Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Safety Evaluations
2.2.1. Ames Test
2.2.2. In Vitro Chromosomal Aberration Test
2.2.3. In Vivo Mammalian Erythrocyte Micronucleus Test
2.2.4. 28-Day Oral Toxicity Test
2.3. Anti-Oxidant Activity
2.3.1. Total Polyphenol Content
2.3.2. Ferric Reducing Ability of Plasma (FRAP)
- B = amount of ferrous ammonium sulfate from standard curve (nmol)
- D = dilution factor
- V = volume of sample added to the well (µL)
2.3.3. Trolox Equivalent Antioxidant Capacity (TEAC)
- Sa = the amount of sample (in nmol) read from the standard curve.
- Sv = the undiluted sample volume added to the well.
2.4. Antimutagenicity Test
- a = number of revertant colonies in presence of sample
- b = number of revertant colonies of positive control (without sample)
- c = spontaneous revertants
2.5. Statistical Analysis
3. Results
3.1. Safety Evaluations
3.1.1. Ames Test
3.1.2. In Vitro Chromosomal Aberration Test
3.1.3. In Vivo Mammalian Erythrocyte Micronucleus Test
3.1.4. 28-Day Oral Toxicity Test
3.2. Anti-Oxidant Activity
3.3. Antimutagenicity Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozcan, A.; Ogun, M. Biochemistry of reactive oxygen and nitrogen species. In Basic Principles and Clinical Significance of Oxidative Stress; Gowder, S.J.T., Ed.; InTech: Rijeka, Croatia, 2015; Volume 3, pp. 37–58. [Google Scholar]
- Gautam, V.; Sharma, A.; Arora, S.; Bhardwaj, R.; Ahmad, A.; Ahamad, B.; Ahmad, P. In-vitro antioxidant, antimutagenic and cancer cell growth inhibition activities of Rhododendron arboreum leaves and flowers. Saudi J. Biol. Sci. 2020, 27, 1788–1796. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T.; Li, P.C.; Konkimalla, V.S.B.; Kaina, B. From traditional Chinese medicine to rational cancer therapy. Trends Mol. Med. 2007, 13, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Normile, D. The new face of traditional Chinese medicine. Science 2003, 299, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; Yeh, S.C.; Tseng, H.C.; Siu, M.L.; Lee, K.T. Chemical quality evaluation of Antrodia cinnamomea fruiting bodies using phytomics similarity index analysis. J. Food Drug Anal. 2016, 24, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.C.; Kumar, K.S.; Liao, J.W.; Kuo, Y.H.; Wang, S.Y. Genotoxic, teratotoxic and oral toxic assessments of Antrodia cinnamomea health food product (Leader Deluxe Antrodia cinnamomea®). Toxicol. Rep. 2015, 2, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- De Silva, D.D.; Rapior, S.; Fons, F.; Bahkali, A.H.; Hyde, K.D. Medicinal mushrooms in supportive cancer therapies: An approach to anti-cancer effects and putative mechanisms of action. Fungal Divers. 2012, 55, 1–35. [Google Scholar] [CrossRef]
