A Glow before Darkness: Toxicity of Glitter Particles to Marine Invertebrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glitter Particles Characterization
2.2. Glitter Dispersions’ Preparation
2.3. Analysis of Metals by Flame Atomic Absorption Spectrometry (FAAS)
2.4. Embryonic Development Toxicity Tests with Sea-Urchin Embryos
2.5. Embryonic Development Toxicity Tests with Brown Mussel Embryos
2.6. Reference Substance Test
2.7. Toxicity Identification Evaluation (TIE)
2.8. Statistical Analyses
3. Results
3.1. Chemical Analysis
3.2. Glitter Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jimenez, G.; Santos, G.; Félix, M.; Hernández, H.; Rondón, C. Good practices and trends in reverse logistics in the plastic products manufacturing industry. Procedia Manuf. 2019, 41, 367–374. [Google Scholar] [CrossRef]
- Pramanik, D.D.; Lei, S.; Kay, P.; Goycoolea, F.M. Investigating on the toxicity and bio-magnification potential of synthetic glitters on Artemia salina. Mar. Pollut. Bull. 2023, 190, 114828. [Google Scholar] [CrossRef]
- Suman, T.Y.; Jia, P.-P.; Li, W.-G.; Junaid, M.; Xin, G.-Y.; Pei, D.-S. Acute and chronic effects of polystyrene microplastics on brine shrimp: First evidence highlighting the molecular mechanism through transcriptome analysis. J. Hazard. Mater. 2020, 400, 123220. [Google Scholar] [CrossRef]
- Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.I. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ. 2019, 703, 134699. [Google Scholar] [CrossRef]
- Sá, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 1–8. [Google Scholar] [CrossRef]
- Yurtsever, M. Glitters as a source of primary microplastics: An approach to environmental responsibility and ethics. J. Agric. Environ. Ethics 2019, 32, 459–478. [Google Scholar] [CrossRef]
- Besseling, E.; Foekema, E.M.; Van Den Heuvel-Greve, M.J.; Koelmans, A.A. The effect of microplastic on the uptake of chemicals by the lugworm Arenicola marina (L.) under environmentally relevant exposure conditions. Environ. Sci. Technol. 2017, 51, 8795–8804. [Google Scholar] [CrossRef] [Green Version]
- Besseling, E.; Quik, J.T.; Sun, M.; Koelmans, A.A. Fate of nano-and microplastic in freshwater systems: A modeling study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef]
- Leslie, H.A.; Brandsma, S.H.; Van Velzen, M.J.M.; Vethaak, A.D. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef]
- Rochman, C.M. Microplastics research—From sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Loeder, M.G.; Gerdts, G.; Osborn, A.M. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in northern European waters. FEMS Microbiol. Ecol. 2014, 90, 478–492. [Google Scholar] [CrossRef]
- Coppock, R.L.; Cole, M.; Lindeque, P.K.; Queirós, A.M.; Galloway, T.S. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 2017, 230, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Imhof, H.K.; Wiesheu, A.C.; Anger, P.M.; Niessner, R.; Ivleva, N.P.; Laforsch, C. Variation in plastic abundance at different lake beach zones—A case study. Sci Total Environ. 2018, 613, 530–553. [Google Scholar] [CrossRef]
- Yurtsever, M. Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics? Mar. Pollut. Bull. 2019, 146, 678–682. [Google Scholar] [CrossRef]
- Albanit, L.; Beverari, I.; Ribeiro, C.C.; Gimiliani, G.T.; Abessa, D.M.S. Toxicity of glitter to marine organisms: A baseline study with embryos of the sand-dollar Mellita quinquiesperforata. Int. Aquat. Res. 2023, 15, 181–189. [Google Scholar] [CrossRef]
- Rochman, C.S.; Kross, S.M.; Armstrong, J.B.; Bogan, M.T.; Darling, E.S.; Green, S.J.; Ashley, R.S.; Veríssimo, D. Scientific Evidence Supports a Ban on Microbeads. Environ. Sci. Technol. 2015, 49, 10759–10761. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P. A review of the impacts of microplastic beads used in cosmetics. Acta Biomed. Sci. 2016, 3, 47–52. [Google Scholar]
