Biochemical Toxicological Study of Insulin Overdose in Rats: A Forensic Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Experimental Design
2.3. Biochemical Index
2.4. ELISA for Hormone Levels
2.5. Liver Pathology
2.6. Glycogen Determination
2.7. Western Blotting Analysis
2.8. Confocal Immunofluorescent Staining
2.9. Statistical Analysis
3. Results
3.1. Blood Glucose Levels and Corresponding Symptoms after Insulin Overdose
3.2. Effects of Insulin Overdose on Biochemical Indexes
3.3. Effects of Insulin Overdose on Glucose Metabolic Hormones
3.4. Glycogen Deposition after Insulin Overdose and Glucose Recovery
3.5. Insulin Overdose Activates the PI3K-AKT Signaling Pathway in Skeletal Muscle
3.6. Insulin Overdose Promotes GLUT4 and Na+-K+-ATPase Translocation in Skeletal Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kramer, C.K.; Retnakaran, R.; Zinman, B. Insulin and insulin analogs as antidiabetic therapy: A perspective from clinical trials. Cell Metab. 2021, 33, 740–747. [Google Scholar] [CrossRef] [PubMed]
- De Meyts, P. Insulin and its receptor: Structure, function and evolution. BioEssays News Rev. Mol. Cell. Dev. Biol. 2004, 26, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Sims, E.K.; Carr, A.L.J.; Oram, R.A.; DiMeglio, L.A.; Evans-Molina, C. 100 years of insulin: Celebrating the past, present and future of diabetes therapy. Nat. Med. 2021, 27, 1154–1164. [Google Scholar] [CrossRef]
- Niswender, K.D. Basal insulin: Physiology, pharmacology, and clinical implications. Postgrad. Med. 2011, 123, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, P.L.; Hansen, L.S.; Jespersen, M.J.; Pedersen-Bjergaard, U.; Beck-Nielsen, H.; Christiansen, J.S.; Nørgaard, K.; Perrild, H.; Parving, H.H.; Thorsteinsson, B.; et al. Insulin analogues and severe hypoglycaemia in type 1 diabetes. Diabetes Res. Clin. Pract. 2012, 96, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Johansen, N.J.; Christensen, M.B. A Systematic Review on Insulin Overdose Cases: Clinical Course, Complications and Treatment Options. Basic Clin. Pharmacol. Toxicol. 2018, 122, 650–659. [Google Scholar] [CrossRef]
- Rzepczyk, S.; Dolińska-Kaczmarek, K.; Uruska, A.; Żaba, C. The Other Face of Insulin-Overdose and Its Effects. Toxics 2022, 10, 123. [Google Scholar] [CrossRef]
- Graveling, A.J.; Frier, B.M. Hypoglycaemia: An overview. Prim. Care Diabetes 2009, 3, 131–139. [Google Scholar] [CrossRef]
- McNeilly, A.D.; McCrimmon, R.J. Impaired hypoglycaemia awareness in type 1 diabetes: Lessons from the lab. Diabetologia 2018, 61, 743–750. [Google Scholar] [CrossRef]
- McCrimmon, R.J.; Frier, B.M. Hypoglycaemia, the most feared complication of insulin therapy. Diabete Metab. 1994, 20, 503–512. [Google Scholar]
- Binder, G.; Bosk, A.; Gass, M.; Ranke, M.B.; Heidemann, P.H. Insulin tolerance test causes hypokalaemia and can provoke cardiac arrhythmias. Horm. Res. 2004, 62, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Reno, C.M.; Skinner, A.; Bayles, J.; Chen, Y.S.; Daphna-Iken, D.; Fisher, S.J. Severe hypoglycemia-induced sudden death is mediated by both cardiac arrhythmias and seizures. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E240–E249. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.T.; Harris, N.D.; Ireland, R.H.; Lee, S.; Newman, C.; Heller, S.R. Mechanisms of abnormal cardiac repolarization during insulin-induced hypoglycemia. Diabetes 2003, 52, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Manetti, A.C.; Visi, G.; Spina, F.; De Matteis, A.; Del Duca, F.; Turillazzi, E.; Maiese, A. Insulin and Oral Hypoglycemic Drug Overdose in Post-Mortem Investigations: A Literature Review. Biomedicines 2022, 10, 2823. [Google Scholar] [CrossRef] [PubMed]
- Marks, V.; Wark, G. Forensic aspects of insulin. Diabetes Res. Clin. Pract. 2013, 101, 248–254. [Google Scholar] [CrossRef]