- Geethangili, M.; Tzeng, Y.M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based Complement. Alternat. Med. 2011, 2011, 212641. [Google Scholar] [CrossRef] [Green Version]
- Chiang, H.C.; Wu, D.P.; Cherng, I.W.; Ueng, C.H. A sesquiterpene lactone, phenyl and biphenyl compounds from Antrodia cinnamomea. Phytochemistry 1995, 39, 613–616. [Google Scholar] [CrossRef]
- Li, F.Z.; Li, S.; Zhang, P.P.; Huang, Z.H.; Zhang, W.B.; Gong, J.; Yang, Z. A chiral pool approach for asymmetric syntheses of (−)-antrocin,(+)-asperolide C, and (−)-trans-ozic acid. Chem. Commun. 2016, 52, 12426–12429. [Google Scholar] [CrossRef]
- Shi, H.; Fang, L.; Tan, C.; Shi, L.; Zhang, W.; Li, C.C.; Luo, T.; Yang, Z. Total syntheses of drimane-type sesquiterpenoids enabled by a gold-catalyzed tandem reaction. J. Am. Chem. Soc. 2011, 133, 14944–14947. [Google Scholar] [CrossRef]
- Chiu, K.Y.; Wu, C.C.; Chia, C.H.; Hsu, S.L.; Tzeng, Y.M. Inhibition of growth, migration and invasion of human bladder cancer cells by antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, and its molecular mechanisms. Cancer Lett. 2016, 373, 174–184. [Google Scholar] [CrossRef]
- Rao, Y.K.; Wu, A.T.; Geethangili, M.; Huang, M.T.; Chao, W.J.; Wu, C.H.; Deng, W.P.; Yeh, C.T.; Tzeng, Y.M. Identification of antrocin from Antrodia camphorata as a selective and novel class of small molecule inhibitor of Akt/mTOR signaling in metastatic breast cancer MDA-MB-231 cells. Chem. Res. Toxicol. 2011, 24, 238–245. [Google Scholar] [CrossRef]
- Yeh, C.T.; Huang, W.C.; Rao, Y.K.; Ye, M.; Lee, W.H.; Wang, L.S.; Tzeng, D.T.; Wu, C.H.; Shieh, Y.S.; Huang, C.Y.F. A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells. Carcinogenesis 2013, 34, 2918–2928. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.A.; Tzeng, D.T.; Huang, Y.P.; Lin, C.J.; Lo, U.G.; Wu, C.L.; Lin, H.; Hsieh, J.T.; Tang, C.H.; Lai, C.H. Antrocin sensitizes prostate cancer cells to radiotherapy through inhibiting PI3K/AKT and MAPK signaling pathways. Cancers 2018, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N.; Lee, F.D.; Durston, W.E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. USA 1973, 70, 782–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res.-Fundam. Mol. Mech. Mutag. 2000, 455, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Registre, M.; Proudlock, R. The in vitro chromosome aberration test. In Genetic Toxicology Testing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 207–267. [Google Scholar]
- OECD. Test No. 474: Mammalian Erythrocyte Micronucleus Test; OECD Publishing: Paris, France, 2016. [Google Scholar]
