Metal Toxicity across Different Thallus Sections of the Green Macroalga, Ulva australis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Culture
2.2. Morphological Characteristics Comparisons
2.3. Growth
2.4. Chlorophyll a (Chl a) Fluorescence Measurements
2.5. Pigment Contents
2.6. Metal Toxicity Testing
2.7. Gene Expression (qRT-PCR)
2.8. Statistical Analyses
3. Results and Discussion
3.1. Morphological, Physiological, and Biochemical Traits by Thallus Section
3.2. Effects of Metals on Six Different Endpoints of Three Different Thallus Sections
Endpoints | Metals | Thallus Sections | Test Period (h) | EC50 (mg∙L−1) | CV (%) | References |
---|---|---|---|---|---|---|
Growth (RGR) | Ag | Margin | 72 | 0.08 | 18.67 | This study |
Middle | 72 | 0.05 | 14.38 | This study | ||
Base | 72 | >0.32 | - | This study | ||
As | Margin | 72 | 2.35 | 28.20 | This study | |
Middle | 72 | 0.98 | 19.37 | This study | ||
Base | 72 | >12.8 | - | This study | ||
Cd | Margin | 72 | 6.21 | 3.79 | This study | |
Middle | 72 | 1.89 | 12.09 | This study | ||
Base | 72 | 2.88 | 16.33 | This study | ||
Cr | Margin | 72 | 3.94 | 32.44 | This study | |
Middle | 72 | 0.87 | 28.72 | This study | ||
Base | 72 | 0.74 | 46.47 | This study | ||
Cu | Margin | 72 | 0.06 | 13.22 | This study | |
Middle | 72 | 0.05 | 24.38 | This study | ||
72 | 0.05–0.1, ca. | - | Han et al. [15] | |||
Base | 72 | 0.12 | 4.04 | This study | ||
Ni | Margin | 72 | >0.5 | - | This study | |
Middle | 72 | >0.5 | - | This study | ||
Base | 72 | 0.03 | 35.56 | This study | ||
Fv/Fm | Ag | Margin | 72 | 0.26 | 2.71 | This study |
Middle | 72 | 0.30 | - | This study | ||
Base | 72 | 0.23 | 2.41 | This study | ||
As | Margin | 72 | >12.8 | - | This study | |
Middle | 72 | 5.03 | 0.79 | This study | ||
Base | 72 | 6.75 | 9.96 | This study | ||
Cd | Margin | 72 | >8 | - | This study | |
Middle | 72 | >8 | - | This study | ||
Base | 72 | >8 | - | This study | ||
Cr | Margin | 72 | >6.4 | - | This study | |
Middle | 72 | 4.89 | 7.85 | This study | ||
Base | 72 | >6.4 | - | This study | ||
Cu | Margin | 72 | >1.2 | - | This study | |
Middle | 72 | 0.20 | 23.36 | This study | ||
24 | 0.48 | 6.04 | Kumar et al. [45] | |||
48 | 0.37 | 5.5 | Kumar et al. [45] | |||
72 | 0.25, ca. | - | Han et al. [15] | |||
72 | 0.35 | 5.41 | Kumar et al. [45] | |||
96 | 0.71 | - | Kumar et al. [45] | |||
Base | 72 | 0.67 | 8.37 | This study | ||
Ni | Margin | 72 | >0.5 | - | This study | |
Middle | 72 | >0.5 | - | This study | ||
Base | 72 | >0.5 | - | This study | ||
ETRmax | Ag | Margin | 72 | 0.23 | 1.80 | This study |
Middle | 72 | 0.06 | 15.27 | This study | ||
Base | 72 | 0.07 | 25.14 | This study | ||
As | Margin | 72 | 5.19 | 29.05 | This study | |
Middle | 72 | 3.01 | 10.70 | This study | ||
Base | 72 | 4.99 | 4.82 | This study | ||
Cd | Margin | 72 | >8 | - | This study | |
Middle | 72 | >8 | - | This study | ||
Base | 72 | >8 | - | This study | ||
Cr | Margin | 72 | 0.22 | 6.36 | This study | |
Middle | 72 | 1.29 | 23.56 | This study | ||
Base | 72 | 2.22 | 28.00 | This study | ||
Cu | Margin | 72 | 0.08 | 31.47 | This study | |