- Lei, K.; Qiao, F.; Liu, Q.; Wei, Z.; Qi, H.; Cui, S.; Yue, X.; Deng, Y.; An, L. Microplastics releasing from personal care and cosmetic products in China. Mar. Pollut. Bull. 2017, 123, 122–126. [Google Scholar] [CrossRef]
- Piccardo, M.; Provenza, F.; Anselmi, S.; Renzi, M. Ecotoxicological assessment of “glitter” leachates in aquatic ecosystems: An integrated approach. Toxics 2022, 10, 677. [Google Scholar] [CrossRef]
- Tagg, A.S.; Ivar do Sul, J.A. Is this your glitter ? An overlooked but potentially environmentally-valuable microplastic. Mar. Pollut. Bull. 2019, 146, 50–53. [Google Scholar] [CrossRef]
- Provenza, F.; Anselmi, S.; Specchiulli, A.; Piccardo, M.; Barceló, D.; Prearo, M.; Pastorino, P.; Renzi, M. Sparkling plastic: Effects of exposure to glitter on the Mediterranean mussel Mytilus galloprovincialis. Environ. Toxicol. Pharmacol. 2022, 96, 103994. [Google Scholar] [CrossRef]
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ. Toxicol. Pharmacol. 2019, 68, 75–79. [Google Scholar] [CrossRef]
- ECHA (European Chemicals Agency). Note on Substance Identification and the Potential Scope of a Restriction on Uses of ‘Microplastics’. 2019. Available online: https://echa.europa.eu/ (accessed on 19 May 2023).
- Raju, S.; Carbery, M.; Kuttykattil, A.; Senthirajah, K.; Lundmark, A.; Rogers, Z.; SCB, S.; Evans, G.; Palanisami, T. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Res. 2020, 173, 115549. [Google Scholar] [CrossRef]
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 2018, 11, 251. [Google Scholar] [CrossRef]
- Harley-Nyang, D.; Memon, F.A.; Jones, N.; Galloway, T. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK. Sci. Total Environ. 2022, 823, 153735. [Google Scholar] [CrossRef]
- Lusher, A.L.; Hurley, R.; Vogelsang, C.; Nizzetto, L.; Olsen, M. Mapping Microplastics in Sludge. NIVA-Report 7215. 2017. Available online: https://hdl.handle.net/11250/2493527 (accessed on 20 June 2023).
- Rios Mendoza, L.M.; Balcer, M. Microplastics in freshwater environments: A review of quantification assessment. TrAC Trends Anal. Chem. 2019, 113, 402–408. [Google Scholar] [CrossRef]
- Green, S.D.; Jefferson, M.; Boots, B.; Stone, L. All that glitter is litter? Ecological impacts of conventional versus biodegradable glitter in a freshwater habitat. J. Hazard. Mater. 2021, 402, 124070. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures, 2nd ed.; No. EPA/600/6-91/003; Duluth, M.N., Ed.; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 1991. [Google Scholar]
- Camargo, J.B.D.A.; Araújo, G.S.; Cruz, A.C.F.; Fonseca, T.G.; Abessa, D.M.S. Use, development and improvement in the protocol of whole-sediment Toxicity Identification and Evaluation using benthic copepods. Mar. Pollut. Bull. 2015, 91, 511–517. [Google Scholar] [CrossRef]
- Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Thompson, B.; Lowe, S.; Taberski, K.; Carr, R.S. Patterns and trends in sediment toxicity in the San Francisco Estuary. Environ. Res. 2007, 105, 145–155. [Google Scholar] [CrossRef]
- Schubauer-Berigan, M.K.; Amato, J.R.; Ankley, G.T.; Baker, S.E.; Burkhard, L.P.; Dierkes, J.R.; Jenson, J.J.; Lukasewycz, M.T.; Norberg-King, T.J. The behavior and identification of toxic metals in complex mixtures: Examples from effluent and sediment pore water toxicity identification evaluations. Arch Environ. Contam. Toxicol. 1993, 24, 298–306. [Google Scholar] [CrossRef]
- Burgess, R.M.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Cook, H.F.; Kuhn, A. Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments. Environ. Toxicol. Chem. 2000, 19, 982–991. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Shepard, F.P. Nomenclature based on sand-silt-clay ratios. J. Sediment Res. 1954, 24, 151–158. [Google Scholar] [CrossRef]