- Baumgartner, K.; Devgun, J. Toxicology of Medications for Diabetes Mellitus. Crit. Care Clin. 2021, 37, 577–589. [Google Scholar] [CrossRef]
- Tong, F.; Wu, R.; Huang, W.; Yang, Y.; Zhang, L.; Zhang, B.; Chen, X.; Tang, X.; Zhou, Y. Forensic aspects of homicides by insulin overdose. Forensic Sci. Int. 2017, 278, 9–15. [Google Scholar] [CrossRef]
- Birkinshaw, V.J.; Gurd, M.R.; Randall, S.S.; Curry, A.S.; Price, D.E.; Wright, P.H. Investigations in a Case of Murder by Insulin Poisoning. Br. Med. J. 1958, 2, 463. [Google Scholar] [CrossRef]
- Haibach, H.; Dix, J.D.; Shah, J.H. Homicide by insulin administration. J. Forensic Sci. 1987, 32, 208–216. [Google Scholar] [CrossRef]
- Beastall, G.H.; Gibson, I.H.; Martin, J. Successful suicide by insulin injection in a non-diabetic. Med. Sci. Law 1995, 35, 79–85. [Google Scholar] [CrossRef]
- Marks, V. Murder by insulin: Suspected, purported and proven-a review. Drug Test. Anal. 2009, 1, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Kleebauer, A. ‘Caring’ nurse goes on trial for murder. Nurs. Stand. 2015, 29, 7. [Google Scholar] [CrossRef]
- Bottinelli, C.; Cartiser, N.; Bévalot, F.; Fanton, L.; Guitton, J. Is insulin intoxication still the perfect crime? Analysis and interpretation of postmortem insulin: Review and perspectives in forensic toxicology. Crit. Rev. Toxicol. 2020, 50, 324–347. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, V.L.; MacDonald, P.E.; Klip, A. The cell biology of systemic insulin function. J. Cell Biol. 2018, 217, 2273–2289. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.P.; Zhang, F.; DiMarchi, R.D. Insulin structure and function. Biopolymers 2007, 88, 687–713. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef]
- Bozulic, L.; Hemmings, B.A. PIKKing on PKB: Regulation of PKB activity by phosphorylation. Curr. Opin. Cell Biol. 2009, 21, 256–261. [Google Scholar] [CrossRef]
- Risso, G.; Blaustein, M.; Pozzi, B.; Mammi, P.; Srebrow, A. Akt/PKB: One kinase, many modifications. Biochem. J. 2015, 468, 203–214. [Google Scholar] [CrossRef]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef]
- Klip, A.; McGraw, T.E.; James, D.E. Thirty sweet years of GLUT4. J. Biol. Chem. 2019, 294, 11369–11381. [Google Scholar] [CrossRef] [PubMed]
- Leto, D.; Saltiel, A.R. Regulation of glucose transport by insulin: Traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 2012, 13, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Sylow, L.; Tokarz, V.L.; Richter, E.A.; Klip, A. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab. 2021, 33, 758–780. [Google Scholar] [CrossRef] [PubMed]
- Jaldin-Fincati, J.R.; Pavarotti, M.; Frendo-Cumbo, S.; Bilan, P.J.; Klip, A. Update on GLUT4 Vesicle Traffic: A Cornerstone of Insulin Action. Trends Endocrinol. Metab. TEM 2017, 28, 597–611. [Google Scholar] [CrossRef]
- Hoffman, N.J.; Elmendorf, J.S. Signaling, cytoskeletal and membrane mechanisms regulating GLUT4 exocytosis. Trends Endocrinol. Metab. TEM 2011, 22, 110–116. [Google Scholar] [CrossRef]
- Clausen, T. Hormonal and pharmacological modification of plasma potassium homeostasis. Fundam. Clin. Pharmacol. 2010, 24, 595–605. [Google Scholar] [CrossRef]
- Clausen, T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 2003, 83, 1269–1324. [Google Scholar] [CrossRef]
- Galuska, D.; Kotova, O.; Barrès, R.; Chibalina, D.; Benziane, B.; Chibalin, A.V. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: Effects of high-fat diet and exercise. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E38–E49. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Maalouf, N.M.; Sakhaee, K.; Moe, O.W. Comparison of insulin action on glucose versus potassium uptake in humans. Clin. J. Am. Soc. Nephrol. CJASN 2011, 6, 1533–1539. [Google Scholar] [CrossRef]
- Ho, K. A critically swift response: Insulin-stimulated potassium and glucose transport in skeletal muscle. Clin. J. Am. Soc. Nephrol. CJASN 2011, 6, 1513–1516. [Google Scholar] [CrossRef]