Middle | 72 | 0.14 | 15.05 | This study | ||
24 | 0.21 | 8.98 | Kumar et al. [45] | |||
48 | 0.16 | - | Kumar et al. [45] | |||
72 | 0.05–0.10, ca. | - | Han et al. [15] | |||
72 | 0.29 | 11.80 | Kumar et al. [45] | |||
96 | 0.36 | 2.60 | Kumar et al. [45] | |||
Base | 72 | 0.11 | 15.68 | This study | ||
Ni | Margin | 72 | >0.5 | - | This study | |
Middle | 72 | >0.5 | - | This study | ||
Base | 72 | >0.5 | - | This study | ||
Chl a | Ag | Margin | 72 | 0.22 | 4.19 | This study |
Middle | 72 | 0.11 | 4.56 | This study | ||
Base | 72 | 0.12 | 26.01 | This study | ||
As | Margin | 72 | >12.8 | - | This study | |
Middle | 72 | >12.8 | - | This study | ||
Base | 72 | >12.8 | - | This study | ||
Cd | Margin | 72 | >8 | - | This study | |
Middle | 72 | >8 | - | This study | ||
Base | 72 | >8 | - | This study | ||
Cr | Margin | 72 | 5.71 | - | This study | |
Middle | 72 | 4.11 | 13.08 | This study | ||
Base | 72 | >6.4 | - | This study | ||
Cu | Margin | 72 | 0.05 | 10.39 | This study | |
Middle | 72 | 0.18 | 17.85 | This study | ||
72 | 0.25, ca. | - | Han et al. [15] | |||
Base | 72 | 0.92 | 10.89 | This study | ||
Ni | Margin | 72 | >0.5 | - | This study | |
Middle | 72 | >0.5 | - | This study | ||
Base | 72 | >0.5 | - | This study | ||
Chl b | Ag | Margin | 72 | 0.22 | 5.11 | This study |
Middle | 72 | 0.12 | 3.78 | This study | ||
Base | 72 | 0.10 | 40.28 | This study | ||
As | Margin | 72 | >12.8 | - | This study | |
Middle | 72 | >12.8 | - | This study | ||
Base | 72 | >12.8 | - | This study | ||
Cd | Margin | 72 | >8 | - | This study | |
Middle | 72 | >8 | - | This study | ||
Base | 72 | >8 | - | This study | ||
Cr | Margin | 72 | 6.04 | - | This study | |
Middle | 72 | 4.55 | 11.06 | This study | ||
Base | 72 | >6.4 | - | This study | ||
Cu | Margin | 72 | 0.06 | 7.77 | This study | |
Middle | 72 | 0.24 | 11.56 | This study | ||
Base | 72 | >1.2 | - | This study | ||
Ni | Margin | 72 | >0.5 | - | This study | |
Middle | 72 | >0.5 | - | This study | ||
Base | 72 | >0.5 | - | This study | ||
Carotenoid | Ag | Margin | 72 | 0.20 | 9.74 | This study |
Middle | 72 | 0.12 | 3.87 | This study | ||
Base | 72 | 0.11 | 34.41 | This study | ||
As | Margin | 72 | >12.8 | - | This study | |
Middle | 72 | >12.8 | - | This study | ||
Base | 72 | >12.8 | - | This study | ||
Cd | Margin | 72 | >8 | - | This study | |
Middle | 72 | >8 | - | This study | ||
Base | 72 | >8 | - | This study | ||
Cr | Margin | 72 | 5.20 | - | This study | |
Middle | 72 | 4.48 | 10.83 | This study | ||
Base | 72 | >6.4 | - | This study | ||
Cu | Margin | 72 | 0.05 | 11.00 | This study | |
Middle | 72 | 0.21 | 9.81 | This study | ||
Base | 72 | 1.09 | - | This study | ||
Ni | Margin | 72 | >0.5 | - | This study | |
Middle | 72 | >0.5 | - | This study | ||
Base | 72 | >0.5 | - | This study | ||
Antioxidation | Cu | Middle | 72 | 0.1–0.25, ca. | - | Han et al. [15] |
Gametophyte (length) | Cd | Margin | 144 | 0.19 | - | Han et al. [48] |
Cu | Margin | 144 | 0.02 | 6.41 | Han et al. [48] | |
Gametophyte (No. of cells) | Cd | Margin | 144 | 0.20 | - | Han et al. [48] |
