An Approach to Flavor Chemical Thermal Degradation Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Equipment
2.2. Chemical Flavors
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baker, R.R. Temperature variation within a cigarette combustion coal during the smoking cycle. High Temp. Sci. 1975, 7, 236–247. [Google Scholar]
- Dempsey, R.; Coggins, C.R.E.; Roemer, E. Toxicological evaluation of cigarette ingredients. Regul. Toxicol. Pharmacol. 2011, 61, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.R.; Bishop, L.J. The pyrolysis of tobacco ingredients. J Anal. Appl. Pyrol. 2004, 71, 223–311. [Google Scholar] [CrossRef]
- Purkis, S.W.; Mueller, C.; Intorp, M. The fate of ingredients in and impact on cigarette smoke. Food Chem. Toxicol. 2011, 49, 3238–3248. [Google Scholar] [CrossRef] [PubMed]
- Costigan, S.; Meredith, C. An approach to ingredient screening and toxicological risk assessment of flavours in e-liquids. Regul. Toxicol. Pharm. 2015, 72, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Geiss, O.; Bianchi, I.; Barrero-Moreno, J. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. Intern. J. Hyg. Environ. Health 2016, 219, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, P.; Ito, K.; Fowles, J.; Shusterman, D.; Jaques, P.A.; Kumagai, K. Measurement of heating coil temperature for e-cigarettes with a “top-coil” clearomizer. PLoS ONE 2018, 13, e0195925. [Google Scholar] [CrossRef] [PubMed]
- Black, W.; Alston, W.; Holloway, G.; Zhang, J.T. Computational Simulation of Aerosol Generation and Temperature Regulation Performance of Nicotine Salt Pod System. In Proceedings of the CORESTA Conference (Smoke—Technology Joint Study Groups), Hamburg, Germany, 6–10 October 2019; Available online: https://www.coresta.org/sites/default/files/abstracts/2019_STPOST05_Black.pdf (accessed on 2 November 2023).
- Talih, S.; Salman, R.; El-Hage, R.; Karam, E.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.; Shihadeh, A. Characteristics and toxicant emissions of JUUL electronic cigarettes. Tob. Control 2019, 28, 678–680. [Google Scholar] [CrossRef]
- Mulder, H.A.; Stewart, J.B.; Blue, I.P.; Krakowiak, R.I.; Patterson, J.L.; Karin, K.N.; Royals, J.M.; DuPont, A.C.; Forsythe, K.E.; Poklis, J.L.; et al. Characterization of E-cigarette coil temperature and toxic metal analysis by infrared temperature sensing and scanning electron microscopy—energy-dispersive X-ray. Inhal Toxicol. 2020, 32, 447–455. [Google Scholar] [CrossRef]
- Uchiyama, S.; Noguchi, M.; Sato, A.; Ishitsuka, M.; Inaba, Y.; Kunugita, N. Determination of thermal decomposition products generated from e-cigarettes. Chem. Res. Toxicol. 2020, 33, 576–583. [Google Scholar] [CrossRef]
- European Parliament and of the Council of the European Union, Directive 2014/40/EU on the Approximation of the Laws, Regulations and Administrative Provisions of the Member States Concerning the Manufacture, Presentation and Sale of Tobacco and Related Products and Repealing Directive 2001/37/EC, Official Journal of the European Union, L127, 1–38, 3 April 2014. Available online: https://health.ec.europa.eu/publications/directive-201440eu_en (accessed on 10 November 2023).
- United States Food and Drug Administration, Center for Tobacco Products. Guidance for Industry, Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems, March, 2023. Available online: https://www.fda.gov/media/127853/download (accessed on 22 December 2023).
