Validation of a Droplet Digital PCR (ddPCR) Assay to Detect Cyanobacterial 16S rDNA in Human Lung Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Controls
2.2. Human DNA
2.3. Dilutions
2.4. Primers/Probes
2.5. ddPCR Set Up
2.6. Data Analysis
3. Results
3.1. ddPCR Optimization
3.2. Linearity
3.3. Analytical Sensitivity
3.4. Analytical Specificity
3.5. Analytical Precision
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walter, J.M.; Coutinho, F.H.; Dutilh, B.A.; Swings, J.; Thompson, F.L.; Thompson, C.C. Ecogenomics and Taxonomy of Cyanobacteria Phylum. Front. Microbiol. 2017, 8, 2132. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.S.; Tischbein, M.; Cox, P.A.; Stommel, E.W. Cyanotoxins and the Nervous System. Toxins 2021, 13, 660. [Google Scholar] [CrossRef] [PubMed]
- Al-Chalabi, A.; Calvo, A.; Chio, A.; Colville, S.; Ellis, C.M.; Hardiman, O.; Heverin, M.; Howard, R.S.; Huisman, M.H.B.; Keren, N.; et al. Analysis of amyotrophic lateral sclerosis as a multistep process: A population-based modelling study. Lancet Neurol. 2014, 13, 1108–1113. [Google Scholar] [CrossRef] [Green Version]
- Caller, T.A.; Chipman, J.W.; Field, N.C.; Stommel, E.W. Spatial analysis of amyotrophic lateral sclerosis in Northern New England, USA, 1997–2009. Muscle Nerve 2013, 48, 235–241. [Google Scholar] [CrossRef]
- Torbik, N.; Hession, S.; Stommel, E.; Caller, T. Mapping amyotrophic lateral sclerosis lake risk factors across northern New England. Int. J. Health Geogr. 2014, 13, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torbik, N.; Ziniti, B.; Stommel, E.; Linder, E.; Andrew, A.; Caller, T.; Haney, J.; Bradley, W.; Henegan, P.L.; Shi, X. Assessing Cyanobacterial Harmful Algal Blooms as Risk Factors for Amyotrophic Lateral Sclerosis. Neurotox. Res. 2018, 33, 199–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caller, T.A.; Doolin, J.W.; Haney, J.F.; Murby, A.J.; West, K.G.; Farrar, H.E.; Ball, A.; Harris, B.T.; Stommel, E.W. A cluster of amyotrophic lateral sclerosis in New Hampshire: A possible role for toxic cyanobacteria blooms. Amyotroph. Lateral Scler. 2009, 10 (Suppl. S2), 101–108. [Google Scholar] [CrossRef]
- Caller, T.A.; Field, N.C.; Chipman, J.W.; Shi, X.; Harris, B.T.; Stommel, E.W. Spatial Clustering of Amyotrophic Lateral Sclerosis and the Potential Role of BMAA. Amyotroph. Lateral Scler. 2012, 13, 25–32. [Google Scholar] [CrossRef]
- Caller, T.A.; Andrews, A.; Field, N.C.; Henegan, P.L.; Stommel, E.W. The Epidemiology of Amyotrophic Lateral Sclerosis in New Hampshire, USA, 2004–2007. Neurodegener. Dis. 2015, 15, 202–206. [Google Scholar] [CrossRef]
- Banack, S.A.; Caller, T.; Henegan, P.; Haney, J.; Murby, A.; Metcalf, J.S.; Powell, J.; Cox, P.A.; Stommel, E. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins 2015, 7, 322–336. [Google Scholar] [CrossRef] [Green Version]
- Fiore, M.; Parisio, R.; Filippini, T.; Mantione, V.; Platania, A.; Odone, A.; Signorelli, C.; Pietrini, V.; Mandrioli, J.; Teggi, S.; et al. Living near waterbodies as a proxy of cyanobacteria exposure and risk of amyotrophic lateral sclerosis: A population based case-control study. Environ. Res. 2020, 186, 109530. [Google Scholar] [CrossRef]
- Andrew, A.S.; Caller, T.A.; Tandan, R.; Duell, E.J.; Henegan, P.L.; Field, N.C.; Bradley, W.G.; Stommel, E.W. Environmental and Occupational Exposures and Amyotrophic Lateral Sclerosis in New England. Neurodegener. Dis. 2017, 17, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stommel, E.W.; Field, N.C.; Caller, T.A. Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Med. Hypotheses 2013, 80, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Tischbein, M.; Stommel, E.W. Neurotoxic Cyanobacterial Toxins. In Handbook of Neurotoxicity; Kostrzewa, R.M., Ed.; Springer: Cham, Switzerland, 2021; pp. 1–28. [Google Scholar] [CrossRef]
- Facciponte, D.N.; Bough, M.W.; Seidler, D.; Carroll, J.L.; Ashare, A.; Andrew, A.S.; Tsongalis, G.J.; Vaickus, L.J.; Henegan, P.L.; Butt, T.H.; et al. Identifying aerosolized cyanobacteria in the human respiratory tract: A proposed mechanism for cyanotoxin-associated diseases. Sci. Total Environ. 2018, 645, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Mazaika, E.; Homsy, J. Digital Droplet PCR: CNV Analysis and Other Applications. Curr. Protoc. Hum. Genet. 2014, 82, 7.24.1–7.24.13. [Google Scholar] [CrossRef] [Green Version]