Cu | Margin | 144 | 0.03 | 8.32 | Han et al. [48] | |
Reproduction | Ag | Margin | 96 | 0.13 | 11.41 | Lee et al. [16] |
Cd | Margin | 72–120 | 0.22 | - | Han et al. [23] | |
Cd | Margin | 96 | 0.72 | 17.10 | Lee et al. [20] | |
Cu | Margin | 72–120 | 0.06 | - | Han et al. [23] | |
Cu | Margin | 96 | 0.12 | 9.67 | Lee et al. [20] | |
Sporulation (visual) | Ag | Margin | 96 | 0.05 | 3.11 | Han et al. [24] |
As | Margin | 96 | 1.03 | 10.54 | Han et al. [24] | |
Cd | Margin | 96 | 0.27 | 7.63 | Han et al. [24] | |
Cr | Margin | 96 | 1.50 | 2.08 | Han et al. [24] | |
Cu | Margin | 96 | 0.10 | 2.46 | Han et al. [24] | |
Ni | Margin | 96 | 0.98 | 7.30 | Han et al. [24] | |
Sporulation (image analyser) | Ag | Margin | 96 | 0.05 | 2.95 | Han et al. [24] |
As | Margin | 96 | 0.86 | 10.48 | Han et al. [24] | |
Cd | Margin | 96 | 0.26 | 8.38 | Han et al. [24] | |
Cr | Margin | 96 | 1.45 | 2.90 | Han et al. [24] | |
Cu | Margin | 96 | 0.10 | 3.01 | Han et al. [24] | |
Ni | Margin | 96 | 0.95 | 4.60 | Han et al. [24] | |
Sporulation | Cd | Margin | 120 | 0.33 | 10.43, ca. | Han and Choi [22] |
Cu | Margin | 120 | 0.06 | 32.78, ca. | Han and Choi [22] | |
Spore release | Ag | Margin | 96 | 0.04 | 2.53 | Han et al. [24] |
As | Margin | 96 | 0.45 | 19.56 | Han et al. [24] | |
Cd | Margin | 96 | 0.10 | 11.71 | Han et al. [19] | |
Margin | 96 | 0.22 | 6.55 | Han et al. [24] | ||
Margin | 96 | 0.26 | 8.38 | Oh et al. [49] | ||
Cr | Margin | 96 | 0.80 | 4.26 | Han et al. [24] | |
Cu | Margin | 96 | 0.04 | 8.40 | Han et al. [19] | |
Margin | 96 | 0.08 | 5.02 | Han et al. [24] | ||
Margin | 96 | 0.10 | 3.01 | Oh et al. [49] | ||
Ni | Margin | 96 | 0.31 | 4.13 | Han et al. [24] | |
Spore germination | Cd | Margin | 72 | 0.79 | 3.29 | Han et al. [48] |
Cu | Margin | 72 | 0.02 | 3.39 | Han et al. [48] |
3.3. Effect of Metals on rbcL Expression
3.4. Sensitivity and Reliability of the Endpoints of the Three Different Thallus Sections
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, T.; Han, Y.S.; Kain, J.M.; Häder, D.P. Thallus differentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga Ulva pertusa (Chlorophyceae). J. Phycol. 2003, 39, 712–721. [Google Scholar] [CrossRef]
- Monteiro, J.P.; Costa, E.; Melo, T.; Domingues, P.; Fort, A.; Domingues, M.R.; Sulpice, R. Lipidome in-depth characterization highlights the nutritional value and species-specific idiosyncrasies of different Ulva species. Algal Res. 2022, 64, 102694. [Google Scholar] [CrossRef]
- Tan, I.H.; Blomster, J.; Hansen, G.; Leskinen, E.; Maggs, C.A.; Mann, D.G.; Sluiman, H.J.; Stanhope, M.J. Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Mol. Biol. Evol. 1999, 16, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Wichard, T.; Charrier, B.; Mineur, F.; Bothwell, J.H.; Clerck, O.D.; Coates, J.C. The green seaweed Ulva: A model system to study morphogenesis. Front. Plant Sci. 2015, 6, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.A.; Sciuto, K.; Andreoli, C.; Moro, I. Ulva (Chlorophyta, Ulvales) biodiversity in the North Adriatic Sea (Mediterranean, Italy): Cryptic species and new introductions. J. Phycol. 2012, 48, 1510–1521. [Google Scholar] [CrossRef]
