Relevance of Soil Heavy Metal XRF Screening for Quality and Landscaping of Public Playgrounds
Abstract
:1. Introduction
- Compare the measurements against threshold values from current legislation;
- The calculation of pollution indexes for the HMs measured to assess threat;
- An examination of the relationship between the identified heavy metals;
- Prospect the usefulness of XRF for landscaping approaches and identify limitations and challenges.
2. Materials and Methods
2.1. Location
2.2. Sampling and Chemical Analyses
2.3. Data Interpretation and Statistical Analysis
3. Results
3.1. Levels of Heavy Trace Elements
- CJ-AM1—Zn > Pb > Cu > As > Ni > Mn > V > Cr;
- CJ-AM2—Zn > Pb > Cu > As > Ni > V > Cr > Mn;
- CJ-BZ1—As > Pb > Zn > Ni > V > Cu > Mn > Cr;
- CJ-BZ2—Mn > As > Zn > Cu > Pb > V > Ni > Cr;
- CJ-CB—Pb > Zn > As > Ni > Cu > V > Cr > Mn;
- CJ-G—As > Pb > Zn > Ni > Cu > V > Mn.
3.2. Relationship between Heavy Trace Elements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Policies on Spatial Distribution and Urbanization Have Broad Impacts on Sustainable Development. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undes_pd_2020_popfacts_urbanization_policies.pdf (accessed on 2 January 2023).
- European Commission, Joint Research Centre. The Future of Cities—Urban Data Platform Plus of the European Union. Available online: https://urban.jrc.ec.europa.eu/thefutureofcities/space-and-the-city#the-chapter (accessed on 2 January 2023).
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go Greener, Feel Better? The Positive Effects of Biodiversity on the Well-Being of Individuals Visiting Urban and Peri-Urban Green Areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Miller, S.M.; Montalto, F.A. Stakeholder Perceptions of the Ecosystem Services Provided by Green Infrastructure in New York City. Ecosyst. Serv. 2019, 37, 100928. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities ‘Just Green Enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Buru, T.; Kállay, É.; Cantor, M.; Papuc, I. The Investigation of the Relationship between Exposure to Nature and Emotional Well-Being. A Theoretical Review. In Environmental and Human Impact of Buildings: An Energetics Perspective; Moga, L., Șoimoșan, T.M., Eds.; Springer Tracts in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2021; pp. 89–106. ISBN 978-3-030-57418-5. [Google Scholar]
- Voor, T.; Pärtel, M.; Peet, A.; Saare, L.; Hyöty, H.; Knip, M.; Davison, J.; Zobel, M.; Tillmann, V. Atopic Sensitization in Childhood Depends on the Type of Green Area around the Home in Infancy. Clin. Exp. Allergy 2023. [Google Scholar] [CrossRef]
- Gill, T. How Child-Friendly Planning and Design Can Save Cities; RIBA Publishing: London, UK, 2021; ISBN 978-1-00-310865-8. [Google Scholar]
- Bishop, K.; Corkery, L. Designing Cities with Children and Young People: Beyond Playgrounds and Skate Parks; Taylor & Francis: New York, NY, USA, 2017; ISBN 9781317487760. [Google Scholar]
- Binner, H.; Sullivan, T.; Jansen, M.A.K.; McNamara, M.E. Metals in Urban Soils of Europe: A Systematic Review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- European Standards. NEW Edition of EN 1176 Standards for Playground Equipment and Surfacing All Parts and EN 1177. Available online: https://www.en-standard.eu/set-en-1176-new-all-parts-en-1177-2018-standards-for-playground/ (accessed on 23 January 2023).