- United States Food and Drug Administration, Center for Tobacco Products. Final rule, Premarket Tobacco Product Applications and Recordkeeping Requirement. Fed. Regist. 2021, 86, 55300–55439. [Google Scholar]
- Zhu, S.-H.; Sun, J.Y.; Bonnevie, E.; Cummins, S.E.; Gamst, A.; Yin, L.; Lee, M. Four hundred and sixty brands of e-cigarettes and counting: Implications for product regulation. Tob. Control 2014, 23 (Suppl. S3), iii3–iii9. [Google Scholar] [CrossRef] [PubMed]
- Beauval, N.; Antherieu, S.; Soyez, M.; Gengler, N.; Grova, N.; Howsam, M.; Hardy, E.M.; Fischer, M.; Appenzeller, B.M.R.; Goossens, J.F.; et al. Chemical Evaluation of Electronic Cigarettes: Multicomponent Analysis of Liquid Refills and their Corresponding Aerosols. J. Anal. Toxicol 2017, 41, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Oldham, M.J.; Zhang, J.; Rusyniak, M.J.; Kane, D.B.; Gardner, W.P. Particle size distribution of selected electronic nicotine delivery system products. Food Chem. Toxicol. 2018, 113, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.I.; Thissen, J.; Hermes, N.; Cunningham, A.; Digard, H.; Murphy, J. Chemical characterization of the vapour emitted by an e-cigarette using a ceramic wick-based technology. Sci. Rep. 2022, 12, 16497. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.; Omaiye, E.E.; Luo, E.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. Identification of Cytotoxic Flavor Chemicals in Top-Selling Electronic Cigarette Refill Fluids. Sci. Rep. 2019, 9, 2782. [Google Scholar] [CrossRef] [PubMed]
- Erythropel, H.C.; Anastas, P.T.; Krishnan-Sarin, S.; O’Malley, S.S.; Jordt, S.E.; Zimmerman, J.B. Differences in flavourant levels and synthetic coolant use between USA, EU and Canadian Juul products. Tob. Control 2021, 30, 453–455. [Google Scholar] [CrossRef]
- Jabba, S.V.; Erythropel, H.C.; Torres, D.G.; Delgado, L.A.; Woodrow, J.G.; Anastas, P.T.; Zimmerman, J.B.; Jordt, S.-E. Synthetic cooling agents in US-marketed e-cigarette refill liquids and popular disposable e-cigarettes: Chemical analysis and risk assessment. Nicotine Tob. Res. 2022, 24, 1037–1046. [Google Scholar] [CrossRef]
- Omaiye, E.E.; McWhirter, K.J.; Luo, W.; Pankow, J.F.; Talbot, P. High-nicotine electronic cigarette products: Toxicity of JUUL fluids and aerosols correlates strongly with nicotine and some flavor chemical concentrations. Chem. Res. Toxicol. 2019, 32, 1058–1069. [Google Scholar] [CrossRef]
- Omaiye, E.E.; McWhirter, K.J.; Luo, W.; Tierney, P.A.; Pankow, J.F.; Talbot, P. High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Sci. Rep. 2019, 9, 2468. [Google Scholar] [CrossRef]
- Omaiye, E.E.; Luo, W.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. Electronic cigarette refill fluids sold worldwide: Flavor chemical composition, toxicity, and hazard analysis. Chem. Res. Toxicol. 2020, 33, 2972–2987. [Google Scholar] [CrossRef] [PubMed]
- Omaiye, E.E.; Luo, W.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. Flavour chemicals, synthetic coolants and pulegone in popular mint-flavoured and menthol-flavoured e-cigarettes. Tob. Control 2022, 31, e3–e9. [Google Scholar] [CrossRef] [PubMed]
- Omaiye, E.E.; Luo, W.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. Disposable puff bar electronic cigarettes: Chemical composition and toxicity of e-liquids and a synthetic coolant. Chem. Res. Toxicol. 2022, 35, 1344–1358. [Google Scholar] [CrossRef] [PubMed]
- Omaiye, E.E.; Luo, W.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. Ethyl maltol, vanillin, corylone and other conventional confectionery-related flavor chemicals dominate in some e-cigarette liquids labelled ‘tobacco’ flavoured. Tob. Control 2022, 31, s238–s244. [Google Scholar] [CrossRef] [PubMed]
- Alston, B. Nicotine Salt Pod System Temperature Regulation. In Proceedings of the CORESTA Smoke-Techno Conference, Hamburg, Germany, 6–10 October 2019; Available online: https://www.coresta.org/sites/default/files/abstracts/2019_STPOST03_Alston.pd (accessed on 2 November 2023).