- Rao, T.P.; Metilda, P.; Gladis, J.M. Overview of analytical methodologies for sea water analysis: Part I—Metals. Crit. Rev. Anal. Chem. 2005, 35, 247–288. [Google Scholar] [CrossRef]
- ABNT (Associação Brasileira de Normas Técnicas). NBR 15350:2012. Ecotoxicologia Aquática—Toxicidade Crônica de Curta Duração—Método de Ensaio Com Ouriço-do-Mar (Echinodermata Echinoidea); ABNT: São Paulo, Brazil, 2012; 21p. [Google Scholar]
- ASTM (American Society for Testing and Materials). Standard Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests with the Sea Urchin; ASTM E 1563-13; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- OECD (Organisation for Economic Co-Operation and Development). Section 2: Effects on Biotic Systems. In Test No. 151: Early-Life Stage Toxicity Test with the Sea Urchin; OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 1992. [Google Scholar]
- Benfenati, E.G.; Marcomini, G.L.; Fanelli, F. The use of Arbacia lixula early embryo test for predicting mammalian acute toxicity of pesticides. Environ. Toxicol. Chem. 1997, 16, 585–590. [Google Scholar]
- Curiel, D.; Blasco, C.; Cuesta, A.M.; Martín-Díaz, M.J.; Bayona, J.M. Environmental risk assessment of industrial effluents: The sea urchin embryo bioassay as a tool for ecotoxicological evaluation. Chemosphere 2007, 68, 411–418. [Google Scholar]
- Di Filippo, B.D.; Bocchetti, R.; Marcomini, A.; Fattorini, G. 2014. Effects of the heavy metals lead and cadmium on development and hatching of Arbacia lixula (Echinodermata: Echinoidea) embryos. Mar. Environ. Res. 2014, 97, 56–63. [Google Scholar]
- ABNT (Associação Brasileira de Normas Técnicas). Ecotoxicologia Aquática—Teste Crônico de Curta Duração com Embriões de Bivalves (Mollusca—Bivalvae); NBR 16456; ABNT: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Zaroni, L.P.; Abessa, D.M.S.; Lotufo, G.R.; Sousa, E.C.P.M.; Pinto, Y.A. Toxicity testing with embryos of marine mussels: Protocol standardization for Perna perna (Linnaeus, 1758). Bull. Environ. Contam. Toxicol. 2005, 74, 793–800. [Google Scholar] [CrossRef] [PubMed]
- USEPA (United States Environmental Protection Agency). Sediment Toxicity Identification Evaluation (TIE) Phases I, II, and III Guidance Document (No. EPA/600/R-07/080); U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 2007. [Google Scholar]
- Ho, K.T.; Burgess, R.M. Marine sediment Toxicity Identification Evaluations (TIEs): History, principles, methods, and future research. In Contaminated Sediments. The Handbook of Environmental Chemistry; Kassim, T.A., Barceló, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 75–95. [Google Scholar]
- Hamilton, M.A.; Runo, R.C.; Thurton, R.V. Trimmed Spearman-Kärber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977, 11, 714–719, Erratum in Environ. Sci. Technol. 1978, 12, 417. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package For Education And Data Analysis. Palaeontol. Electron. 2001, 1, 1–9. [Google Scholar]
- StatSoft, Inc. STATISTICA for Windows, version 6; StatSoft Inc.: Tulsa, OK, USA, 2001. [Google Scholar]
- Brasil, República Federativa. Resolução CONAMA nº 357, 18 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. In Diário Of. União; 2005; 53, pp. 58–63. Available online: www.mma.gov.br/port/conama/res/res05/res35705.pdf (accessed on 28 March 2020).
- Reis, G.O.M.; Furtado, L.M.; Pereira, M.P.; Reis, E.L.; Imme, M.L.; Alves, T. Investigação da Presença de Micro Plásticos em Moluscos de Cultivo de Santa Catarina. In Anais do 9º Seminário de Ensino, Pesquisa, Extensão e Inovação do IFSC, 2023, Joinville. Proceedings... Campinas, Galoá. 2023. Available online: https://proceedings.science/sepei-2023/trabalhos/investigacao-da-presenca-de-micro-plasticos-em-moluscos-de-cultivo-de-santa-cata?lang=pt-br. (accessed on 22 June 2023).