- Consumer Product Safety Commission of the United States. Public Playground Safety Handbook; U.S. Consumer Product Safety Commission: Bethesda, MD, USA, 2008. [Google Scholar]
- Otero, D.; Alho, A.M.; Nijsse, R.; Roelfsema, J.; Overgaauw, P.; Madeira de Carvalho, L. Environmental Contamination with Toxocara spp. Eggs in Public Parks and Playground Sandpits of Greater Lisbon, Portugal. J. Infect. Public Health 2018, 11, 94–98. [Google Scholar] [CrossRef]
- Ferré, M.B.; Guitart, A.O.; Ferret, M.P. Children and Playgrounds in Mediterranean Cities. Child. Geogr. 2006, 4, 173–183. [Google Scholar] [CrossRef]
- Oguchi, T. Lithosphere—The Solid Realm Which Supports Human Life. In Human Geoscience; Himiyama, Y., Satake, K., Oki, T., Eds.; Advances in Geological Science; Springer: Singapore, 2020; pp. 27–38. ISBN 978-981-329-224-6. [Google Scholar]
- Gu, Y.-G.; Gao, Y.-P.; Lin, Q. Contamination, Bioaccessibility and Human Health Risk of Heavy Metals in Exposed-Lawn Soils from 28 Urban Parks in Southern China’s Largest City, Guangzhou. Appl. Geochem. 2016, 67, 52–58. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Alloway, B.J. Sources of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability; Alloway, B.J., Ed.; Environmental Pollution; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 11–50. ISBN 9789400744707. [Google Scholar]
- Levei, L.; Kovacs, E.; Hoaghia, M.-A.; Ozunu, A. Accumulation of Heavy Metals in Plantago Major Grown in Urban and Post-Industrial Areas. Stud. Univ. Babeș-Bolyai Chem. 2018, 63, 87–98. [Google Scholar] [CrossRef]
- Mori, J.; Ferrini, F.; Saebo, A. Air Pollution Mitigation by Urban Greening. Italus Hortus 2018, 25, 13–22. [Google Scholar] [CrossRef]
- Vidican, R.; Mihăiescu, T.; Pleșa, A.; Mălinaș, A.; Pop, B.-A. Investigations Concerning Heavy Metals Dynamics in Reynoutria Japonica Houtt.-Soil Interactions. Toxics 2023, 11, 323. [Google Scholar] [CrossRef]
- Mihăiescu, T.; Vidican, R.; Miclăuș, D.; Pleșa, A.; Crișan, I. Perspectives on Phytoremediation Landscaping Principlesfor Post-Industrial Cities. Acad. Lett. 2021, 309. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Khalef, R.N.; Hassan, A.I.; Saleh, H.M.; Khalef, R.N.; Hassan, A.I.; Saleh, H.M. Heavy Metal’s Environmental Impact; IntechOpen: London, UK, 2022; ISBN 9781803555263. [Google Scholar]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Al Osman, M.; Yang, F.; Massey, I.Y. Exposure Routes and Health Effects of Heavy Metals on Children. BioMetals 2019, 32, 563–573. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, X.; Boezen, H.M.; Huo, X. Children with Health Impairments by Heavy Metals in an E-Waste Recycling Area. Chemosphere 2016, 148, 408–415. [Google Scholar] [CrossRef]
- Jin, M.; Yuan, H.; Liu, B.; Peng, J.; Xu, L.; Yang, D. Review of the Distribution and Detection Methods of Heavy Metals in the Environment. Anal. Methods 2020, 12, 5747–5766. [Google Scholar] [CrossRef]
- Kalnicky, D.J.; Singhvi, R. Field Portable XRF Analysis of Environmental Samples. J. Hazard. Mater. 2001, 83, 93–122. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution Indices as Useful Tools for the Comprehensive Evaluation of the Degree of Soil Contamination—A Review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regional Development Plan for North-West of Romania 2021–2027. Available online: https://www.nord-vest.ro/wp-content/uploads/2021/02/PDR-NV-2021-2027-versiunea-feb-2021.pdf (accessed on 2 January 2023).