- OECD. OECD Guideline for Testing of Chemicals. Repeated Dose 28-Day Oral Toxicity in Rodents, Test. No. 407; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Shackelford, C.; Long, G.; Wolf, J.; Okerberg, C.; Herbert, R. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol. Pathol. 2002, 30, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Pacheco, S.L.; Valenzuela-Melendres, M.; Hernández-Mendoza, A.; Burgos-Hernández, A.; Robles-Zepeda, R.E.; Peña-Ramos, E.A. Antimutagenic effect of an Asclepias subulata extract against heterocyclic aromatic amines commonly found in cooked meat and its heat stability. Food Chem. 2020, 322, 126725. [Google Scholar] [CrossRef]
- Negi, P.; Jayaprakasha, G.; Jena, B. Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chem. 2003, 80, 393–397. [Google Scholar] [CrossRef]
- Lo, C.; Chen, Y.; Lin, C.; Kumar, K. Genotoxicity, acute and sub-chronic toxicity studies of solid-state cultivated mycelial powder of Antrodia cinnamomea. ACT 2016, 1, 000105. [Google Scholar]
- Greenwood, S.K.; Hill, R.B.; Sun, J.T.; Armstrong, M.J.; Johnson, T.E.; Gara, J.P.; Galloway, S.M. Population doubling: A simple and more accurate estimation of cell growth suppression in the in vitro assay for chromosomal aberrations that reduces irrelevant positive results. Environ. Mol. Mutagen. 2004, 43, 36–44. [Google Scholar] [CrossRef]
- McInnes, E.F. Wistar and sprague-dawley rats. In Background Lesions in Laboratory Animals; Saunders Elsevier: Edinburgh, UK, 2011; pp. 17–36. [Google Scholar]
- Frazier, K.S.; Seely, J.C.; Hard, G.C.; Betton, G.; Burnett, R.; Nakatsuji, S.; Nishikawa, A.; Durchfeld-Meyer, B.; Bube, A. Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol. Pathol. 2012, 40, 14S–86S. [Google Scholar] [CrossRef] [PubMed]
- Thoolen, B.; Maronpot, R.R.; Harada, T.; Nyska, A.; Rousseaux, C.; Nolte, T.; Malarkey, D.E.; Kaufmann, W.; Küttler, K.; Deschl, U. Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol. Pathol. 2010, 38, 5S–81S. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 2006, 5, 835–844. [Google Scholar] [CrossRef] [PubMed]
- EMA. Nexavar: EPAR—Scientific Dicussion; EMA: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Pezzilli, R.; Corinaldesi, R.; Morselli-Labate, A.M. Tyrosine kinase inhibitors and acute pancreatitis. J. Pancreas 2010, 11, 291–293. [Google Scholar]
- Saadati, H.; Saif, M.W. Sorafenib-induced acute pancreatitis. J. Pancreas 2010, 11, 283–284. [Google Scholar]
- Gerber, H.P.; Vu, T.H.; Ryan, A.M.; Kowalski, J.; Werb, Z.; Ferrara, N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 1999, 5, 623–628. [Google Scholar] [CrossRef]
- Hall, A.P.; Westwood, F.R.; Wadsworth, P.F. Review of the effects of anti-angiogenic compounds on the epiphyseal growth plate. Toxicol. Pathol. 2006, 34, 131–147. [Google Scholar] [CrossRef]
