Regional Variations in Pesticide Residue Detection Rates and Concentrations in Saudi Arabian Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sampling Location
2.2. Food (Vegetables and Fruits) Sample Preparation
2.3. Pesticide Residue Analysis
2.4. QA/QC Regime
2.5. Data Analysis
3. Results
3.1. Regional Distribution of Pesticide Residues
3.2. Food Type
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadighara, P.; Mahmudiono, T.; Marufi, N.; Yazdanfar, N.; Fakhri, Y.; Rikabadi, A.K.; Khaneghah, A.M. Residues of carcinogenic pesticides in food: A systematic review. Rev. Environ. Health. 2023. [Google Scholar] [CrossRef]
- Norstrom, R.J. Understanding bioaccumulation of POPs in food webs. Chemical, biological, ecological and environmental considerations. Environ. Sci. Pollut. Res. Int. 2002, 9, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public. Health. 2019, 16, 4361. [Google Scholar] [CrossRef] [PubMed]
- Stockholm Convention. Available online: https://chm.pops.int/default.aspx (accessed on 23 July 2023).
- Tudi, M.; Li, H.; Li, H.; Wang, L.; Lyu, J.; Yang, L.; Tong, S.; Yu, Q.J.; Ruan, H.D.; Atabila, A.; et al. Exposure Routes and Health Risks Associated with Pesticide Application. Toxics 2022, 10, 335. [Google Scholar] [CrossRef] [PubMed]
- Boedeker, W.; Watts, M.; Clausing, P.; Marquez, E. The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health 2020, 20, 1875. [Google Scholar] [CrossRef]
- Willenbockel, C.T.; Prinz, J.; Dietrich, S.; Marx-Stoelting, P.; Weikert, C.; Tralau, T.; Niemann, L. A Critical Scoping Review of Pesticide Exposure Biomonitoring Studies in Overhead Cultures. Toxics 2022, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Saudi Arabia. Available online: https://chm.pops.int/Countries/CountryProfiles/tabid/4501/Default.aspx (accessed on 23 July 2023).
- Al-Wabel, M.I.; El-Saeid, A.M.; Al-Turki, A.M.; Abdel-Nasser, G. Monitoring of pesticide residues in Saudi Arabia agricultural soils. Res. J. Environ. Sci. 2011, 5, 269–278. [Google Scholar]
- El-Saeid, M.H.; Al-Dosari, S.A. Monitoring of pesticide residues in Riyadh dates by SFE, MSE, SFC and GC techniques. Arab. J. Chem. 2010, 3, 179–186. [Google Scholar] [CrossRef]
- Abdallah, O.I.; Alamer, S.S.; Alrasheed, A.M. Monitoring pesticide residues in dates marketed in Al-Qassim, Saudi Arabia using a QuEChERS methodology and liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2018, 32, e4199. [Google Scholar] [CrossRef]
- Osman, K.A.; Al-Humaid, A.I.; Al-Rehiayani, S.M.; Al-Redhaiman, K.N. Estimated daily intake of pesticide residues exposure be vegetables grown in greenhouses in Al-Qassim region, Saudi Arabia. Food Control 2011, 22, 947–953. [Google Scholar] [CrossRef]
- WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019 ed.; World Health Organization: Geneva, Switzerland, 2020; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://www.who.int/publications/i/item/9789240005662 (accessed on 17 September 2023).
- Available online: https://reliefweb.int/map/saudi-arabia/saudi-arabia-location-map-2013 (accessed on 23 July 2023).
- United Nations Environment Program (UNEP). Guidance on the Global Monitoring Plan for Persistent Organic Pollutants. 2007. Available online: https://www.informea.org/en/guidance-global-monitoring-plan-persistent-organic-pollutants-preliminary-version-february-2007 (accessed on 22 July 2023).