- Ministry of Waters, Forests and Enviornment Protection of Romania. Ministerial Order No. 184/1997 for the Procedure Approval of Environmental Assessment. Available online: http://mmediu.ro/app/webroot/uploads/files/OM-184-1997-bilant-de-mediu-si-OM-756-1997-evaluarea-poluarii-mediului.pdf (accessed on 5 February 2023).
- Utermann, J.; Düwel, O.; Nagel, I. Part II—Contents of Trace Elements and Organic Matter in European Soils. In Background Values in European Soils and Sewage Sludges; Results of a JRC-coordinated study on background values; European Commission Directorate-General Joint Research Centre Institute for Environment and Sustainability: Ispra, Italy, 2006; ISBN 9279021216. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001; ISBN 0849315751. [Google Scholar]
- Zhang, C.; Qiao, Q.; Piper, J.D.A.; Huang, B. Assessment of Heavy Metal Pollution from a Fe-Smelting Plant in Urban River Sediments Using Environmental Magnetic and Geochemical Methods. Environ. Pollut. 2011, 159, 3057–3070. [Google Scholar] [CrossRef] [PubMed]
- Hamed, K.H. The Distribution of Kendall’s Tau for Testing the Significance of Cross-Correlation in Persistent Data. Hydrol. Sci. J. 2011, 56, 841–853. [Google Scholar] [CrossRef] [Green Version]
- Ilić, P.; Nišić, T.; Ilić, S.; Stojanović Bjelić, L. Identifying New ‘Hotspot’ Heavy Metal Contamination in Industrial Zone Soil. Pol. J. Environ. Stud. 2020, 29, 2987–2993. [Google Scholar] [CrossRef]
- Jarosławiecka, A.K.; Piotrowska-Seget, Z. The Effect of Heavy Metals on Microbial Communities in Industrial Soil in the Area of Piekary Śląskie and Bukowno (Poland). Microbiol. Res. 2022, 13, 626–642. [Google Scholar] [CrossRef]
- Dumitru, M.; Dumitru, S.; Tănase, V.; Mocanu, V.; Manea, A.; Vrînceanu, N.; Preda, M.; Eftene, M.; Ciobanu, C.; Calciu, I.; et al. Monitoring of the Quality State of Soils in Romania; Sitech: Craiova, Romania, 2011. [Google Scholar]
- Garelick, H.; Jones, H.; Dybowska, A.; Valsami-Jones, E. Arsenic Pollution Sources. In Reviews of Environmental Contamination Volume 197: International Perspectives on Arsenic Pollution and Remediation; Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2008; pp. 17–60. ISBN 978-0-387-79284-2. [Google Scholar]
- Warczyk, A.; Wanic, T.; Antonkiewicz, J.; Pietrzykowski, M. Concentration of Trace Elements in Forest Soil Affected by Former Timber Depot. Environ. Monit. Assess. 2020, 192, 640. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Gilbert, J.K.; Clausen, J.C. Stormwater Runoff Quality and Quantity from Asphalt, Paver, and Crushed Stone Driveways in Connecticut. Water Res. 2006, 40, 826–832. [Google Scholar] [CrossRef]
- Chuan, M.C.; Shu, G.Y.; Liu, J.C. Solubility of Heavy Metals in a Contaminated Soil: Effects of Redox Potential and PH. Water Air Soil Pollut. 1996, 90, 543–556. [Google Scholar] [CrossRef]
- Gäbler, H.-E. Mobility of Heavy Metals as a Function of PH of Samples from an Overbank Sediment Profile Contaminated by Mining Activities. J. Geochem. Explor. 1997, 58, 185–194. [Google Scholar] [CrossRef]