- Matejić, J.; Šarac, Z.; Ranđelović, V. Pharmacological activity of sesquiterpene lactones. Biotechnol. Biotechnol. Equip. 2010, 24, 95–100. [Google Scholar] [CrossRef]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef] [Green Version]
- Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today 2010, 15, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Youn, U.J.; Miklossy, G.; Chai, X.; Wongwiwatthananukit, S.; Toyama, O.; Songsak, T.; Turkson, J.; Chang, L.C. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea. Fitoterapia 2014, 93, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Empirical formula | C15 H22O2 | |
Formula weight | 234.32 | |
Temperature | 200 (2) K | |
Wavelength | 1.54178 Å | |
Crystal system | Monoclinic | |
Space group | P21 | |
Unit cell dimensions | a = 6.1732 (2) Å | α = 90° |
b = 15.9936 (4) Å | β = 114.0949(6)° | |
c = 7.1673 (2) Å | γ = 90° | |
Volume | 645.98 (3) Å3 | |
Z | 2 | |
Density (calculated) | 1.205 Mg/m3 | |
Absorption coefficient | 0.610 mm−1 | |
F(000) | 256 | |
Crystal size | 0.185 × 0.167 × 0.122 mm3 | |
Theta range for data collection | 8.756 to 74.972°. | |
Index ranges | −7 ≤ h ≤ 6, −20 ≤ k ≤ 19, −8 ≤ l ≤ 8 | |
Reflections collected | 4464 | |
Independent reflections | 2615 [R(int) = 0.0209] | |
Completeness to theta = 67.679° | 98.9% | |
Absorption correction | Semi-empirical from equivalents | |
Max. and min. transmission | 0.7539 and 0.6924 | |
Refinement method | Full-matrix least-squares on F2 | |
Data/restraints/parameters | 2615/1/156 | |
Goodness-of-fit on F2 | 1.049 | |
Final R indices [I > 2sigma(I)] | R1 = 0.0308, wR2 = 0.0834 | |
R indices (all data) | R1 = 0.0310, wR2 = 0.0836 | |
Absolute structure parameter | 0.03(5) | |
Extinction coefficient | n/a | |
Largest diff. peak and hole | 0.216 and −0.120 e.Å−3 |
Group | Number of Revertant (Colony/Plate) | ||||
---|---|---|---|---|---|
TA98 | TA100 | TA1535 | TA102 | TA1537 | |
Without S9 metabolic activation | |||||
Negative 1 | 271.0 ± 7.8 3 | 168.3 ± 10.5 | 8.0 ± 1.4 | 271.0 ± 7.8 | 9.7 ± 2.9 |
Positive 2 | 2004.3 ± 604.1 * | 2223.0 ± 53.2 * | 1514.3 ± 63.6 * | 2004.3 ± 604.1 * | 397.3 ± 20.7 * |
Antrocin | |||||
0.003125 | 245.7 ± 10.4 | 170.7 ± 1.2 | 11.7 ± 2.4 | 245.7 ± 10.4 | 14.3 ± 2.6 |
0.00625 | 246.0 ± 16.4 | 169.3 ± 8.2 | 14.7 ± 4.0 | 246.0 ± 16.4 | 8.7 ± 0.5 |
0.0125 | 279.3 ± 4.5 | 166.7 ± 3.8 | 13.0 ± 2.9 | 279.3 ± 4.5 | 8.0 ± 0.8 |
0.025 | 278.3 ± 4.5 | 181.7 ± 5.7 | 10.7 ± 1.2 | 278.3 ± 4.5 | 13.0 ± 2.2 |
0.05 | 270.0 ± 11.2 | 166.7 ± 4.5 | 12.7 ± 2.9 | 270.0 ± 11.2 | 9.7 ± 0.9 |
With S9 metabolic activation | |||||
Negative | 35.3 ± 2.5 | 194.0 ± 5.9 | 16.3 ± 2.6 | 339.7 ± 9.6 | 9.3 ± 2.4 |
Positive | 1881.3 ± 434.2 * | 2099.7 ± 145.5 * | 535.0 ± 138.6 * | 1532.0 ± 204.2 * | 269.0 ± 21.9 * |
Antrocin | |||||