- Fiedler, H.; Abad, E.; de Boer, J. Analysis of persistent organic pollutants for the Stockholm Convention’s global monitoring plan. Chemosphere 2023, 332, 138843. [Google Scholar] [CrossRef]
- Abd-Alrahman, S.H. Dissipation of hexythiozox on beans pods by HPLC-DAD. Bull. Environ. Contam. Toxicol. 2013, 90, 504–507. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Varela-Martínez, D.A.; Riaño-Herrera, D.A. Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review. Molecules 2022, 27, 4323. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ke, R.; Gao, W.; Tian, F.; Wang, Y.; Jiang, G. Analysis of Organochlorine Pesticide Residues in Various Vegetable Oils Collected in Chinese Markets. J. Agric. Food Chem. 2020, 68, 14594–14602. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cui, Z.; Wang, Y.; Zhang, J. Characteristics and Residual Health Risk of Organochlorine Pesticides in Fresh Vegetables in the Suburb of Changchun, Northeast China. Int. J. Environ. Res. Public Health 2022, 19, 12547. [Google Scholar] [CrossRef] [PubMed]
- Hasan, G.M.M.A.; Das, A.K.; Satter, M.A. Human Health Risk Assessment through the Detection of Organochlorine Pesticides in Vegetables and fruits from Dhaka, Bangladesh by Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS). Curr. Res. Nutr. Food. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Elobeid, T.; Ganji, V.; Al-Saeedi, S.; Mohamed, A.A.; Dahir, H.M.; Hassan, H.; Karam, L.; Attieh, G. Pesticide residues in foods and water in Qatar and their impact on food exposure risk assessment. Br. Food J. 2021, 123, 4082–4096. [Google Scholar] [CrossRef]
- Ait Ayad, M.; Ait Fdil, M.; Mouabad, A. Effects of Cypermethrin (pyrethroid insecticide) on the valve activity behavior, byssal thread formation, and survival in air of the marine mussel Mytilus galloprovincialis. Arch. Environ. Contam. Toxicol. 2011, 60, 462–470. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen Cm Zheng, S.; Wang, X.; Yang, G.; Wang, Q.; Zhang, Z. Residue of chloropyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control 2014, 36, 63–68. [Google Scholar] [CrossRef]
- Hao, F.; Bu, Y.; Huang, S.; Li, W.; Feng, H.; Wang, Y. Effects of pyrethroids on the cerebellum and related mechanisms: A narrative review. Crit. Rev. Toxicol. 2023, 53, 229–243. [Google Scholar] [CrossRef]
- Cancino, J.; Soto, K.; Tapia, J.; Muñoz-Quezada, M.T.; Lucero, B.; Contreras, C.; Moreno, J. Occupational exposure to pesticides and symptoms of depression in agricultural workers. A systematic review. Environ. Res. 2023, 231 Pt 2, 116190. [Google Scholar] [CrossRef] [PubMed]
- Debbab, M.; El Hajjaji, E.; Aly, A.H.; Dahchour, A.; El Azzouzi, M.; Zrineh, A. Cypermethrin residues in fresh vegetables: Detection by HPLC and LC-ESIMS and their effect on antioxidant activity. Mater. Environ. Sci. 2014, 5, 2257–2266. [Google Scholar]
- Shilpakar, O.; Karki, B. Cypermethrin poisoning manifesting with prolonged bradycardia: A case report. Toxicol. Rep. 2020, 8, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.; Jamshed, N.; Ekka, M.; Imran, A. Suicidal poisoning with cypermethrin: A clinical dilemma in the emergency department. J. Emerg. Trauma Shock 2015, 8, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Luz, A.L.; Kassotis, C.D.; Stapleton, H.M.; Meyer, J.N. The high-production volume fungicide pyraclostrobin induces triglyceride accumulation associated with mitochondrial dysfunction, and promotes adipocyte differentiation independent of PPARγ activation, in 3T3-L1 cells. Toxicology 2018, 393, 150–159. [Google Scholar] [CrossRef]
- Li, H.; Jing, T.; Li, T.; Huang, X.; Gao, Y.; Zhu, J.; Lin, J.; Zhang, P.; Li, B.; Mu, W. Ecotoxicological effects of pyraclostrobin on tilapia (Oreochromis niloticus) via various exposure routes. Environ. Pollut. 2021, 285, 117188. [Google Scholar] [CrossRef]
- Toxicological Summary for Pyraclostrobin. Available online: https://www.health.state.mn.us/communities/environment/risk/docs/guidance/gw/pyrac.pdf (accessed on 17 September 2023).