- Ramakrishnaiah, H.; Somashekar, R.K. Heavy Metal Contamination in Roadside Soil and Their Mobility in Relations to PH and Organic Carbon. Soil Sediment Contam. Int. J. 2002, 11, 643–654. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in Soil PH and Mobility of Heavy Metals in Contaminated Soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Rusu, M.; Mărghitaș, M.; Mihăiescu, T.; Todoran, A. Agrochemical Measures for Soil Reclamation in Connection with Heavy Metals Pollution. In Soil-Plant-Relationships; Fachhochschule Ravensburg-Weingarten University of Applied Sciences: Novi Sad, Serbia and Montenegro, 2004; Volume 3. [Google Scholar]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Puskás, I.; Farsang, A.; Csépe, Z.; Bartus, M. Heavy Metal Exposure and Risk Charaterization of Topsoils in Urban Playgrounds and Parks (Hungary). In Proceedings of the EGU General Assembly 2014, Vienna, Austria, 27 April–2 May 2014; p. 641. [Google Scholar]
- Kumar, K.; Hundal, L.S. Soil in the City: Sustainably Improving Urban Soils. J. Environ. Qual. 2016, 45, 2–8. [Google Scholar] [CrossRef]
- Zhang, M.; Pu, J. Mineral Materials as Feasible Amendments to Stabilize Heavy Metals in Polluted Urban Soils. J. Environ. Sci. 2011, 23, 607–615. [Google Scholar] [CrossRef]
- Su, C.; Jiang, L.; Zhang, W. A Review on Heavy Metal Contamination in the Soil Worldwide: Situation, Impact and Remediation Techniques. Environ. Skept. Crit. 2014, 3, 24–38. [Google Scholar]
- Larramendy, M.L.; Soloneski, S. Soil Contamination: Threats and Sustainable Solutions; BoD—Books on Demand: Paris, France, 2021; ISBN 9781838807535. [Google Scholar]
- Chen, W.; Li, H. Cost-Effectiveness Analysis for Soil Heavy Metal Contamination Treatments. Water. Air. Soil Pollut. 2018, 229, 126. [Google Scholar] [CrossRef]
- Crișan, I.; Vidican, R.; Plesa, A.; Mihaiescu, T. Phytoremediation Potential of Iris Spp. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2021, 78, 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Tran, K.-Q. A Review on Disposal and Utilization of Phytoremediation Plants Containing Heavy Metals. Ecotoxicol. Environ. Saf. 2021, 226, 112821. [Google Scholar] [CrossRef]
- Hakeem, K.; Sabir, M.; Ozturk, M.; Mermut, A. Soil Remediation and Plants: Prospects and Challenges; Academic Press: Cambridge, MA, USA, 2014; ISBN 978-0-12-799913-5. [Google Scholar]
- Liu, J.; Xin, X.; Zhou, Q. Phytoremediation of Contaminated Soils Using Ornamental Plants. Environ. Rev. 2018, 26, 43–54. [Google Scholar] [CrossRef]
- Nelson, N.O.; Hettiarachchi, G.M.; Agudelo-Arbelaez, S.C.; Mulisa, Y.A.; Jerrell, L.L.; Kulakow, P.; Douglas, J.L. Phytoremediation Protecting the Environment with Plants; Kansas State University Agricultural Experiment Station and Cooperative Extension Service: Manhattan, KS, USA, 2012. [Google Scholar]
- McIntyre, T. Phytoremediation of Heavy Metals from Soils. Adv. Biochem. Eng. Biotechnol. 2003, 78, 97–123. [Google Scholar] [CrossRef] [PubMed]
- Yayla, E.E.; Sevik, H.; Isinkaralar, K. Detection of Landscape Species as a Low-Cost Biomonitoring Study: Cr, Mn, and Zn Pollution in an Urban Air Quality. Environ. Monit. Assess. 2022, 194, 687. [Google Scholar] [CrossRef] [PubMed]