- Dibaji, S.A.R.; Oktem, B.; Williamson, L.; DuMond, J.; Cecil, T.; Kim, J.P.; Wickramasekara, S.; Myers, M.; Guha, S. Characterization of aerosols generated by high-powered electronic nicotine delivery systems (ENDS): Influence of atomizer, temperature and PG:VG ratios. PLoS ONE 2022, 17, e0279309. [Google Scholar] [CrossRef] [PubMed]
- Saliba, N.A.; El Hellani, A.; Honein, E.; Salmon, R.; Talih, S.; Zeaitor, J.; Shihadeh, A. Surface chemistry of electronic cigarette electrical heating coils: Effects of metal type on propylene glycol thermal decomposition. J. Anal. Appl. Pyrol. 2018, 134, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bailey, P.C.; Oldham, M.J.; Yang, C.; Hiraki, B.; Gillman, I.G. Targeted characterization of the chemical composition of JUUL systems aerosol and comparison with 3R4F reference cigarettes and IQOS heat sticks. Separations 2022, 8, 168. [Google Scholar] [CrossRef]
- Erythropel, H.C.; Jabba, S.V.; DeWinter, T.M.; Mendizabal, M.; Anastas, P.T.; Jordt, S.-E.; Zimmerman, J.B. Formation of flavorant-propylene Glycol Adducts with novel toxicological properties in chemically unstable E-cigarette liquids. Nicotine Tob. Res. 2019, 21, 1248–1258. [Google Scholar] [CrossRef]
- Crosswhite, M.R.; Bailey, P.C.; Jeong, L.N.; Lioubomirov, A.; Yang, C.; Ozvald, A.; Jameson, J.B.; Gillman, I.G. Non-Targeted Chemical Characterization of JUUL Virginia Tobacco Flavored Aerosols Using Liquid and Gas Chromatography. Separations 2021, 8, 130. [Google Scholar] [CrossRef]
- Crosswhite, M.R.; Jeong, L.N.; Bailey, P.C.; Jameson, J.B.; Lioubomirov, A.; Cook, D.; Yang, C.; Ozvald, A.; Lyndon, M.; Gillman, I.G. Non-Targeted Chemical Characterization of JUUL-Menthol-Flavored Aerosols Using Liquid and Gas Chromatography. Separations 2022, 9, 367. [Google Scholar] [CrossRef]
- Baker, R.R. Kinetic mechanism of the thermal decomposition of tobacco. Thermochim. Acta 1979, 28, 45–57. [Google Scholar] [CrossRef]
Chemical Name | CAS # | FEMA # | Purity (%) | Intact Transfer % | Targeted Chemicals Identified (Yes/No) | Number of Chemicals Tentatively Identified 1 |
---|---|---|---|---|---|---|
2,3,5,6-Tetramethyl pyrazine 2 | 1124-11-4 | 3237 | 99.90 | 99.45 | No | 7 |
2-Acetyl pyridine | 1122-62-9 | 3251 | 99.77 | 98.62 | No | 3 |
2-isobutyl thiazole | 18640-74-9 | 3134 | 99.54 | 99.34 | No | 9 |