- Mohammadi, K.; Kometiani, P.; Xie, Z.; Askari, A. Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J. Biol. Chem. 2001, 276, 42050–42056. [Google Scholar] [CrossRef] [PubMed]
- Miyakuni, Y.; Nakajima, M.; Kaszynski, R.H.; Tarui, T.; Goto, H.; Yamaguchi, Y. A Case Involving Massive Insulin Overdose: Direct and Indirect Conditions Requiring Extended Management of Serum Potassium. Am. J. Case Rep. 2020, 21, e920078. [Google Scholar] [CrossRef] [PubMed]
- Thewjitcharoen, Y.; Lekpittaya, N.; Himathongkam, T. Attempted suicide by massive insulin injection: A case report and review of the literature. J. Med. Assoc. Thail. = Chotmaihet Thangphaet 2008, 91, 1920–1924. [Google Scholar]
- Dobbins, R.L.; Connolly, C.C.; Neal, D.W.; Palladino, L.J.; Parlow, A.F.; Cherrington, A.D. Role of glucagon in countering hypoglycemia induced by insulin infusion in dogs. Am. J. Physiol. 1991, 261, E773–E781. [Google Scholar] [CrossRef] [PubMed]
- Ramnanan, C.J.; Edgerton, D.S.; Kraft, G.; Cherrington, A.D. Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes. Metab. 2011, 13 (Suppl. 1), 118–125. [Google Scholar] [CrossRef] [PubMed]
- Cryer, P.E. Glucose counterregulation: Prevention and correction of hypoglycemia in humans. Am. J. Physiol. 1993, 264, E149–E155. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.J.; Shah, S.D.; Cryer, P.E. Insulin, glucagon, and catecholamines in prevention of hypoglycemia during fasting. Am. J. Physiol. 1989, 256, E651–E661. [Google Scholar] [CrossRef]
- Rivera, N.; Ramnanan, C.J.; An, Z.; Farmer, T.; Smith, M.; Farmer, B.; Irimia, J.M.; Snead, W.; Lautz, M.; Roach, P.J.; et al. Insulin-induced hypoglycemia increases hepatic sensitivity to glucagon in dogs. J. Clin. Investig. 2010, 120, 4425–4435. [Google Scholar] [CrossRef]
- Bolli, G.; De Feo, P.; Perriello, G.; De Cosmo, S.; Ventura, M.; Campbell, P.; Brunetti, P.; Gerich, J.E. Role of hepatic autoregulation in defense against hypoglycemia in humans. J. Clin. Investig. 1985, 75, 1623–1631. [Google Scholar] [CrossRef]
- Wasserman, D.H.; Spalding, J.A.; Lacy, D.B.; Colburn, C.A.; Goldstein, R.E.; Cherrington, A.D. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Am. J. Physiol. 1989, 257, E108–E117. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Nadel, E.R.; Shaw, J.H.; Stephenson, L.A.; Wolfe, M.H. Role of changes in insulin and glucagon in glucose homeostasis in exercise. J. Clin. Investig. 1986, 77, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. The Precious Few Grams of Glucose During Exercise. Int. J. Mol. Sci. 2020, 21, 5733. [Google Scholar] [CrossRef] [PubMed]
- Arogyasami, J.; Conlee, R.K.; Booth, C.L.; Diaz, R.; Gregory, T.; Sephton, S.; Wilson, G.I.; Winder, W.W. Effects of exercise on insulin-induced hypoglycemia. J. Appl. Physiol. 1990, 69, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Johansen, L.; Graham, T.; Saltin, B. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise. J. Physiol. 1993, 462, 115–133. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, C.R.; Heard, K.; Waksman, J.C. Insulin & C-peptide levels in sulfonylurea-induced hypoglycemia: A systematic review. J. Med. Toxicol. Off. J. Am. Coll. Med. Toxicol. 2007, 3, 107–118. [Google Scholar] [CrossRef]
- Abellan, R.; Ventura, R.; Palmi, I.; di Carlo, S.; di Giovannandrea, R.; Bellver, M.; Olive, R.; Pascual, J.A.; Pacifici, R.; Segura, J.; et al. Evaluation of immunoassays for the measurement of insulin and C-peptide as indirect biomarkers of insulin misuse in sport: Values in selected population of athletes. J. Pharm. Biomed. Anal. 2009, 49, 793–799. [Google Scholar] [CrossRef]
- Uezono, T.; Shiono, H.; Shimizu, K.; Ogawa, K.; Saito, O.; Yoshida, M.; Mizukami, H.; Matsubara, K. Simultaneous analyses of hypoglycemic agents and C-peptide are essential in a homicide case with the combined dosing insulin and insulin-releasing drug. Leg. Med. 2002, 4, 34–36. [Google Scholar] [CrossRef]