- Tepanosyan, G.; Maghakyan, N.; Sahakyan, L.; Saghatelyan, A. Heavy Metals Pollution Levels and Children Health Risk Assessment of Yerevan Kindergartens Soils. Ecotoxicol. Environ. Saf. 2017, 142, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Oroz, D.; Vidal, R.; Fernandoy, F.; Lambert, F.; Quiero, F. Metal Concentrations and Source Identification in Chilean Public Children’s Playgrounds. Environ. Monit. Assess. 2018, 190, 703. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.C.; Mak, N.K. Heavy Metal Pollution in Children Playgrounds in Hong Kong and Its Health Implications. Environ. Technol. 1997, 18, 109–115. [Google Scholar] [CrossRef]
- Massas, I.; Ehaliotis, C.; Kalivas, D.; Panagopoulou, G. Concentrations and Availability Indicators of Soil Heavy Metals; the Case of Children’s Playgrounds in the City of Athens (Greece). Water. Air. Soil Pollut. 2010, 212, 51–63. [Google Scholar] [CrossRef]
- Mugoša, B.; Đurović, D.; Nedović-Vuković, M.; Barjaktarović-Labović, S.; Vrvić, M. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro. Int. J. Environ. Res. Public. Health 2016, 13, 393. [Google Scholar] [CrossRef] [Green Version]
- Różański, S.Ł.; Kwasowski, W.; Castejón, J.M.P.; Hardy, A. Heavy Metal Content and Mobility in Urban Soils of Public Playgrounds and Sport Facility Areas, Poland. Chemosphere 2018, 212, 456–466. [Google Scholar] [CrossRef]
- Cakmak, D.; Perovic, V.; Kresovic, M.; Jaramaz, D.; Mrvic, V.; Belanovic Simic, S.; Saljnikov, E.; Trivan, G. Spatial Distribution of Soil Pollutants in Urban Green Areas (a Case Study in Belgrade). J. Geochem. Explor. 2018, 188, 308–317. [Google Scholar] [CrossRef]
- Hiller, E.; Filová, L.; Jurkovič, Ľ.; Mihaljevič, M.; Lachká, L.; Rapant, S. Trace Elements in Two Particle Size Fractions of Urban Soils Collected from Playgrounds in Bratislava (Slovakia). Environ. Geochem. Health 2020, 42, 3925–3947. [Google Scholar] [CrossRef]
- Ljung, K.; Selinus, O.; Otabbong, E. Metals in Soils of Children’s Urban Environments in the Small Northern European City of Uppsala. Sci. Total Environ. 2006, 366, 749–759. [Google Scholar] [CrossRef]
- Parlak, M.; Tunçay, T.; Botsou, F. Heavy Metals in Soil and Sand from Playgrounds of Çanakkale City (Turkey), and Related Health Risks for Children. Sustainability 2022, 14, 1145. [Google Scholar] [CrossRef]
- Onete, M.; Comanescu, M.; Bianu, E.; Ion, S. Heavy Metals Content of Soil and Plants from Central Parks (Bucharest, Romania). In Metal Elements in Environment, Medicine and Biology; Eurobit Publishing House: Timișoara, Romania, 2008; Volume 8, pp. 1–6. [Google Scholar]
- Ravansari, R.; Wilson, S.C.; Tighe, M. Portable X-Ray Fluorescence for Environmental Assessment of Soils: Not Just a Point and Shoot Method. Environ. Int. 2020, 134, 105250. [Google Scholar] [CrossRef]
- XRF Soil Guideline. Available online: https://www.bodemrichtlijn.nl/Bibliotheek/bodemonderzoek/onderzoekstechnieken/xrf# (accessed on 27 May 2023).
- Research Strategy Diffuse Lead in the Soil of Children’s Playgrounds and Vegetable Gardens SKIB. Available online: https://www.sikb.nl/doc/richtlijn8100/Handreiking_8102_Diffuus_lood_kinderspeelplaatsen_(moes)tuinen_versie%201.1_210618.pdf (accessed on 30 May 2023).