0.003125 | 33.7 ± 1.2 | 194.3 ± 5.4 | 17.3 ± 0.5 | 352.0 ± 8.5 | 11.7 ± 1.9 |
0.00625 | 32.0 ± 1.6 | 185.0 ± 6.5 | 15.7 ± 6.1 | 326.7 ± 5.9 | 6.7 ± 2.4 |
0.0125 | 31.3 ± 3.4 | 189.0 ± 5.1 | 15.3 ± 3.3 | 327.3 ± 5.7 | 6.0 ± 0.8 |
0.025 | 34.3 ± 3.3 | 197.0 ± 8.8 | 18.0 ± 1.6 | 327.3 ± 7.7 | 10.3 ± 2.1 |
0.05 | 36.0 ± 4.3 | 195.3 ± 2.9 | 14.0 ± 2.4 | 322.0 ± 6.2 | 6.0 ± 1.4 |
Group | Total Aberrations | Frequency of Chromosomal Aberration (%) 1 |
---|---|---|
Without S9 (3 h) | ||
Negative control | 17/300 | 5.7 ± 3.2 2 |
Mitomycin C (2.5 μg/mL) | 44/300 | 14.7 ± 2.3 * |
Antrocin (μg/mL) | ||
25 | 13/300 | 4.3 ± 3.8 |
50 | 13/300 | 4.3 ± 2.9 |
100 | 16/300 | 5.3 ± 2.1 |
With S9 (3 h) | ||
Negative control | 17/300 | 5.7 ± 0.6 |
Cyclophosphamide (25 μg/mL) | 46/300 | 15.3 ± 2.3 * |
Antrocin (μg/mL) | ||
25 | 16/300 | 5.3 ± 1.2 |
50 | 19/300 | 6.3 ± 2.1 |
100 | 19/300 | 6.3 ± 2.1 |
Without S9 (19 h) | ||
Negative control | 28/300 | 9.3 ± 1.2 |
Mitomycin C (2.5 μg/mL) | 86/300 | 32.0 ± 6.0 * |
Antrocin (μg/mL) | ||
25 | 28/300 | 9.3 ± 1.2 |
50 | 31/300 | 10.3 ± 2.5 |
100 | 22/300 | 7.3 ± 1.5 |
Group/ | Dose (mg/kg) | RETs/1000RBCs (‰) | Mn-RETs/1000RETs (‰) |
---|---|---|---|
Intervals | |||
Male | |||
48 h | |||
NC 1 | 0 | 19.1 ± 5.2 2 | 2.6 ± 0.8 |
PC | 60 | 3.6 ± 2.1 * | 22.9 ± 12.2 * |
Antrocin | 100 | 20.4 ± 2.4 | 2.2 ± 0.9 |
125 | 20.8 ± 2.5 | 1.8 ± 0.8 | |
250 | 18.8 ± 1.9 | 1.5 ± 0.2 | |
72 h | |||
NC | 0 | 23.7 ± 5.2 | 2.2 ± 0.3 |
PC | 60 | 3.9 ± 2.1 * | 6.8 ± 3.7 * |
Antrocin | 100 | 31.0 ± 6.1 | 3.0 ± 1.0 |
125 | 28.9 ± 5.0 | 2.1 ± 0.5 | |
250 | 26.5 ± 4.6 | 2.2 ± 0.5 |
Sex/Group | Body Weight/Body Weight Gain (g) | ||||
---|---|---|---|---|---|
0-Day | 7-Day 1 | 14-Day 2 | 21-Day 3 | 28-Day 4 | |
Male | |||||
NC 5 | 181.8 ± 3.2 6 | 240.8 ± 8.3 | 295.4 ± 22.0 | 341.1 ± 35.0 | 379.8 ± 45.5 |
59.1 ± 8.7 | 54.5 ± 14.5 | 45.7 ± 13.7 | 38.7 ± 11.0 | ||
Sorafenib | |||||
7.5 mg/kg | 183.0 ± 9.8 | 221.3 ± 11.8 | 257.5 ± 14.5 | 282.1 ± 21.7 | 295.2 ± 43.3 |
38.2 ± 3.7 * | 36.2 ± 7.4 * | 24.6 ± 11.7 * | 13.1 ± 27.7 | ||
Antrocin | |||||
7.5 mg/kg | 181.4 ± 5.1 | 237.9 ± 13.6 | 295.0 ± 22.5 | 349.5 ± 34.3 | 389.6 ± 46.6 |
56.5 ± 10.1 | 57.1 ± 8.9 | 54.5 ± 12.4 | 40.1 ± 12.5 | ||
37.5 mg/kg | 183.9 ± 9.0 | 235.6 ± 9.6 | 289.0 ± 17.3 | 332.3 ± 21.0 | 367.6 ± 30.6 |
51.8 ± 4.7 | 53.4 ± 13.9 | 43.2 ± 7.7 | 35.3 ± 12.9 | ||
Female | |||||
NC | 163.7 ± 6.0 | 187.1 ± 8.7 | 205.0 ± 7.1 | 223.4 ± 11.0 | 237.9 ± 16.5 |
23.5 ± 5.7 | 17.8 ± 4.1 | 18.4 ± 4.0 | 14.5 ± 6.0 | ||
PC | |||||
7.5 mg/kg | 163.7 ± 7.8 | 184.7 ± 10.4 | 205.6 ± 12.5 | 217.9 ± 16.0 | 227.3 ± 21.1 |
21.0 ± 5.6 | 20.9 ± 4.1 | 12.3 ± 5.1 | 9.4 ± 5.9 | ||
Antrocin | |||||
7.5 mg/kg | 163.3 ± 6.3 | 190.0 ± 9.0 | 212.9 ± 12.1 | 229.3 ± 14.6 | 246.6 ± 21.7 |