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Publ. Health 2020, 17, 1212. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, M.; Rafiq, A.; Coralli, I.; Alessandro, T.; Valbonesi, P.; Fabbri, D.; Fabbri, E. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. Environ. Pollut. 2023, 319, 120951. [Google Scholar] [CrossRef]
- Brede, C.; Fjeldal, P.; Skjevrak, I.; Herikstad, H. Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit. Contam. 2003, 20, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Hennesuse-Boxus, C.; Pacary, T. Emissions from plastics. Rapra. Rev. Rep. 2003, 14, 152. [Google Scholar]
- Kim, Y.-J.; Osako, M.; Sakai, S.-I. Leaching characteristics of polybrominated diphenyl ethers (PBDEs) from flame retardant plastics. Chemosphere 2006, 65, 506–513. [Google Scholar] [CrossRef]
- Mutsuga, M.; Kawamura, Y.; Sugita-Konishi, Y.; Hara-Kudo, Y.; Takatori, K.; Tanamoto, K. Migration of formaldehyde and acetaldehyde into mineral water in polyethylene terephthalate (PET) bottles. Food Addit. Contam. 2006, 23, 212–218. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Rose, M.; Charlton, C. 4-Nonylphenol (NP) in food contact materials: Analytical methodology and occurrence. Food Addit. Contam. 2008, 25, 364–372. [Google Scholar] [CrossRef]
- Tønning, K.; Jacobsen, E.; Pedersen, E.; Nilsson, N.H. Phthalates in Products That Children Are in Direct Contact with. Survey of Chemical Substances in Consumer Products, nº 109210; Danish Ministry of the Environment and EPA: Odense, Denmark, 2010. [Google Scholar]
- Bila, D.M.; Dezotti, M. Desreguladores endócrinos no meio ambiente: Efeitos e consequências. Quim. Nova 2007, 30, 651. [Google Scholar] [CrossRef] [Green Version]
- García-Espiñeira, M.C.; Tejeda-Benítez, L.P.; Olivero-Verbel, J. Toxic Effects of Bisphenol A, Propyl Paraben, and Triclosan on Caenorhabditis elegans. Int. J. Environ. Health Res. 2018, 15, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmah, R.; Kanta Bhagabati, S.; Dutta, R.; Nath, D.; Pokhrel, H.; Mudoi, L.P.; Sarmah, N.; Sarma, J.; Ahmed, A.M.; Nath, L.P.; et al. Toxicity of a synthetic phenolic antioxidant, butyl hydroxytoluene (BHT), in vertebrate model zebrafish embryo (Danio rerio). Aquac. Res. 2020, 51, 3839–3846. [Google Scholar] [CrossRef]
- Yang, X.; Sun, Z.; Wang, W.; Zhou, Q.; Shi, G.; Wei, F.; Jiang, G. Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Sci. Total Environ. 2018, 643, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Sillero, I.; Aguilera-Herrador, E.; Cardenas, S.; Valcarcel, M. Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona charged aerosol detection system. J. Chromatogr. A 2010, 1217, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.C.P.; Rola, R.C.; da Silva Junior, F.M.; Martins, C.M.G. Toxicity and sublethal effects of methylparaben on zebrafish (Danio rerio) larvae and adults. Environ. Sci. Pollut. Res. 2021, 28, 45534–45544. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S. Functions of vitellogenin in eggs. In Oocytes. Results and Problems in Cell Differentiation; Kloc, M., Ed.; Springer: Cham, Switzerland, 2017; pp. 389–401. [Google Scholar] [CrossRef]
- Staples, C.A.; Murphy, S.R.; McLaughlin, J.E.; Leung, H.W.; Cascieri, T.C.; Farr, C.H. Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters. Chemosphere 2000, 40, 29–38. [Google Scholar] [CrossRef]