- Jansson, M. Attractive Playgrounds: Some Factors Affecting User Interest and Visiting Patterns. Landsc. Res. 2010, 35, 63–81. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Chen, Q. Potential of Thirteen Urban Greening Plants to Capture Particulate Matter on Leaf Surfaces across Three Levels of Ambient Atmospheric Pollution. Int. J. Environ. Res. Public. Health 2019, 16, 402. [Google Scholar] [CrossRef] [Green Version]
- Knobel, P.; Maneja, R.; Bartoll, X.; Alonso, L.; Bauwelinck, M.; Valentin, A.; Zijlema, W.; Borrell, C.; Nieuwenhuijsen, M.; Dadvand, P. Quality of Urban Green Spaces Influences Residents’ Use of These Spaces, Physical Activity, and Overweight/Obesity. Environ. Pollut. 2021, 271, 116393. [Google Scholar] [CrossRef]
Site Acronym | Location and Elevation | Vegetation | Pathways Type |
---|---|---|---|
CJ-AM1 | Andrei Mureșanu site 1, 371 m | Lawn, hedge, trees | Concrete pavement |
46°45′39.09″ N 23°36′12.86″ E | |||
CJ-AM2 | Andrei Mureșanu site 2, 369 m | Lawn, hedge, trees | Asphalt, rubber pavement |
46°45′42.39″ N 23°36′22.63″ E | |||
CJ-BZ1 | Bună Ziua district site 1, 443 m | Lawn | Gravel, rubber pavement |
46°45′7.04″ N 23°36′13.18″ E | |||
CJ-BZ2 | Bună Ziua district site 2, 459 m | Lawn | - |
46°44′56.29″ N 23°36′2.06″ E | |||
CJ-CB | Colonia Borhanci, 352 m | Lawn | - |
46°44′56.58″ N 23°38′22.68″ E | |||
CJ-G | Gheogheni district, 333 m | Lawn, shrubs, trees | Concrete and rubber pavement |
46°46′5.45″ N 23°38′0.82″ E |
Parameter | Descriptive Statistics | Analysis of Variance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Average (mg/kg) | Median (mg/kg) | ±SD | Skew | Max. | Min. | CV | Test Value | p | Sign. | |
V | 69.78 | 74.00 | 20.14 | −0.50 | 100 | 31 | 28.86 | F = 2.51 | 0.0891 | ns |
Cr | 35.00 | 31.00 | 14.14 | 1.27 | 63 | 20 | 40.40 | F = 0.51 | 0.7662 | ns |
Mn | 475.11 | 362.00 | 466.29 | 3.31 | 2280 | 108 | 98.14 | χ2 = 5.13 | 0.4005 | ns |
Ni | 33.50 | 31.50 | 12.92 | 0.48 | 62 | 14 | 38.57 | F = 2.06 | 0.1417 | ns |
Cu | 26.75 | 22.00 | 12.71 | 0.97 | 53 | 15 | 47.51 | χ2 = 10.61 | 0.0597 | ns |
Zn | 106.94 | 86.00 | 51.86 | 1.21 | 235 | 58 | 48.49 | χ2 = 13.18 | 0.0218 | * |
As | 13.92 | 13.00 | 4.14 | 1.95 | 25 | 10 | 44.85 | χ2 = 8.05 | 0.1536 | ns |
Pb | 32.13 | 35.00 | 14.41 | 0.80 | 67 | 14 | 29.74 | F = 3.33 | 0.0561 | ns |
Criteria | Parameter | V | Cr | Mn | Ni | Cu | Zn | As | Pb | pH |
---|---|---|---|---|---|---|---|---|---|---|