2-isopropyl-N,2,3-trimethylbutyramide (WS-23) | 51115˗67˗4 | 3804 | 99.90 | 83.56 | No | 6 |
2-Methyl Butyl acetate | 624-41-9 | 3644 | 99.72 | 98.24 | No | 11 |
2-Methyl-1-Butanol | 137-32-6 | 3998 | 99.94 | 96.34 | No | 9 |
2-Methyl-2-Pentenoic Acid | 3142-72-1 | 3195 | 99.45 | 91.77 | No | 17 |
2,4-Decadienal, (E,E)- | 25152-84-5 | 3135 | 91.93 | 75.78 | No | 25 |
3-Acetyl pyridine | 350-03-8 | 3424 | 99.97 | 93.52 | No | 8 |
3-Methylcyclopentanedione (MCP) | 765-70-8 | 2700 | 99.1 | 96.85 | No | 7 |
4-Vinyl guaiacol 3 | 7786-61-0 | 2675 | 98.06 | 3 | 3 | 3 |
4-(Para-Hydroxyphenol)-2-Butanone (raspberry ketone) 2 | 5471-51-2 | 2588 | 99.93 | 0 | No | 8 |
6-amyl-alpha pyrone | 27593-23-3 | 3696 | 99.25 | 97.73 | No | 20 |
6-Methyl coumarin | 92-48-8 | 2699 | 100 | 90.28 | No | 1 |
Acetoin acetate | 4906-24-5 | 3526 | 99.28 | 99.01 | Yes | 7 |
Acetophenone 2, 4 | 98-86-2 | 2009 | 99.71 | 99.26 | No | 6 |
Alpha ionone 2 | 127-41-3 | 2594 | 92.66 | 95.47 | No | 18 |
Amyl formate | 638-49-3 | 2068 | 100 | 78.93 | No | 20 |
Anisyl acetone | 104-20-1 | 2672 | 99.78 | 99.08 | No | 7 |
Benzyl alcohol 2, 4 | 100-51-6 | 2137 | 99.87 | 100 | No | 0 |
Beta damascenone 2, 4 | 23696-85-7 | 3420 | 95.72 | 80.53 | No | 26 |
Beta ionone 2, 4 | 79-77-6 | 2595 | 98.9 | 96.96 | No | 21 |
Bis(2-methyl-3-furyl)disulfide | 28588-75-2 | 3259 | 99.46 | 75.74 | No | 15 |
Butyl acetate 2 | 123-86-4 | 2174 | 99.78 | 99.53 | No | 5 |
Butyl anthranilate | 7756-96-9 | 2181 | 99.71 | 71.45 | No | 44 |
Cinnamyl isobutyrate 2 | 103-59-3 | 2297 | 98.12 | 93.98 | No | 15 |
Cinnamyl isovalerate 3 | 140-27-2 | 2302 | 96.35 | 3 | 3 | 3 |
Cis-3-Hexenyl butyrate ((Z)-3-hexen-1-yl butyrate) | 16491-64-4 | 3402 | 98.68 | 89.97 | Yes | 65 |
Cis-3-Hexenyl caproate | 31501-11-8 | 3403 | 99.85 | 98.97 | No | 5 |
Cis-6-Nonenol | 35854-86-5 | 3465 | 96.89 | 99.57 | No | 3 |
Cis-jasmone | 488-10-8 | 3196 | 99.62 | 0 | No | 1 |
Citral 2, 4 | 5392-40-5 | 2303 | 97.62 | 95.52 | No | 26 |
Decanal 2 | 112-31-2 | 2362 | 98.33 | 91.95 | Yes | 26 |
D-limonene 4 | 5989-27-5 | 2633 | 99.45 | 96.7 | Yes | 30 |
Delta-3-carene 3 | 13466-78-9 | 3821 | 95.76 | 3 | 3 | 3 |
Diethyl malonate | 105-53-3 | 2375 | 99.61 | 71.86 | No | 8 |
Diethyl Sebacate | 110-40-7 | 2376 | 99.69 | 98.39 | No | 13 |
Diethyl succinate | 123-25-1 | 2377 | 99.93 | 99.79 | No | 5 |