- Burger, J.; Gochfeld, M.; Batang, Z.; Alikunhi, N.; Al-Jahdali, R.; Al-Jebreen, D.; Aziz, M.A.; Al-Suwailem, A. Fish consumption behavior and rates in native and non-native people in Saudi Arabia. Environ. Res. 2014, 133, 141–148. [Google Scholar] [CrossRef]
- SFDA. Available online: https://www.sfda.gov.sa/sites/default/files/2021-05/lawPestcideE.pdf. (accessed on 24 July 2023).
- El Bcheraoui, C.; Basulaiman, M.; AlMazroa, M.; Tuffaha, M.; Daoud, F.; Wilson, S.; Al Saeedi, M.; Alanazi, F.; Ibrahim, M.; Ahmed, E.; et al. Fruit and vegetable consumption among adults in Saudi Arabia, 2013. Nutr. Diet. Suppl. 2015, 7, 41–49. [Google Scholar]
Pesticide Residues | Regions (N = 392) | p-Values | ||||
---|---|---|---|---|---|---|
Western | Central | Northern | Eastern | |||
N | 41 | 146 | 131 | 74 | ||
Overall | Absent | 12 (29.3) | 15 (10.3) | 15 (11.5) | 12 (16.2) | 0.01 |
Present | 29 (70.7) | 131 (89.7) | 116 (88.5) A | 62 (83.8) | ||
Fruits | Absent | 3 (27.3) | 4 (6.6) | 4 (9.1) | 2 (6.1) | 0.24 |
Present | 8 (72.7) | 57 (93.4) | 40 (90.9) | 31 (93.9) | ||
Vegetables | Absent | 9 (30.0) | 11 (12.9) | 11 (12.6) | 10 (24.4) | 0.06 |
Present | 21 (70.0) | 74 (87.1) | 76 (87.4) | 31 (75.6) |
Pesticide Residue (mg/kg) | Toxicity | Overall | Western | Central | Northern | Eastern | p-Value |
---|---|---|---|---|---|---|---|
∑Residues | -- | 0.15 ± 0.02 | 0.14 ± 0.09 | 0.10 ± 0.02 | 0.20 ± 0.05 A | 0.16 ± 0.07 | 0.001 |
2-phenylphenol | Class III | 0.01 ± 0.0 | 0.01 ± 0.00 | 0.01 | 0.01 ± 0.00 | 0.47 | |
Abamectin | Class Ib | 0.02 ± 0.0 | 0.01 ± 0.01 | 0.02 ± 0.00 | 0.81 | ||
Acetamiprid | Class II | 0.37 ± 0.16 | 0.33 ± 0.29 | 0.09 ± 0.04 | 0.76 ± 0.39 | 0.42 | |
Azoxystrobin | Class U | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.03 ± 0.02 | <0.01 ± 0.00 | 0.22 | |
Bifenazate | Class U | 0.07 ± 0.05 | 0.02 | 0.09 ± 0.07 | 0.02 | 0.93 | |
Bifenthrin | Class II | 0.15 ± 0.01 | 0.17 | 0.14 | 0.32 | ||
Boscalid | Class U | 0.06 ± 0.03 | 0.01 | 0.10 ± 0.07 | 0.03 ± 0.02 | 0.08 ± 0.08 | 0.43 |
Bupirimate | Class III | 0.02 ± 0.01 | 0.02 | 0.05 | <0.01 | <0.01 | 0.39 |
Chlorantraniliprole | Class U | 0.04 ± 0.02 | 0.04 | 0.04 ± 0.03 | 1 | ||
Chlorpyrifos | Class II | 0.17 ± 0.11 | 0.23 ± 0.23 | 0.15 ± 0.07 | 0.04 ± 0.04 | 0.2 | |
Clothianidin | Class II | 0.09 ± 0.08 | 0.01 | 0.18 | 0.32 | ||
Cypermethrin | Class II | 0.19 ± 0.10 | 0.28 ± 0.27 | 0.01 ± 0.01 | 0.27 ± 0.17 | 0.03 ± 0.01 | 0.72 |