CJ-AM1 | Mean | 84.00 | 35.67 | 581.00 | 44.00 | 43.00 | 145.67 a,b | 13.00 | 40.00 | 6.80 |
±SE | 2.89 | 6.49 | 116.52 | 2.52 | 2.25 | 7.36 | 1.00 | 1.53 | 0.06 | |
CJ-AM2 | Mean | 92.33 | 49.50 | 447.67 | 44.33 | 37.33 | 183.33 a | 13.67 | 47.00 | 6.90 |
±SE | 5.36 | 13.50 | 102.92 | 11.05 | 8.95 | 33.34 | 0.88 | 11.85 | 0.06 | |
CJ-BZ1 | Mean | 66.67 | 20.00 | 297.67 | 30.33 | 16.67 | 76.00 b | 21.50 | 27.00 | 7.07 |
±SE | 6.33 | - | 54.81 | 1.86 | 0.67 | 5.03 | 3.50 | 8.00 | 0.03 | |
CJ-BZ2 | Mean | 54.67 | 29.00 | 947.00 | 20.67 | 19.50 | 78.67 b | 13.00 | 16.00 | 7.03 |
±SE | 16.74 | - | 631.10 | 4.41 | 2.50 | 11.26 | - | 2.00 | 0.03 | |
CJ-CB | Mean | 65.67 | 25.00 | 254.67 | 34.00 | 22.00 | 94.00 a,b | 11.33 | 33.67 | 7.03 |
±SE | 8.82 | - | 138.25 | 9.64 | 5.00 | 20.00 | 0.88 | 1.33 | 0.03 | |
CJ-G | Mean | 55.33 | <LOD | 322.67 | 27.67 | 18.00 | 59.67 c | 10.00 | 17.00 | 6.87 |
±SE | 11.26 | - | 49.82 | 3.18 | 2.08 | 0.88 | - | 3.00 | 0.07 | |
XRF | LOD | 15 | 15 | 50 | 10 | 10 | 50 | 10 | 10 | - |
Positive number of samples (no.) | no. ≥ LOD | 18 | 8 | 18 | 18 | 16 | 17 | 12 | 15 | - |
National legislation [33] thresholds for sensitive use | Normal | 50 | 30 | 900 | 20 | 20 | 100 | 5 | 20 | - |
Alert | 100 | 100 | 1500 | 75 | 100 | 300 | 15 | 50 | - | |
Intervention | 200 | 300 | 2500 | 150 | 200 | 600 | 25 | 100 | - | |
Romanian soils average, ICPA [40] | Agricultural top soil | n/a | n/a | 513.14 | 34.49 | 26.07 | 87.34 | n/a | 21.3 | - |
European Soil Database, Utermann et al. [34] | Geochemical background MAT11LU-6 | n/a | 47 | n/a | 29 | 20 | 60 | n/a | 17 | - |
Worldwide average Kabata-Pendias et al. [35] | Silty and loamy soils | 76 | 51 | 525 | 26 | 23 | 60 | 8.4 | 28 | - |
Parameters | Sites | ||||||
---|---|---|---|---|---|---|---|
CJ-AM1 | CJ-AM2 | CJ-BZ1 | CJ-BZ2 | CJ-CB | CJ-G | ||
PI | V | 1.11 (2) | 1.21 (2) | 0.88 (1) | 0.72 (1) | 0.86 (1) | 0.73 (1) |
Cr | 0.76 (1) | 1.05 (2) | 0.43 (1) | 0.62 (1) | 0.53 (1) | <LOD | |
Mn | 1.11 (2) | 0.85 (1) | 0.57 (1) | 1.80 (2) | 0.49 (1) | 0.61 (1) | |
Ni | 1.52 (2) | 1.53 (2) | 1.04 (2) | 0.71 (1) | 1.17 (2) | 0.96 (1) | |
Cu | 2.15 (3) | 1.87 (2) | 0.84 (1) | 0.98 (1) | 1.10 (2) | 0.90 (1) | |
Zn | 2.43 (3) | 3.06 (4) | 1.27 (2) | 1.31 (2) | 1.57 (2) | 1.00 (1) | |
As | 1.55 (2) | 1.63 (2) | 2.56 (3) | 1.55 (2) | 1.35 (2) | 1.19 (2) | |
Pb | 2.35 (3) | 2.76 (3) | 1.59 (2) | 0.94 (1) | 1.98 (2) | 1.00 (1) | |