Dimethyl Benzyl Carbinyl Butyrate | 10094-34-5 | 2394 | 99.79 | 79.72 | No | 3 |
Ethyl acetate 2, 4 | 141-78-6 | 2414 | 99.92 | 99.16 | No | 2 |
Ethyl benzoate 2, 4 | 93-89-0 | 2422 | 99.34 | 0 | No | 2 |
Ethyl cinnamate 2, 3 | 103-36-6 | 2430 | 99.68 | 3 | 3 | 3 |
Ethyl lactate 2 | 97-64-3 | 2440 | 98.88 | 100 | No | 0 |
Ethyl Methyl Phenyl Glycidate | 77-83-8 | 2444 | 98.67 | 92.78 | No | 17 |
Ethyl phenyl acetate 2 | 101-97-3 | 2452 | 99.75 | 99.12 | No | 6 |
Ethyl-3-methylthiopropionate | 13327-56-5 | 3343 | 99.95 | 99.86 | No | 3 |
Furfuryl thio acetate | 13678-68-7 | 3162 | 99.27 | 94.94 | Yes | 15 |
Heptanal | 111-71-7 | 2540 | 94.48 | 0 | No | 6 |
Hexyl alcohol 2 | 111-27-3 | 2567 | 98.55 | 95.99 | No | 14 |
Hexyl 2-methylbutanoate | 10032-15-2 | 3499 | 99.56 | 90.9 | No | 10 |
Hexyl Caproate | 6378-65-0 | 2572 | 99.86 | 98.49 | No | 7 |
Hexyl isobutyrate | 2349-07-7 | 3172 | 99.64 | 99.51 | No | 7 |
Isoamyl phenyl acetate 2 | 102-19-2 | 2081 | 98.42 | 92.31 | No | 11 |
Isobutyl acetate 2 | 110-19-0 | 2175 | 99.78 | 88.63 | No | 3 |
L-Menthyl acetate | 2623-23-6 | 2668 | 99.98 | 92.48 | No | 6 |
Linalool oxide 2 | 1365-19-1 | 3746 | 99.59 | 89.69 | No | 25 |
Melonal | 106-72-9 | 2389 | 85.96 | 76.81 | Yes | 18 |
Methyl 3-nonenoate | 13481-87-3 | 3710 | 98.08 | 95.37 | No | 21 |
Methyl benzoate 2, 3, 4 | 93-58-3 | 2683 | 99.62 | 3 | 3 | 3 |
Methyl caproate | 106-70-7 | 2708 | 99.75 | 99.1 | No | 3 |
Methyl furfuryl disulfide | 57500-00-2 | 3362 | 99.25 | 30.54 | No | 26 |
Methyl heptanone | 110-93-0 | 2707 | 99.43 | 98.72 | No | 20 |
Methyl nonyl ketone | 112-12-9 | 3093 | 99.82 | 94.42 | No | 5 |
Methylphenyl acetate 2 | 101-41-7 | 2733 | 99.99 | 99.61 | No | 2 |
Methyl thiobutyrate | 2432-51-1 | 3310 | 99.94 | 99.78 | No | 2 |
Methyl-2-furoate | 611-13-2 | 2703 | 99.85 | 99.3 | No | 6 |
Methyl-2 methyl-3-furyl disulfide 3 | 65505-17-1 | 3573 | 98.57 | 3 | 3 | 3 |
Milk lactone (5,6-decenoic acid) | 72881-27-7 | 3742 | 87.51 | 91.08 | No | 14 |
N-((Ethoxycarbonyl)methyl)-p-menthane-3-carboxamide (WS-5) | 68489-14-5 | 4309 | 99.64 | 95.05 | Yes | 20 |
Neofolione | 111-79-5 | 2725 | 99.06 | 94.33 | No | 35 |
Neryl acetate 2 | 141-12-8 | 2773 | 98.83 | 91.36 | No | 30 |
N-ethyl-5-methyl-2-(1-methylethyl)cyclohexanecarboxamide (WS-3) | 39711-79-0 | 3455 | 99.70 | 96.30 | Yes | 19 |