- Marchini, S.; Tosato, M.L.; Norberg-King, T.J.; Hammermeister, D.E.; Hoglund, M.D. Lethal and sublethal toxicity of benzene derivatives to the fathead minnow, using a short-term test. Environ. Toxicol. Chem. 1992, 11, 187–195. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 2009, 18, 89–108. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bolan, N.; Tsang, D.C.W.; Sarkar, B.; Bradney, L.; Li, Y. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. J. Hazard. Mater. 2021, 402, 123496. [Google Scholar] [CrossRef]
- Singh, N.; Tiwari, E.; Khandelwal, N.; Darbha, G.K. Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environ. Sci. Nano 2019, 6, 2968–2976. [Google Scholar] [CrossRef]
- Alimi, O.S.; Budarz, J.F.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. J. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhuang, W.; Se, W.; Hao, F.; Degao, W. Aquatic behavior and toxicity of polystyrene nanoplastic particles with different functional groups: Complex roles of pH, dissolved organic carbon and divalent cations. Chemosphere 2019, 228, 195–203. [Google Scholar] [CrossRef]
- Choi, J.S.; Hong, S.H.; Park, J.W. Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicas. Mar. Environ. Res. 2019, 153, 104838. [Google Scholar] [CrossRef]
- Koh, K.Y.; Chen, Z.; Lin, S.; Mohan, K.C.; Luo, X.; Chen, J.P. Leaching of organic matters and formation of disinfection by-product as a result of presence of microplastics in natural freshwaters. Chemosphere 2022, 299, 134300. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L.; Barnes, P.W.; Bornman, J.F.; Gouin, T.; Madronich, S.; White, C.C.; Zepp, R.G.; Jansen, M.A.K. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Sci. Total Environ. 2022, 851, 158022. [Google Scholar] [CrossRef] [PubMed]
- No identified authors. Final amended report on the safety assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in cosmetic products. Int. J. Toxicol. 2008, 27, 1–82. [Google Scholar] [CrossRef]
Element | Concentration (mg/L) | ||
---|---|---|---|
Glitter | Marine Water | Effluents | |
Ag | 0.01 | 0.005 | 0.1 |
Zn | 0.014 | 0.09 | 5.0 |
Mg | 0.25 | - | - |
Ti | 0.001 | - | - |
Mn | 0.008 | 0.1 | 1.0 |
Fe | 0.018 | 0.3 | 15 |
Ca | 0.27 | - | - |
Glitter Color | Arbacia lixula | Perna perna | Echinometra lucunter | ||||||
---|---|---|---|---|---|---|---|---|---|
EC50 | NOEC | LOEC | EC50 | NOEC | LOEC | EC50 | NOEC | LOEC | |
White | not analyzed | NC | <10 | 10 | 272.2 (261.5–282.9) | 200 | 300 | ||
Green | 246.1 (235.8–256.4) | 100 | 200 | 23 (20.2–25.8) | <10 | 10 | 105.9 (61.2–150.2) | <50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abessa, D.M.d.S.; Albanit, L.F.; Moura, P.H.P.d.; Nogueira, V.S.; Santana, F.T.; Fagundes, K.; Ueda, M.; Muller, O.P.d.O.; Cesar-Ribeiro, C. A Glow before Darkness: Toxicity of Glitter Particles to Marine Invertebrates. Toxics 2023, 11, 617. https://doi.org/10.3390/toxics11070617
Abessa DMdS, Albanit LF, Moura PHPd, Nogueira VS, Santana FT, Fagundes K, Ueda M, Muller OPdO, Cesar-Ribeiro C. A Glow before Darkness: Toxicity of Glitter Particles to Marine Invertebrates. Toxics. 2023; 11(7):617. https://doi.org/10.3390/toxics11070617
Chicago/Turabian StyleAbessa, Denis Moledo de Souza, Letícia França Albanit, Pedro Henrique Paixão de Moura, Vitória Soares Nogueira, Felipe Teixeira Santana, Kainã Fagundes, Maysa Ueda, Otto Patrão de Oliveira Muller, and Caio Cesar-Ribeiro. 2023. "A Glow before Darkness: Toxicity of Glitter Particles to Marine Invertebrates" Toxics 11, no. 7: 617. https://doi.org/10.3390/toxics11070617
APA StyleAbessa, D. M. d. S., Albanit, L. F., Moura, P. H. P. d., Nogueira, V. S., Santana, F. T., Fagundes, K., Ueda, M., Muller, O. P. d. O., & Cesar-Ribeiro, C. (2023). A Glow before Darkness: Toxicity of Glitter Particles to Marine Invertebrates. Toxics, 11(7), 617. https://doi.org/10.3390/toxics11070617