PLI | 1.51 | 1.60 | 0.99 | 1.01 | 1.02 | 0.89 | |
II | II | I | II | II | I |
Location | Sites | Methods | Heavy Metals (mg/kg) | Sources |
---|---|---|---|---|
Armenia (Yerevan) | Kindergarten soil | XRF | As 0.69, Cr 66.4, Cu 57.9, Mn 830, Ni 31.4, Pb 2.4, V 98.7, Zn 195 | [64] |
Chile (Biobio region cities) | Playgrounds | ICP-MS | As 19.51, Cr 32.90, Cu 31.51, Ni 23.76, Pb 17.59, Zn 63.69, | [65] |
China (Hong Kong) | Playgrounds | AAS | Cu 28.4, Pb 195, Zn 237, | [66] |
Greece (Athens) | Playgrounds | AAS | Cr 79.9, Cu 43.4, Mn 311.6, Ni 81.5, Pb 110.3, Zn 174.3 | [67] |
Montenegro (coastal municipalities) | Public parks and kindergartens | GF-AAS, ICP-OES | Cr 5.55–32.51, Cu 26.11–124.06, Pb 2.86–33.30, Zn 14.02–67.88, | [68] |
Poland (Warsaw, Bydgoszcz) | Public playgrounds, sport facilities | ICP-MS, EDXR | Cu 13–57.4, Pb 8.7–167, Zn 16–325 | [69] |
Serbia (Belgrade) | Green areas near elementary schools, kindergartens | ICP-OES | Ni 46.79, Zn 223.11 | [70] |
Slovakia (Bratislava) | Playgrounds | ICP-MS | As 8.30, Cr 44.1, Cu 40.9, Mn 609, Ni 25.6, Pb 32.3, V 64.7, Zn 109 | [71] |
Sweden (Uppsala) | Public/daycare playgrounds | ICP-AES, ICP/MD-DRC | As 3.4, Cr 32, Cu 25, Mn 494, Ni 19, Pb 26, Zn 84 | [72] |
Turkey (Çanakkale) | Playgrounds | ICP-OES | Cr 21, Cu 28, Mn 475, Ni 21, Pb 18, Zn 58 | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Răcușan Ghircoiaș, O.; Tănăselia, C.; Chintoanu, M.; Crișan, I.; Hoble, A.; Ștefan, R.; Dîrja, M. Relevance of Soil Heavy Metal XRF Screening for Quality and Landscaping of Public Playgrounds. Toxics 2023, 11, 530. https://doi.org/10.3390/toxics11060530
Răcușan Ghircoiaș O, Tănăselia C, Chintoanu M, Crișan I, Hoble A, Ștefan R, Dîrja M. Relevance of Soil Heavy Metal XRF Screening for Quality and Landscaping of Public Playgrounds. Toxics. 2023; 11(6):530. https://doi.org/10.3390/toxics11060530
Chicago/Turabian StyleRăcușan Ghircoiaș, Oana, Claudiu Tănăselia, Mircea Chintoanu, Ioana Crișan, Adela Hoble, Răzvan Ștefan, and Marcel Dîrja. 2023. "Relevance of Soil Heavy Metal XRF Screening for Quality and Landscaping of Public Playgrounds" Toxics 11, no. 6: 530. https://doi.org/10.3390/toxics11060530
APA StyleRăcușan Ghircoiaș, O., Tănăselia, C., Chintoanu, M., Crișan, I., Hoble, A., Ștefan, R., & Dîrja, M. (2023). Relevance of Soil Heavy Metal XRF Screening for Quality and Landscaping of Public Playgrounds. Toxics, 11(6), 530. https://doi.org/10.3390/toxics11060530