26.7 ± 5.6 | 22.8 ± 6.0 | 16.4 ± 5.2 | 17.3 ± 7.9 | ||
37.5 mg/kg | 162.4 ± 6.3 | 188.5 ± 7.9 | 212.0 ± 7.0 | 230.1 ± 9.7 | 241.7 ± 13.6 |
26.1 ± 4.1 | 23.4 ± 3.6 | 18.1 ± 5.0 | 11.6 ± 6.3 |
Group | NC 2 | Sorafenib 7.5 mg/kg | Antrocin 7.5 mg/kg | Antrocin 37.5 mg/kg | NC 2 | Sorafenib 7.5 mg/kg | Antrocin 7.5 mg/kg | Antrocin 37.5 mg/kg | |
---|---|---|---|---|---|---|---|---|---|
Sex | Male | Female | |||||||
RBC 1 | (106/µL) | 7.4 ± 0.3 3 | 8.4 ± 0.5 * | 7.7 ± 0.1 | 8.1 ± 0.6 | 7.9 ± 0.5 3 | 7.7 ± 0.4 | 7.5 ± 0.6 | 8.0 ± 0.4 |
HGB | (g/dL) | 14.7 ± 0.8 | 16.4 ± 1.0 * | 15.1 ± 0.4 | 15.7 ± 0.9 | 15.0 ± 0.8 | 15.5 ± 0.6 | 14.7 ± 1.2 | 15.8 ± 0.5 |
HCT | (%) | 44.6 ± 2.3 | 49.8 ± 2.3 * | 45.8 ± 1.2 | 48.3 ± 3.2 | 46.6 ± 2.6 | 47.7 ± 1.7 | 45.0 ± 3.7 | 48.4 ± 2.0 |
MCV | (fL) | 59.8 ± 1.0 | 59.2 ± 0.8 | 59.8 ± 1.5 | 59.8 ± 1.3 | 58.7 ± 1.1 | 61.8 ± 1.2 * | 59.7 ± 1.7 | 60.6 ± 1.0 * |
MCH | (pg) | 19.8 ± 0.4 | 19.5 ± 0.3 | 19.7 ± 0.5 | 19.4 ± 0.6 | 18.9 ± 0.3 | 20.0 ± 0.5 * | 19.5 ± 0.8 | 19.8 ± 0.5 * |
MCHC | (g/dL) | 33.1 ± 0.5 | 33.0 ± 0.7 | 32.9 ± 0.3 | 32.4 ± 0.6 | 32.2 ± 0.6 | 32.4 ± 0.8 | 32.7 ± 0.3 | 32.7 ± 0.4 |
PLT | (103/µL) | 940.6 ± 272.7 | 874.0 ± 307.7 | 1235.2 ± 20.9 * | 1372.2 ± 161.8 * | 1166.8 ± 128.0 | 754.2 ± 238.6 * | 606.0 ± 430.1 * | 1065.6 ± 199.8 |
WBC | (103/µL) | 4.0 ± 2.2 3 | 6.0 ± 2.2 | 5.3 ± 2.0 | 6.4 ± 1.1 | 7.5 ± 4.5 | 7.1 ± 1.1 | 8.7 ± 3.4 | 7.8 ± 4.5 |
NEUT | (%) | 22.3 ± 4.0 | 35.4 ± 12.0 | 18.9 ± 3.1 | 13.6 ± 3.7 * | 12.9 ± 4.4 | 17.8 ± 4.6 | 9.6 ± 3.3 | 10.9 ± 3.4 |
LYMPH | (%) | 70.1 ± 2.8 | 59.0 ± 10.7 | 77.2 ± 1.7 * | 83.9 ± 3.9 * | 83.0 ± 4.9 | 77.2 ± 5.7 | 86.1 ± 5.4 | 84.5 ± 4.1 |
MONO | (%) | 2.9 ± 2.0 | 0.9 ± 0.5 | 2.7 ± 2.4 | 1.8 ± 1.1 | 2.9 ± 2.1 | 3.1 ± 1.7 | 2.3 ± 1.1 | 3.2 ± 2.0 |
EOSIN | (%) | 4.6 ± 4.8 | 0.1 ± 0.1 | 1.2 ± 0.3 | 0.6 ± 0.4 | 1.1 ± 0.3 | 1.8 ± 1.6 | 2.1 ± 1.7 | 1.2 ± 0.3 |
BASO | (%) | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.0 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.0 ± 0.1 | 0.2 ± 0.2 |
Group | NC 2 | Sorafenib 7.5 mg/kg | Antrocin 7.5 mg/kg | Antrocin 37.5 mg/kg | NC 2 | Sorafenib 7.5 mg/kg | Antrocin 7.5 mg/kg | Antrocin 37.5 mg/kg | |
---|---|---|---|---|---|---|---|---|---|
Sex | Male | Female | |||||||
AST 1 | (U/L) | 61.0 ± 9.6 3 | 106.2 ± 2.4 * | 61.4 ± 4.3 | 60.2 ± 3.3 | 74.8 ± 6.1 3 | 94.8 ± 6.4 * | 58.0 ± 8.5 * | 72.6 ± 7.4 |
ALT | (U/L) | 27.4 ± 4.6 | 84.8 ± 13.7 * | 28.2 ± 3.1 | 27.6 ± 2.1 | 31.0 ± 8.3 | 69.0 ± 7.6 * | 24.2 ± 1.9 | 32.6 ± 6.2 |
ALP | (U/L) | 257.2 ± 39.2 | 261.0 ± 148.9 | 238.4 ± 43.9 | 256.8 ± 44.0 | 128.2 ± 25.9 | 147.6 ± 53.2 | 147.4 ± 27.6 | 116.4 ± 35.7 |
CK | (U/L) | 173.2 ± 37.7 | 229.2 ± 49.7 | 185.6 ± 96.1 | 156.4 ± 31.1 | 109.0 ± 15.2 | 137.2 ± 16.7 * | 100.2 ± 30.8 | 129.8 ± 59.5 |