- Hiraoka, M.; Enomoto, S. The induction of reproductive cell formation of Ulva pertusa Kjellman (Ulvales, Ulvophyceae). Phycol. Res. 1998, 46, 199–203. [Google Scholar] [CrossRef]
- Fletcher, R. Post-germination attachment mechanisms in marine fouling algae. In Proceedings of the Third International Biodegradation Symposium; Sharpley, J., Kaplan, A., Eds.; Applied Science Publishers: London, UK, 1976; pp. 443–464. [Google Scholar]
- Liu, P.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y.; Wang, X.; Zhou, Y.; Shi, B.; Kwon, B.-O.; Choi, K. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef]
- Lekshmi, R.; Rejiniemon, T.; Sathya, R.; Kuppusamy, P.; Al-Mekhlafi, F.A.; Wadaan, M.A.; Rajendran, P. Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa. Chemosphere 2022, 306, 135479. [Google Scholar]
- Shah, S.B. Heavy metals in the marine environment—An overview. In Heavy Metals in Scleractinian Corals; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–26. [Google Scholar]
- Geddie, A.W.; Hall, S.G. The effect of salinity and alkalinity on growth and the accumulation of copper and zinc in the Chlorophyta Ulva fasciata. Ecotoxicol. Environ. Saf. 2019, 172, 203–209. [Google Scholar] [CrossRef]
- Pfeiffer, T.; Camagajevac, I.; Maronic, D.; Maksimovic, I.; Singh, V.; Singh, S.; Prasad, S. Regulation of photosynthesis in algae under metal stress. In Environment and Photosynthesis: A Future Prospect; Srivastava, P.K., Singh, S.M.P.V.P., Singh, S.S.R., Eds.; Studium Press: New Delhi, India, 2018; pp. 261–286. [Google Scholar]
- Piotrowska-Niczyporuk, A.; Bajguz, A.; Zambrzycka-Szelewa, E.; Bralska, M. Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. Plant Physiol. Biochem. 2018, 132, 535–546. [Google Scholar] [CrossRef]
- Tuney, I.; Unal, D.; Sukatar, A. Effects of external polyamines on DNA under the highest copper toxicity in Ulva lactuca L. and genotoxicity detection by RAPD-PCR assay. Fresenius Environ. Bull. 2007, 16, 1667–1670. [Google Scholar]
- Han, T.; Kang, S.-H.; Park, J.-S.; Lee, H.-K.; Brown, M.T. Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat. Toxicol. 2008, 86, 176–184. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Shin, K.; Depuydt, S.; Choi, S.; De Saeger, J.; Han, T. Application of a programmed semi-automated Ulva pertusa bioassay for testing single toxicants and stream water quality. Aquat. Toxicol. 2020, 221, 105426. [Google Scholar] [CrossRef]
- Nestler, H.; Groh, K.J.; Schönenberger, R.; Behra, R.; Schirmer, K.; Eggen, R.I.; Suter, M.J.-F. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii. Aquat. Toxicol. 2012, 110, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Depuydt, S.; Shin, K.; Choi, S.; Kim, G.; Lee, Y.H.; Park, J.T.; Han, T.; Park, J. Assessment of various toxicity endpoints in duckweed (Lemna minor) at the physiological, biochemical, and molecular levels as a measure of diuron stress. Biology 2021, 10, 684. [Google Scholar] [CrossRef]