Deltamethrin | Class II | 0.06 ± 0.02 | 0.04 ± 0.02 | 0.10 ± 0.05 | 0.02 ± 0.01 | 0.3 | |
Difenoconazole | Class II | 0.04 ± 0.03 | 0.07 ± 0.07 | 0.01 ± 0.00 | 0.03 ± 0.02 | 0.96 | |
Dinotefuran | Class III | 0.02 ± 0.0 | 0.02 ± 0.00 | 0.03 | 0.22 | ||
Emamectin | Class II | 0.06 ± 0.02 | 0.1 | 0.05 ± 0.03 | 0.32 | ||
Fenbuconazole | Class III | 0.09 ± 0.05 | 0.01 | 0.12 ± 0.05 | 0.22 | ||
Fipronil | Class II | 0.29 ± 0.27 | 0.43 ± 0.41 | 0.02 | 0.22 | ||
Fludioxonil | Class U | 0.33 ± 0.12 | 0.20 ± 0.13 | 0.30 ± 0.15 | 0.76 ± 0.54 | 0.43 | |
Fluopyram | Class III | 0.17 ± 0.06 | 0.08 | 0.18 ± 0.17 | 0.19 ± 0.07 | 0.74 | |
Imazalil | Class II | 0.14 ± 0.04 | 0.04 ± 0.02 | 0.07 ± 0.03 | 0.26 ± 0.10 | 0.10 ± 0.02 | 0.21 |
Imidacloprid | Class II | 0.07 ± 0.03 | 0.02 ± 0.01 | 0.09 ± 0.05 | 0.08 ± 0.06 | 0.04 ± 0.02 | 0.9 |
Indoxacarb | Class II | 0.53 ± 0.22 | 1.37 ± 1.36 | 0.28 ± 0.28 | 0.53 ± 0.27 | 0.01 ± 0.00 | 0.47 |
Lambda-Cyhalothrin | Class II | 0.03 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.03 | 0.01 ± 0.01 | 0.61 | |
Metalaxyl | Class II | 0.02 ± 0.01 | 0.01 | 0.01 ± 0.01 | 0.03 ± 0.02 | <0.01 | 0.76 |
Pendimethalin | Class II | 0.01 ± 0.01 | <0.01 | 0.03 | 0.32 | ||
Pirimicarb | Class II | 0.02 ± 0.0 | 0.02 | 0.02 | 0.32 | ||
Pyraclostrobin | Class II | 1.76 ± 1.34 | 0.86 | 4.4 | 0.02 | 0.37 | |
Pyrimethanil | Class III | 0.47 ± 0.22 | 0.01 ± 0.01 | 0.27 ± 0.26 | 0.49 ± 0.27 | 1.04 ± 0.99 | 0.03 |
Tebuconazole | Class II | 0.03 ± 0.01 | 0.05 ± 0.02 | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.69 | |
Tetraconazole | Class II | 0.01 ± 0.0 | 0.01 | 0.01 | 0.32 | ||
Thiabendazole | Class III | 0.03 ± 0.0 | 0.02 ± 0.01 | 0.04 ± 0.00 | 0.01 ± 0.00 | 0.09 | |
Thiamethoxam | Class II | 0.03 ± 0.01 | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.19 |
Pesticide Residue (mg/kg) | Toxicity | Fruits | Vegetables | p-Value |
---|---|---|---|---|
∑Residues | 0.13 ± 0.04 | 0.16 ± 0.03 | 0.02 | |
2-phenylphenol | Class III | 0.01 ± 0.00 | 0.01 ± 0.00 | 1 |
Abamectin | Class Ib | 0.01 | 0.02 ± 0.00 | 0.55 |
Acetamiprid | Class II | 0.07 ± 0.05 | 0.58 ± 0.25 | 0.08 |
Azoxystrobin | Class U | 0.05 ± 0.05 | 0.01 ± 0.00 | 0.82 |
Bifenazate | Class U | 0.11 ± 0.10 | 0.03 ± 0.00 | 0.51 |
Bifenthrin | Class II | 0.17 | 0.14 | 0.32 |
Boscalid | Class U | 0.06 ± 0.03 | 0.06 ± 0.06 | 0.46 |
Carbendazim | Class U | 0.02 | 0.01 | 0.32 |
Chlorantraniliprole | Class U | 0.04 | 0.04 ± 0.03 | 1 |
Chlorpyrifos | Class II | 0.05 ± 0.03 | 0.32 ± 0.26 | 0.16 |