BUN | (mg/dL) | 11.8 ± 1.3 | 14.8 ± 1.8 * | 11.2 ± 1.3 | 11.6 ± 1.8 | 12.4 ± 2.2 | 14.0 ± 1.2 | 12.0 ± 1.0 | 11.0 ± 0.7 |
Creatinine | (mg/dL) | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.0 | 0.3 ± 0.1 |
Cholesterol | (mg/dL) | 43.4 ± 9.8 3 | 100.8 ± 13.9 * | 41.2 ± 6.3 | 44.0 ± 2.5 | 41.2 ± 8.6 | 76.2 ± 7.0 * | 51.2 ± 9.8 | 47.0 ± 11.8 |
Amylase | (U/L) | 1994.2 ± 191.5 | 1432.0 ± 348.8 * | 1931.0 ± 241.1 | 2016.4 ± 289.7 | 1311.8 ± 143.3 | 1076.4 ± 197.5 | 1280.6 ± 111.3 | 1240.4 ± 239.9 |
Glucose | (mg/dL) | 212.4 ± 37.6 | 176.6 ± 19.4 | 178.0 ± 25.7 | 178.0 ± 14.5 | 179.8 ± 19.9 | 143.0 ± 19.1 * | 182.4 ± 42.9 | 138.2 ± 21.7 * |
GGT | (U/L) | <1 | <1 | <1 | <1 | 1.6 | <1 | 1–2 | 1–2 |
LDH | (U/L) | 164.2 ± 24.6 | 229.6 ± 108.3 | 219.6 ± 139.5 | 109.8 ± 33.5 * | 82.4 ± 23.4 | 81.8 ± 23.8 | 92.4 ± 73.8 | 125.4 ± 96.2 |
TB | (mg/dL) | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
UA | (mg/dL) | 2.0 ± 0.6 | 1.6 ± 0.4 | 1.5 ± 0.1 | 1.6 ± 0.3 | 1.5 ± 0.9 | <0.9 | 0.9 ± 0.1 | 1.3 ± 0.6 |
Globulin | (g/dL) | 1.9 ± 0.1 3 | 1.6 ± 0.3 | 1.9 ± 0.1 | 2.0 ± 0.2 | 2.1 ± 0.3 | 2.0 ± 0.2 | 1.9 ± 0.1 | 2.2 ± 0.1 |
Albumin | (g/dL) | 3.5 ± 0.1 | 3.1 ± 0.4 | 3.4 ± 0.1 | 3.5 ± 0.2 | 3.7 ± 0.2 | 3.5 ± 0.3 | 3.7 ± 0.2 | 3.8 ± 0.2 |
A/G | 1.8 ± 0.1 | 1.9 ± 0.3 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.9 ± 0.2 | 1.7 ± 0.1 | |
HDL-C | (mg/dL) | 12.8 ± 1.3 | 25.2 ± 1.5 * | 12.8 ± 1.5 | 15.2 ± 2.8 | 12.8 ± 3.3 | 23.2 ± 1.9 * | 16.0 ± 3.4 | 14.6 ± 3.8 |
TP | (mg/dL) | 5.4 ± 0.1 | 4.7 ± 0.7 | 5.3 ± 0.2 | 5.5 ± 0.4 | 5.8 ± 0.5 | 5.5 ± 0.4 | 5.6 ± 0.2 | 6.0 ± 0.3 |
TG | (mg/dL) | 32.0 ± 7.1 | 181.4 ± 202.0 | 33.0 ± 8.1 | 46.2 ± 8.3 * | 27.2 ± 2.9 | 59.6 ± 23.4 * | 32.8 ± 5.2 | 27.2 ± 8.1 |
Ca2+ | (mg/dL) | 9.8 ± 0.4 2 | 8.9 ± 0.4 * | 9.7 ± 0.2 | 9.9 ± 0.4 | 10.0 ± 0.3 | 9.4 ± 0.6 | 9.9 ± 0.1 | 10.2 ± 0.2 |
Cl− | (mEq/dL) | 105.0 ± 4.5 | 103.6 ± 2.3 | 106.4 ± 1.3 | 104.6 ± 2.1 | 103.8 ± 1.5 | 103.2 ± 1.6 | 105.6 ± 0.5 * | 104.2 ± 1.3 |
K+ | (mEq/dL) | 7.6 ± 1.0 | 7.6 ± 0.7 | 6.5 ± 0.3 * | 6.4 ± 0.6 | 5.2 ± 0.4 | 5.1 ± 0.1 | 5.2 ± 0.2 | 5.0 ± 0.7 |
Mg2+ | (mg/L) | 2.1 ± 0.3 | 2.2 ± 0.2 | 2.0 ± 0.1 | 2.1 ± 0.2 | 2.4 ± 0.2 | 2.3 ± 0.2 | 2.1 ± 0.1 * | 2.4 ± 0.3 |
Na+ | (mEq/dL) | 140.6 ± 1.1 | 138.6 ± 0.9 * | 141.8 ± 0.8 | 141.4 ± 2.3 | 141.2 ± 1.1 | 140.4 ± 2.1 | 139.2 ± 1.6 | 142.6 ± 1.1 |
Phosphate | (mg/dL) | 8.7 ± 1.1 | 7.1 ± 1.5 | 9.1 ± 0.9 | 9.6 ± 1.6 | 9.3 ± 0.7 | 7.3 ± 1.1 * | 8.5 ± 1.0 | 8.5 ± 0.5 |
Sex/Group | Brain (g) | Heart (g) | Thymus (g) | Liver (g) | Kidney (g) | Adrenal (g) | Spleen (g) | Testis/Ovary (g) |
---|---|---|---|---|---|---|---|---|
Male | ||||||||
NC 1 | 2.1 ± 0.1 2 | 1.3 ± 0.1 | 0.5 ± 0.1 | 12.1 ± 2.2 | 3.0 ± 0.5 | 0.05 ± 0.01 | 0.6 ± 0.1 | 3.2 ± 0.4 |
