. Total Environ. 2022, 806, 150568. [Google Scholar] [CrossRef]
- Dong, P.; Wang, H.; Fang, T.; Wang, Y.; Ye, Q. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environ. Int. 2019, 125, 90–96. [Google Scholar] [CrossRef]
- Soler, N.; Forterre, P. Vesicles for DNA exchange, A new mechanism called vesiduction. Med. Sci. 2021, 37, 583–585. [Google Scholar]
- Springael, D.; Top, E.M. Horizontal gene transfer and microbial adaptation to xenobiotics, new types of mobile genetic elements and lessons from ecological studies. Trends Microbiol. 2004, 12, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, Y.; Wu, J.; Wang, J. Intervention of antimicrobial peptide usage on antimicrobial resistance in aquaculture. J. Hazard. Mater. 2022, 427, 128154. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Chang, Z.; Van den Brink, P.J.; Li, J.; Zhao, F.; Rico, A. Environmental and human health risks of antimicrobials used in Fenneropenaeus chinensis aquaculture production in China. Environ. Sci. Pollut. Res. 2016, 23, 15689–15702. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture, risks, current concern and future thinking. Environ. Sci. Pollut. Res. Int. 2022, 29, 11054–11075. [Google Scholar] [CrossRef]
- Norton, S.B.; Rodier, D.J.; van der Schalie, W.H.; Wood, W.P.; Slimak, M.W.; Gentile, J.H. A framework for ecological risk assessment at the EPA. Environ. Toxicol. Chem. 1992, 11, 1663–1672. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, S.; Zhang, X.; Wang, X.; Song, C.; Wang, S. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Zhou, Y.; Han, Q.; Wang, X.; Song, C.; Wang, S.G.; Zhao, S. Occurrence, distribution and risk assessment of antibiotics at various aquaculture stages in typical aquaculture areas surrounding the Yellow Sea. J. Environ. Sci. 2023, 126, 621–632. [Google Scholar] [CrossRef]
- Hossain, A.; Nakamichi, S.; Habibullah-Al-Mamun, M.; Tani, K.; Masunaga, S.; Matsuda, H. Occurrence, distribution, ecological and resistance risks of antibiotics in surface water of finfish and shellfish aquaculture in Bangladesh. Chemosphere 2017, 188, 329–336. [Google Scholar] [CrossRef]
- Ashbolt, N.; Amezquita, A.; Backhaus, T.; Borriello, P.; Brandt, K.; Collignon, P.; Coors, A.; Finley, R.; Gaze, W.H.; Heberer, T.; et al. Human health risk assessment (hhra) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 2013, 121, 993–1001. [Google Scholar] [CrossRef]
Antibiotics | Water | Sediment | Origin Location | |
---|---|---|---|---|
Major Categories | Category | Concentration (ng·L−1) (Average/Range) | Concentration (µg·kg−1) (Average/Range) | |
Tetracyclines | Oxytetracycline (OTC) | 10.69 | 0.56 | An aquaculture farm in Dongli District, Tianjin [36] |
Tetracycline (TC) | ND | ND~4.3 | Trout farms along the Nera River [37] | |
Chlortetracycline (CTC) | ND~50.32 | - | Surface water of East Dongting Lake [38] | |
Macrolides | Roxithromycin (ROM) | 1.22~110.66 | - | Wusongkou, Yangtze River basin [38] |
Erythromycin (ERM) | ND | ND | Three forks of the Yangtze River basin [38] | |