- Han, T.; Han, Y.-S.; Park, C.Y.; Jun, Y.S.; Kwon, M.J.; Kang, S.-H.; Brown, M.T. Spore release by the green alga Ulva: A quantitative assay to evaluate aquatic toxicants. Environ. Pollut. 2008, 153, 699–705. [Google Scholar] [CrossRef]
- Lee, H.; Brown, M.T.; Choi, S.; Pandey, L.K.; De Saeger, J.; Shin, K.; Kim, J.K.; Depuydt, S.; Han, T.; Park, J. Reappraisal of the toxicity test method using the green alga Ulva pertusa Kjellman (Chlorophyta). J. Hazard. Mater. 2019, 369, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Brown, M.T.; Lee, H.; Choi, S.; Depuydt, S.; Häder, D.-P.; Han, T. Toxicity testing using the marine macroalga Ulva pertusa: Method development and application. In Bioassays; Häder, D.-P., Erzinge, G.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 119–142. [Google Scholar]
- Han, T.; Choi, G.-W. A novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta). Aquat. Toxicol. 2005, 75, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-S.; Brown, M.T.; Park, G.S.; Han, T. Evaluating aquatic toxicity by visual inspection of thallus color in the green macroalga Ulva: Testing a novel bioassay. Environ. Sci. Technol. 2007, 41, 3667–3671. [Google Scholar] [CrossRef]
- Han, Y.-S.; Kumar, A.S.; Han, T. Comparison of metal toxicity bioassays based on inhibition of sporulation and spore release in Ulva pertusa. Toxicol. Environ. Health Sci. 2009, 1, 24–31. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Han, Y.-S.; Kim, E.; Jung, J.; Kim, S.-H.; Yoo, S.-J.; Shin, G.-S.; Oh, J.-j.; Park, A.; Choi, H. Application of the Ulva pertusa bioassay for a toxicity identification evaluation and reduction of effluent from a wastewater treatment plant. Front. Environ. Sci. 2015, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Park, J. Photosynthetic and biochemical traits change in the green-tide-forming macroalga Ulva pertusa during sporulation. J. Phycol. 2020, 56, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Jassby, A.D.; Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 1976, 21, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J. Plant Physiol. 1987, 131, 101–110. [Google Scholar] [CrossRef]
- Hoeksema, B.; Van den Hoek, C. The taxonomy of Ulva (Chlorophyceae) from the coastal region of Roscoff (Brittany, France). Bot. Mar. 1983, 26, 65–86. [Google Scholar] [CrossRef]
- Pérez-Lloréns, J.; Vergara, J.; Pino, R.; Hernández, I.; Peralta, G.; Niell, F. The effect of photoacclimation on the photosynthetic physiology of Ulva curvata and Ulva rotundata (Ulvales, Chlorophyta). Eur. J. Phycol. 1996, 31, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Raven, J. Physiological consequences of extremely small size for autotrophic organisms in the sea. In Photosynthetic Picoplankton; Platt, T., Li, W.K.W., Eds.; Canadian Bulletin of Fisheries and Aquatic Science: Ottawa, ON, Canada, 1987; Volume 214, pp. 1–70. [Google Scholar]
- Taguchi, S. Relationship between photosynthesis and cell size of marine diatoms. J. Phycol. 1976, 12, 185–189. [Google Scholar]
- Ramus, J. Seaweed anatomy and photosynthetic performance: The ecological significance of light guides, heterogeneous absorption and multiple scatter. J. Phycol. 1978, 14, 352–362. [Google Scholar] [CrossRef]