Sorafenib 7.5 mg/kg | 2.0 ± 0.1 | 0.9 ± 0.2 * | 0.4 ± 0.3 | 7.9 ± 1.4 * | 2.1 ± 0.4 * | 0.05 ± 0.01 | 0.4 ± 0.1 * | 2.7 ± 0.2 * |
Antrocin | ||||||||
7.5 mg/kg | 2.1 ± 0.2 | 1.3 ± 0.2 | 0.6 ± 0.1 | 12.2 ± 1.9 | 2.8 ± 0.4 | 0.05 ± 0.01 | 0.6 ± 0.1 | 3.1 ± 0.2 |
37.5 mg/kg | 2.0 ± 0.1 | 1.3 ± 0.2 | 0.4 ± 0.1 | 11.1 ± 1.2 | 2.7 ± 0.2 | 0.06 ± 0.00 | 0.6 ± 0.1 | 3.2 ± 0.2 |
Female | ||||||||
NC | 1.9 ± 0.2 | 0.8 ± 0.1 | 0.4 ± 0.1 | 6.8 ± 0.4 | 1.6 ± 0.1 | 0.06 ± 0.01 | 0.5 ± 0.1 | 0.10 ± 0.02 |
Sorafenib 7.5 mg/kg | 2.0 ± 0.1 | 0.7 ± 0.0 | 0.5 ± 0.1 | 7.3 ± 0.1* | 1.7 ± 0.1 | 0.06 ± 0.01 | 0.4 ± 0.0 | 0.09 ± 0.01 |
Antrocin | ||||||||
7.5 mg/kg | 1.9 ± 0.1 | 0.9 ± 0.1 | 0.4 ± 0.1 | 8.5 ± 0.7* | 1.8 ± 0.1* | 0.05 ± 0.01 | 0.4 ± 0.1 | 0.07 ± 0.02 |
37.5 mg/kg | 2.0 ± 0.1 | 1.0 ± 0.1 | 0.4 ± 0.1 | 7.8 ± 0.5* | 1.7 ± 0.1 | 0.05 ± 0.01 | 0.4 ± 0.0 | 0.10 ± 0.01 |
Components | Total Phenolic Contents (mM Catechin Equivalents) | Ferric Reducing Ability of Plasma (mM Ferrous Equivalent) | Trolox Equivalent Antioxidant Capacity (mM Trolox Equivalents) |
---|---|---|---|
Antrocin | 0.016 ± 0.000 1 | 0.218 ± 0.004 | 0.508 ± 0.003 |
Group | Number of Revertant (Colony/Plate) | |
---|---|---|
TA98 | TA1535 | |
Without S9 metabolic activation | ||
Negative 1 | 20.3 ± 5.7 3 | 10.7 ± 2.5 |
Positive 2 | 117.0 ± 7.2 * | 1313.0 ± 42.0 * |
Antrocin | ||
0.0125 | 83.0 ± 3.6 (35.17%) | 1255.7 ± 47.7 (4.40%) |
0.025 | 67.7 ± 2.5 (51.03%) | 1095.0 ± 28.0 (16.74%) |
0.05 | 21.7 ± 1.5 (98.62%) | 977.0 ± 18.1 (25.80%) |
With S9 metabolic activation | ||
Negative | 22.3 ± 4.2 | 11.7 ± 2.1 |
Positive | 6055.0 ± 661.0 * | 270.3 ± 7.5 * |
Antrocin | ||
0.0125 | 5680.3 ± 640.7 (6.21%) | 248.0 ± 9.5 (8.63%) |
0.025 | 4959.0 ± 739.1 (18.17%) | 217.3 ± 10.2 (20.49%) |
0.05 | 4024.0 ± 251.1 (33.67%) | 184.3 ± 3.8 (33.25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.-H.; Wu, J.-S.; Dai, Y.-Z.; Chen, Y.-T.; Lin, Y.-X.; Tzeng, Y.-M.; Liao, J.-W. Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin. Toxics 2023, 11, 547. https://doi.org/10.3390/toxics11060547
Su Y-H, Wu J-S, Dai Y-Z, Chen Y-T, Lin Y-X, Tzeng Y-M, Liao J-W. Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin. Toxics. 2023; 11(6):547. https://doi.org/10.3390/toxics11060547
Chicago/Turabian StyleSu, Yi-Hui, Jia-Shuan Wu, Yan-Zhen Dai, Yng-Tay Chen, Yan-Xiu Lin, Yew-Min Tzeng, and Jiunn-Wang Liao. 2023. "Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin" Toxics 11, no. 6: 547. https://doi.org/10.3390/toxics11060547
APA StyleSu, Y.-H., Wu, J.-S., Dai, Y.-Z., Chen, Y.-T., Lin, Y.-X., Tzeng, Y.-M., & Liao, J.-W. (2023). Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin. Toxics, 11(6), 547. https://doi.org/10.3390/toxics11060547