Quinolones | Ciprofloxacin (CIP) | ND~2 | ND~32.8 | Trout farms along the Nera River [37] |
Norfloxacin (NOR) | ND~75.1 | - | A trout aquaculture system located in the north of Portugal [39] | |
Enrofloxacin (ENR) | 0.5 × 103 | 45.4 | Tha Chin River in Thailand [40] | |
Sulfonamides | Sulfadiazine (SDZ) | ND~571 | 3–553 | Trout farms along the Nera River [37] |
Sulfadimethoxine (SDM) | 0.14 × 103~ 0.88 × 103 | 7.7 | Aquaculture systems of northwestern Germany [41] | |
Sulfamethoxazole (SMX) | 0.04 × 106~ 2.39 × 106 | 4.77 × 103~ 820.49 × 103 | Tiger shrimp farm in mangrove area of Vietnam [42] | |
Methicillin (TMP) | 0.93 | 0.89 | Beibu Gulf marine farm [43] |
Antibiotics | ARGs | Abundance | Origin Location |
---|---|---|---|
Tetracycline | tetB/tetD/tetE/tetH/tetX/tetZ/tetQ | 4.24 × 10−3~1.46 × 10−2 a | Fish culture environments in South Jeolla province and Jeju Island [49] |
tetA/tetC/tetG/tetM | -/-/-/1.16 × 102 b | Hainan Dongzhai Port [51] | |
tetA/tetB/tetC/tetH/tetM/tetO | 5.46 × 10−4~1.61×10−3 a/2.05 × 10−5~6.35 × 10−5 a/4.71 × 10−4~1.68 × 10−2 a/8.47 × 10−6~2.37 × 10−5 a/8.84 × 10−5~4.97 × 10−3 a/5.90 × 10−6~6.99 × 10−5 a | West Coast of Pearl River Estuary [52] | |
tetW/tetG/tetX | - | Jiangsu Province Baima Lake Aquaculture Farm [53] | |
tetA/tetB/tetM/tetS/ | - | Aquaculture farms in Sri Lanka [54] | |
Macrolides | ermC | - | Coastal farms in Jeollanam-do Province and Jeju Island, Korea [49] |
ermA | - | Pearl River Delta South China Zhongshan [55] | |
emf(C)/mph(G) | - | A fish farm in Japan [56] | |
Quinolones | qnrA/qnrD/qnrS | - | Shuidongwan, Maoming City, Guangdong [57] |
qnrS | (100%); 9.97 × 10−3 a | Hangzhou Bay, Xiaoshan, Shaoxing, Cixi, Pinghu [58] | |
qnrS | (100%); 8.57 × 10−7~3.45 × 10−2 a; 8.68~1.37 × 106 b | Hainan Dongzhai Port [51] | |
qnrA/qnrD/qnrS | - | Guangzhou Pearl River Delta Estuarine Aquaculture Zone [59] | |
Sulfonamides | sul1 | 3.29 × 102 ± 4.81 × 102 b; 2.72 × 102 ± 3.57 × 102 b; 4.08 × 102 ± 2.06 × 102 b | Waste lagoon of JFRC of the Ministry of Agriculture in Saudi Arabia [60] |
sul1/sul2/sul3 | (100%/100%/25%); 1.94 × 10−2 a/-/- | Hangzhou Bay, Xiaoshan, Shaoxing, Cixi, Pinghu [58] | |
sull/sul2 | 1.21 × 105 b/5.13 × 105 b | Hainan Dongzhai Port [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Lv, Z.; Zhang, Z.; Han, Y.; Liu, Z.; Zhang, H. A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Toxics 2023, 11, 420. https://doi.org/10.3390/toxics11050420
Yuan X, Lv Z, Zhang Z, Han Y, Liu Z, Zhang H. A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Toxics. 2023; 11(5):420. https://doi.org/10.3390/toxics11050420
Chicago/Turabian StyleYuan, Xia, Ziqing Lv, Zeyu Zhang, Yu Han, Zhiquan Liu, and Hangjun Zhang. 2023. "A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission" Toxics 11, no. 5: 420. https://doi.org/10.3390/toxics11050420
APA StyleYuan, X., Lv, Z., Zhang, Z., Han, Y., Liu, Z., & Zhang, H. (2023). A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Toxics, 11(5), 420. https://doi.org/10.3390/toxics11050420