- Malerba, M.E.; Palacios, M.M.; Palacios Delgado, Y.M.; Beardall, J.; Marshall, D.J. Cell size, photosynthesis and the package effect: An artificial selection approach. New Phytol. 2018, 219, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Wu, H. Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). BioMed Res. Int. 2016, 2016, 7383918. [Google Scholar] [CrossRef] [Green Version]
- Eismann, A.I.; Reis, R.P.; da Silva, A.F.; Cavalcanti, D.N. Ulva spp. carotenoids: Responses to environmental conditions. Algal Res. 2020, 48, 101916. [Google Scholar] [CrossRef]
- Holt, N.E.; Fleming, G.R.; Niyogi, K.K. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 2004, 43, 8281–8289. [Google Scholar] [CrossRef] [PubMed]
- Lavaud, J.; Strzepek, R.F.; Kroth, P.G. Photoprotection capacity differs among diatoms: Possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol. Oceanogr. 2007, 52, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.C.; Barber, D.S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 2008, 27, 1972–1978. [Google Scholar] [CrossRef]
- Lau, Z.L.; Low, S.S.; Ezeigwe, E.R.; Chew, K.W.; Chai, W.S.; Bhatnagar, A.; Yap, Y.J.; Show, P.L. A review on the diverse interactions between microalgae and nanomaterials: Growth variation, photosynthesis performance and toxicity. Bioresour. Technol. 2022, 351, 127048. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Brice, D.; Brown, M.T. Interactions of silver nanoparticles with the marine macroalga, Ulva lactuca. Ecotoxicology 2012, 21, 148–154. [Google Scholar] [CrossRef]
- Aggarwal, A.; Sharma, I.; Tripathi, B.; Munjal, A.; Baunthiyal, M.; Sharma, V. Metal toxicity and photosynthesis. In Photosynthesis: Overviews on Recent Progress and Future Perspectives, 1st ed.; Itoh, S., Mohanty, P., Guruprasad, K., Eds.; I.K. International Publishing House: New Delhi, India, 2012; pp. 229–236. [Google Scholar]
- Wei, Y.; Zhu, N.; Lavoie, M.; Wang, J.; Qian, H.; Fu, Z. Copper toxicity to Phaeodactylum tricornutum: A survey of the sensitivity of various toxicity endpoints at the physiological, biochemical, molecular and structural levels. Biometals 2014, 27, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Han, Y.-S.; Choo, K.-S.; Kong, J.-A.; Han, T. Chlorophyll fluorescence based copper toxicity assessment of two algal species. Toxicol. Environ. Health Sci. 2009, 1, 17–23. [Google Scholar] [CrossRef]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Murtaza, G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, J.; Xie, K.; Yang, H.; Du, K.; Shi, G. Accumulation and acute toxicity of silver in Potamogeton crispus L. J. Hazard. Mater. 2010, 173, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Kong, J.-A.; Brown, M.T. Aquatic toxicity tests of Ulva pertusa Kjellman (Ulvales, Chlorophyta) using spore germination and gametophyte growth. Eur. J. Phycol. 2009, 44, 357–363. [Google Scholar] [CrossRef]
- Oh, J.-j.; Choi, E.-M.; Han, Y.-S.; Yoon, J.-H.; Park, A.; Jin, K.; Lee, J.-W.; Choi, H.; Kim, S.; Brown, M.T. Influence of salinity on metal toxicity to Ulva pertusa. Toxicol. Environ. Health Sci. 2012, 4, 9–13. [Google Scholar] [CrossRef]