Nona-2-Trans, 6-Cis-Dienal | 557-48-2 | 3377 | 98.94 | 0 | No | 2 |
Nootkatone | 4674-50-4 | 3166 | 99.16 | 99.68 | No | 6 |
Octanone-2 (Methyl Hexyl Ketone) | 111-13-7 | 2802 | 98.80 | 98.91 | No | 5 |
Phenylethyl phenylacetate 2 | 102-20-5 | 2866 | 99.20 | 96.44 | No | 11 |
Propyl acetate | 109-60-4 | 2925 | 99.70 | 98.49 | No | 6 |
Propyl caproate | 626-77-7 | 2949 | 99.91 | 99.88 | No | 4 |
Sulfurol (4-methyl-5-thiazole ethanol) | 137-00-8 | 3204 | 99.86 | 43.11 | No | 6 |
Sulfuryl acetate | 656-53-1 | 3205 | 99.60 | 0 | No | 9 |
Styrallyl Acetate (alpha-methylbenzyl acetate) | 93-92-5 | 2684 | 99.75 | 96.85 | No | 24 |
T,T,2,4, undecadienal | 30361-29-6 | 3422 | 97.75 | 97.32 | No | 12 |
Thiomenthone | 38462-22-5 | 3177 | 97.66 | 87.46 | No | 21 |
Trans-2-decenal | 3913-81-3 | 2366 | 97.55 | 98.62 | No | 15 |
Trans-2-nonenal | 18829-56-6 | 3213 | 95.58 | 87.03 | No | 23 |
Trithioacetone | 828-26-2 | 3475 | 99.55 | 83.57 | No | 20 |
Valencene | 4630-07-3 | 3443 | 65-90 | 90.95 | No | 22 |
Vanillyl Ethyl Ether | 13184-86-6 | 3815 | 98.32 | 98.95 | No | 8 |
Veratraldehyde 2, 4 | 120-14-9 | 3109 | 99.99 | 97.79 | No | 18 |
Whiskey lactone | 39212-23-2 | 3803 | 98.62 | 97.64 | No | 6 |
Chemical Name | CAS # | Amount Detected (ng/µL) | ||
---|---|---|---|---|
Acetaldehyde | Acrolein | Glycidol | ||
Acetoin Acetate | 4906-24-5 | <LOQ | ND | 0.526 |
Cis-3-Hexenyl Butyrate ((Z)-3-hexen-1-yl butyrate) | 16491-64-4 | <LOQ | 0.568 | ND |
D-limonene | 5989-27-5 | <LOQ | ND | 0.158 |
Decanal | 112-31-2 | <LOQ | 0.368 | ND |
Furfuryl thio acetate | 13678-68-7 | ND | ND | 0.118 |
Melonal | 106-72-9 | <LOQ | 0.668 | ND |
N-((Ethoxycarbonyl)methyl)-p-menthane-3-carboxamide (WS-5) | 68489-14-5 | 0.166 | 0.688 | ND |
N-ethyl-5-methyl-2-(1-methylethyl)cyclohexanecarboxamide (WS-3) | 39711-79-0 | 0.112 | ND | ND |
Chemical Name | CAS # | Current Study | Baker and Bishop, 2004 [3] | Purkis et al. 2011 [4] | |||
---|---|---|---|---|---|---|---|
Purity (%) | Intact Transfer % | Purity (%) | Intact Transfer % | Purity (%) | Intact Transfer % | ||
2,3,5,6-Tetramethyl pyrazine | 1124-11-4 | 99.90 | 99.45 | 98 | 100 | N/A | N/A |
4-(Para-Hydroxyphenol)-2-Butanone (raspberry ketone) | 5471-51-2 | 99.93 | 0 | 98 | 96.8 | N/A | N/A |
Acetophenone | 98-86-2 | 99.71 | 99.26 | 98 | 99.8 | 99.9 | 98.7 |