- Quan, P.L.; Sauzade, M.; Brouzes, E. DPCR: A Technology Review. Sensors 2018, 18, 1271. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.; Lee, S.; Lee, J. Drinking Water Treatment Residuals from Cyanobacteria Bloom-Affected Areas: Investigation of Potential Impact on Agricultural Land Application. Sci. Total Environ. 2020, 706, 135756. [Google Scholar] [CrossRef]
- Te, S.H.; Chen, E.Y.; Gin, K.Y.H. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis. Appl. Environ. Microbiol. 2015, 81, 5203–5211. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Park, H.-K.; Kim, I.-S. Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea. Toxins 2022, 14, 294. [Google Scholar] [CrossRef]
- Mejbel, H.S.; Dodsworth, W.; Baud, A.; Gregory-Eaves, I.; Pick, F.R. Comparing Quantitative Methods for Analyzing Sediment DNA Records of Cyanobacteria in Experimental and Reference Lakes. Front. Microbiol. 2021, 12, 669910. [Google Scholar] [CrossRef]
- Corless, B.C.; Chang, G.A.; Cooper, S.; Syeda, M.M.; Shao, Y.; Osman, I.; Karlin-Neumann, G.; Polsky, D. Development of Novel Mutation-Specific Droplet Digital PCR Assays Detecting TERT Promoter Mutations in Tumor and Plasma Samples. J. Mol. Diagn. 2019, 21, 274–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kim, J.; Lee, J. Colonization of toxic cyanobacteria on the surface and inside of leafy green: A hidden source of cyanotoxin production and exposure. Food Microbiol. 2021, 94, 103655. [Google Scholar] [CrossRef] [PubMed]
- Al-Tebrineh, J.; Mihali, T.K.; Pomati, F.; Neilan, B.A. Detection of Saxitoxin-Producing Cyanobacteria and Anabaena circinalis in Environmental Water Blooms by Quantitative PCR. Appl. Environ. Microbiol. 2010, 76, 7836–7842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Tebrineh, J.; Pearson, L.A.; Yasar, S.A.; Neilan, B.A. A Multiplex QPCR Targeting Hepato- and Neurotoxigenic Cyanobacteria of Global Significance. Harmful Algae 2012, 15, 19–25. [Google Scholar] [CrossRef]
Assay ID | Amplicon Location | Oligo ID | Oligonucleotide Sequence (5’ to 3’) | Amplicon Length (bp) | Supplier (Catalog Number) |
---|---|---|---|---|---|
16S | 16S ribosomal RNA | 16S Forward | AGCCACACTGGGACTGAGACA | 80 | Bio-Rad (10031276) |
16S Reverse | TCGCCCATTGCGGAAA | ||||
Probe | FAM-CCTACGGGAGGCAGCAGTGGG-Iowa Black | ||||
RPP30 | hg19|chr10:92660373-92660495:+ | ddPCR Copy Number Assay: RPP30, Human, Homo sapiens | Oligonucleotide sequence not provided. HEX reporter; Iowa Black Quencher | 67 | Bio-Rad (10031243, Assay dHsaCP2500350) |
Sample | Concentration (fg/mcL) | 16S in Water | 16S in hDNA |
---|---|---|---|
LB 2385 | 976.6 | 13.2 (9.2) | 14.3 (8.4) |
488.3 | 5.9 (13.6) | 5.6 (6.4) | |
244.1 | 3.2 (9.1) | 3.2 (6.6) | |
122.1 * | 1.3 (41.0) | 1.8 (19.2) | |
LB 2390 | 976.6 | 16.6 (8.6) | 17.0 (7.1) |
488.3 | 7.3 (9.6) | 7.9 (2.5) | |
244.1 | 3.8 (20.3) | 3.7 (8.2) | |
122.1 * | 1.6 (22.5) | 1.6 (29.8) |
Sample | Concentration (pg/mcL) | RPP30 |
---|---|---|
Lung hDNA | 500 | 35.5 (3.4) |
250 | 16.3 (2.3) | |
125 | 8.8 (6.3) | |
61.5 * | 4.2 (15.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barney, R.E.; Huang, G.; Gallagher, T.L.; Tischbein, M.; DeWitt, J.; Martindale, R.; LaRochelle, E.M.P.; Tsongalis, G.J.; Stommel, E.W. Validation of a Droplet Digital PCR (ddPCR) Assay to Detect Cyanobacterial 16S rDNA in Human Lung Tissue. Toxics 2023, 11, 531. https://doi.org/10.3390/toxics11060531
Barney RE, Huang G, Gallagher TL, Tischbein M, DeWitt J, Martindale R, LaRochelle EMP, Tsongalis GJ, Stommel EW. Validation of a Droplet Digital PCR (ddPCR) Assay to Detect Cyanobacterial 16S rDNA in Human Lung Tissue. Toxics. 2023; 11(6):531. https://doi.org/10.3390/toxics11060531
Chicago/Turabian StyleBarney, Rachael E., Guohong Huang, Torrey L. Gallagher, Maeve Tischbein, John DeWitt, Rachel Martindale, Ethan M. P. LaRochelle, Gregory J. Tsongalis, and Elijah W. Stommel. 2023. "Validation of a Droplet Digital PCR (ddPCR) Assay to Detect Cyanobacterial 16S rDNA in Human Lung Tissue" Toxics 11, no. 6: 531. https://doi.org/10.3390/toxics11060531
APA StyleBarney, R. E., Huang, G., Gallagher, T. L., Tischbein, M., DeWitt, J., Martindale, R., LaRochelle, E. M. P., Tsongalis, G. J., & Stommel, E. W. (2023). Validation of a Droplet Digital PCR (ddPCR) Assay to Detect Cyanobacterial 16S rDNA in Human Lung Tissue. Toxics, 11(6), 531. https://doi.org/10.3390/toxics11060531