Metals | Chemical Formula | Concentrations (mg∙L−1) | CAS no. | Manufacturer |
---|---|---|---|---|
Cu | CuSO4 | 0.0375–1.2 | 7758-98-7 | Showa, Japan |
Cr | K2Cr2O7 | 0.4–6.4 | 7778-50-9 | Showa, Japan |
Ni | NiSO4(NH4)2SO4 | 0.03125–0.5 | 15699-18-0 | Showa, Japan |
As | As2O3 | 0.8–12.8 | 1327-53-3 | Showa, Japan |
Cd | CdSO4 | 0.5–8 | 10124-36-4 | Showa, Japan |
Ag | AgNO3 | 0.01–0.32 | 7761-88-8 | Showa, Japan |
Endpoints | Thallus Sections | Metals | |||||
---|---|---|---|---|---|---|---|
Ag | As | Cd | Cr | Cu | Ni | ||
RGR | Margin | 0.08 (0.06–0.11) | 2.35 (1.29–3.70) | 6.21 (5.71–6.55) | 3.94 (0.38–4.96) | 0.06 (0.05–0.08) | >0.5 |
Middle | 0.05 (0.04–0.07) | 0.98 (0.65–1.34) | 1.89 (1.59–2.57) | 0.87 (0.38–1.37) | 0.05 (0.03–0.07) | >0.5 | |
Base | >0.32 | >12.8 | 2.88 (1.74–3.27) | 0.74 (0.27–1.68) | 0.12 (0.11–0.13) | 0.03 (0.02–0.05) | |
Fv/Fm | Margin | 0.26 (0.25–0.28) | >12.8 | >8 | >6.4 | >1.2 | >0.5 |
Middle | 0.30 | 5.03 (4.96–5.11) | >8 | 4.89 (4.26–5.73) | 0.20 (0.07–0.25) | >0.5 | |
Base | 0.23 (0.21–0.24) | 6.75 (5.96–8.20) | >8 | >6.4 | 0.67 (0.52–0.75) | >0.5 | |
ETRmax | Margin | 0.23 (0.219–0.236) | 5.19 (1.96–7.46) | >8 | 0.22 (0.21–0.26) | 0.08 (0.03–0.11) | >0.5 |
Middle | 0.06 (0.041–0.076) | 3.01 (2.55–3.75) | >8 | 1.29 (0.74–1.83) | 0.14 (0.07–0.17) | >0.5 | |
Base | 0.07 (0.04–0.11) | 4.99 (4.62–5.57) | >8 | 2.22 (0.98–3.34) | 0.11 (0.07–0.13) | >0.5 | |
Chl a | Margin | 0.22 (0.19–0.23) | >12.8 | >8 | 5.71 | 0.05 (0.04–0.07) | >0.5 |
Middle | 0.11 (0.10–0.12) | >12.8 | >8 | 4.11 (2.53–4.92) | 0.18 (0.04–0.22) | >0.5 | |
Base | 0.12 (0.05–0.21) | >12.8 | >8 | >6.4 | 0.92 (0.56–1.08) | >0.5 | |
Chl b | Margin | 0.22 (0.17–0.23) | >12.8 | >8 | 6.04 | 0.06 (0.05–0.07) | >0.5 |
Middle | 0.12 (0.10–0.13) | >12.8 | >8 | 4.55 (2.87–5.41) | 0.24 (0.17–0.32) | >0.5 | |
Base | 0.10 (0.01–0.21) | >12.8 | >8 | >6.4 | >1.2 | >0.5 | |
Car | Margin | 0.20 (0.16–0.22) | >12.8 | >8 | 5.20 | 0.05 (0.03–0.06) | >0.5 |
Middle | 0.12 (0.11–0.13) | >12.8 | >8 | 4.48 (2.68–5.27) | 0.21 (0.16–0.25) | >0.5 | |
Base | 0.11 (0.02–0.20) | >12.8 | >8 | >6.4 | 1.09 | >0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Kim, G.; Depuydt, S.; Shin, K.; Han, T.; Park, J. Metal Toxicity across Different Thallus Sections of the Green Macroalga, Ulva australis. Toxics 2023, 11, 548. https://doi.org/10.3390/toxics11070548
Lee H, Kim G, Depuydt S, Shin K, Han T, Park J. Metal Toxicity across Different Thallus Sections of the Green Macroalga, Ulva australis. Toxics. 2023; 11(7):548. https://doi.org/10.3390/toxics11070548
Chicago/Turabian StyleLee, Hojun, Geonhee Kim, Stephen Depuydt, Kisik Shin, Taejun Han, and Jihae Park. 2023. "Metal Toxicity across Different Thallus Sections of the Green Macroalga, Ulva australis" Toxics 11, no. 7: 548. https://doi.org/10.3390/toxics11070548
APA StyleLee, H., Kim, G., Depuydt, S., Shin, K., Han, T., & Park, J. (2023). Metal Toxicity across Different Thallus Sections of the Green Macroalga, Ulva australis. Toxics, 11(7), 548. https://doi.org/10.3390/toxics11070548