Alpha ionone | 127-41-3 | 92.66 | 95.47 | 90 | 91.8 | N/A | N/A |
Benzyl alcohol | 100-51-6 | 99.87 | 100 | 99 | 95.2 | 100 | 94.2 |
Beta damascenone | 23696-85-7 | 95.72 | 80.53 | 95 | 94.2 | 100 | 99.4 |
Beta ionone | 79-77-6 | 98.9 | 96.96 | 97 | 95.4 | 100 | 100 |
Butyl acetate | 123-86-4 | 99.78 | 99.53 | 99 | 100 | N/A | N/A |
Cinnamyl isobutyrate | 103-59-3 | 98.12 | 93.98 | 97 | 94.0 | N/A | N/A |
Citral | 5392-40-5 | 97.62 | 95.52 | 96 | 93.7 2 | 100 | 94.4 |
Decanal | 112-31-2 | 98.33 | 91.95 | 95 | 94.8 | N/A | N/A |
D-limonene | 5989-27-5 | 99.45 | 96.7 | N/A | N/A | 98.7 | 100 |
Ethyl acetate | 141-78-6 | 99.92 | 99.16 | 99 | 100 | 100 | 100 |
Ethyl benzoate | 93-89-0 | 99.34 | 0 | 99 | 100 | 100 | 98.7 |
Ethyl cinnamate 1 | 103-36-6 | 99.68 | 1 | 98 | 98.7 | N/A | N/A |
Ethyl lactate | 97-64-3 | 98.88 | 100 | 98 | 73.4 | N/A | N/A |
Ethyl phenyl acetate | 101-97-3 | 99.75 | 99.12 | 98 | 98.5 | N/A | N/A |
Hexyl alcohol | 111-27-3 | 98.55 | 95.99 | 98 | 96.3 | N/A | N/A |
Isoamyl phenyl acetate | 102-19-2 | 98.42 | 92.31 | 98 | 94.7 | N/A | N/A |
Isobutyl acetate | 110-19-0 | 99.78 | 88.63 | 98 | 99.8 | N/A | N/A |
Linalool oxide | 1365-19-1 | 99.59 | 89.69 | 97 | 95.1 | N/A | N/A |
Methyl benzoate 1 | 93-58-3 | 99.62 | 1 | 98 | 99.6 | 100 | 100 |
Methylphenyl acetate | 101-41-7 | 99.99 | 99.61 | 98 | 98.4 | N/A | N/A |
Neryl acetate | 141-12-8 | 98.83 | 91.36 | 98 | 82.0 | N/A | N/A |
Phenylethyl phenylacetate | 102-20-5 | 99.20 | 96.44 | 98 | 82.1 | N/A | N/A |
Veratraldehyde | 120-14-9 | 99.99 | 97.79 | 98 | 99.6 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oldham, M.J.; Jeong, L.; Gillman, I.G. An Approach to Flavor Chemical Thermal Degradation Analysis. Toxics 2024, 12, 16. https://doi.org/10.3390/toxics12010016
Oldham MJ, Jeong L, Gillman IG. An Approach to Flavor Chemical Thermal Degradation Analysis. Toxics. 2024; 12(1):16. https://doi.org/10.3390/toxics12010016
Chicago/Turabian StyleOldham, Michael J., Lena Jeong, and I. Gene Gillman. 2024. "An Approach to Flavor Chemical Thermal Degradation Analysis" Toxics 12, no. 1: 16. https://doi.org/10.3390/toxics12010016
APA StyleOldham, M. J., Jeong, L., & Gillman, I. G. (2024). An Approach to Flavor Chemical Thermal Degradation Analysis. Toxics, 12(1), 16. https://doi.org/10.3390/toxics12010016