Cypermethrin | Class II | 0.01 ± 0.00 | 0.22 ± 0.11 | 0.05 |
Deltamethrin | Class II | 0.03 ± 0.01 | 0.08 ± 0.04 | 0.46 |
Difenoconazole | Class II | 0.02 ± 0.01 | 0.05 ± 0.05 | 0.65 |
Emamectin | Class II | 0.03 | 0.08 ± 0.03 | 0.32 |
Fenbuconazole | Class III | 0.12 ± 0.05 | 0.01 | 0.22 |
Fludioxonil | Class U | 0.36 ± 0.15 | 0.20 ± 0.10 | 0.75 |
Fluopyram | Class III | 0.31 ± 0.04 | 0.07 ± 0.03 | 0.08 |
Imazalil | Class II | 0.15 ± 0.05 | 0.12 ± 0.07 | 0.44 |
Imidacloprid | Class II | 0.24 | 0.05 ± 0.02 | 0.16 |
Indoxacarb | Class II | 0.58 | 0.52 ± 0.23 | 0.43 |
Lambda-Cyhalothrin | Class II | 0.02 ± 0.01 | 0.04 ± 0.02 | 1 |
Malathion | Class III | <0.01 | 0.21 ± 0.20 | 0.22 |
Myclobutanil | Class II | 0.02 ± 0.02 | 0.05 | 0.22 |
Pendimethalin | Class II | 0.03 | <0.01 | 0.32 |
Pyraclostrobin | Class II | 0.02 | 2.63 ± 1.77 | 0.22 |
Pyrimethanil | Class III | 0.51 ± 0.29 | 0.37 ± 0.29 | 0.89 |
Tebuconazole | Class II | 0.02 ± 0.01 | 0.03 ± 0.01 | 1 |
Thiabendazole | Class III | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.71 |
Thiamethoxam | Class II | 0.04 ± 0.03 | 0.03 ± 0.01 | 0.34 |
Thiophanate-methyl | Class U | 0.01 | 0.02 | 0.32 |
Trifloxystrobin | Class U | <0.01 | 0.01 ± 0.00 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alokail, M.S.; Abd-Alrahman, S.H.; Alnaami, A.M.; Hussain, S.D.; Amer, O.E.; Elhalwagy, M.E.A.; Al-Daghri, N.M. Regional Variations in Pesticide Residue Detection Rates and Concentrations in Saudi Arabian Crops. Toxics 2023, 11, 798. https://doi.org/10.3390/toxics11090798
Alokail MS, Abd-Alrahman SH, Alnaami AM, Hussain SD, Amer OE, Elhalwagy MEA, Al-Daghri NM. Regional Variations in Pesticide Residue Detection Rates and Concentrations in Saudi Arabian Crops. Toxics. 2023; 11(9):798. https://doi.org/10.3390/toxics11090798
Chicago/Turabian StyleAlokail, Majed S., Sherif H. Abd-Alrahman, Abdullah M. Alnaami, Syed D. Hussain, Osama E. Amer, Manal E. A. Elhalwagy, and Nasser M. Al-Daghri. 2023. "Regional Variations in Pesticide Residue Detection Rates and Concentrations in Saudi Arabian Crops" Toxics 11, no. 9: 798. https://doi.org/10.3390/toxics11090798
APA StyleAlokail, M. S., Abd-Alrahman, S. H., Alnaami, A. M., Hussain, S. D., Amer, O. E., Elhalwagy, M. E. A., & Al-Daghri, N. M. (2023). Regional Variations in Pesticide Residue Detection Rates and Concentrations in Saudi Arabian Crops. Toxics, 11(9), 798. https://doi.org/10.3390/toxics11090798