- Labay, L.M.; Bitting, C.P.; Legg, K.M.; Logan, B.K. The Determination of Insulin Overdose in Postmortem Investigations. Acad Forensic Pathol. 2016, 6, 174–183. [Google Scholar] [CrossRef]
- Owen, W.E.; Roberts, W.L. Cross-reactivity of three recombinant insulin analogs with five commercial insulin immunoassays. Clin. Chem. 2004, 50, 257–259. [Google Scholar] [CrossRef]
- Dayaldasani, A.; Rodríguez Espinosa, M.; Ocón Sánchez, P.; Pérez Valero, V. Cross-reactivity of insulin analogues with three insulin assays. Ann. Clin. Biochem. 2015, 52, 312–318. [Google Scholar] [CrossRef]
- Elgee, N.J.; Williams, R.H.; Lee, N.D. Distribution and degradation studies with insulin I131. J. Clin. Investig. 1954, 33, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Williams, I.M.; Valenzuela, F.A.; Kahl, S.D.; Ramkrishna, D.; Mezo, A.R.; Young, J.D.; Wells, K.S.; Wasserman, D.H. Insulin exits skeletal muscle capillaries by fluid-phase transport. J. Clin. Investig. 2018, 128, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Roberge, R.J.; Martin, T.G.; Delbridge, T.R. Intentional massive insulin overdose: Recognition and management. Ann. Emerg. Med. 1993, 22, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Wunder, C.; Kauert, G.F.; Toennes, S.W. Factors leading to the degradation/loss of insulin in postmortem blood samples. Forensic Sci. Int. 2014, 241, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Musshoff, F.; Madea, B. Disorders of glucose metabolism-post mortem analyses in forensic cases: Part I. Int. J. Leg. Med. 2011, 125, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, W.C.; Bennett, R.G.; Hamel, F.G. Insulin degradation: Progress and potential. Endocr. Rev. 1998, 19, 608–624. [Google Scholar] [CrossRef]
- Bryant, C.; Spencer, D.B.; Miller, A.; Bakaysa, D.L.; McCune, K.S.; Maple, S.R.; Pekar, A.H.; Brems, D.N. Acid stabilization of insulin. Biochemistry 1993, 32, 8075–8082. [Google Scholar] [CrossRef]
- Khoury, J.; Zohar, Y.; Shehadeh, N.; Saadi, T. Glycogenic hepatopathy. Hepatobiliary Pancreat. Dis. Int. HBPD INT 2018, 17, 113–118. [Google Scholar] [CrossRef]
- Sherigar, J.M.; Castro, J.; Yin, Y.M.; Guss, D.; Mohanty, S.R. Glycogenic hepatopathy: A narrative review. World J. Hepatol. 2018, 10, 172–185. [Google Scholar] [CrossRef]
- Mukewar, S.; Sharma, A.; Lackore, K.A.; Enders, F.T.; Torbenson, M.S.; Kamath, P.S.; Roberts, L.R.; Kudva, Y.C. Clinical, Biochemical, and Histopathology Features of Patients With Glycogenic Hepatopathy. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2017, 15, 927–933. [Google Scholar] [CrossRef]
- van den Brand, M.; Elving, L.D.; Drenth, J.P.; van Krieken, J.H. Glycogenic hepatopathy: A rare cause of elevated serum transaminases in diabetes mellitus. Neth. J. Med. 2009, 67, 394–396. [Google Scholar] [PubMed]
- Imtiaz, K.E.; Healy, C.; Sharif, S.; Drake, I.; Awan, F.; Riley, J.; Karlson, F. Glycogenic hepatopathy in type 1 diabetes: An underrecognized condition. Diabetes Care 2013, 36, e6–e7. [Google Scholar] [CrossRef] [PubMed]
Time | Blood Glucose | Symptoms | |
---|---|---|---|
SEM | |||
0 h | 5.5 ± 0.4 | 99.0 ± 7.2 | Normal behavior |
0.5 h | 2.5 ± 0.4 | 45.0 ± 7.2 | Blunted response; hypodynamia; hypotonia |
1 h | 1.5 ± 0.3 | 27.0 ± 5.4 | Irregular convulsions; hypermyotonia |
1.5 h | 1.2 ± 0.2 | 21.6 ± 3.6 | Eclampsia; opisthotonos |
2 h | 0.9 ± 0.2 | 16.2 ± 3.6 | Collapse; uroclepsia; near-death |
2.5 h | 0.8 ± 0.1 | 14.4 ± 1.8 | Death |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, C.; He, X.; Wang, Q.; Zheng, Z.; Zhang, Y.; Xiong, H.; Li, Y.; Zhao, M.; Li, J. Biochemical Toxicological Study of Insulin Overdose in Rats: A Forensic Perspective. Toxics 2024, 12, 17. https://doi.org/10.3390/toxics12010017
Bian C, He X, Wang Q, Zheng Z, Zhang Y, Xiong H, Li Y, Zhao M, Li J. Biochemical Toxicological Study of Insulin Overdose in Rats: A Forensic Perspective. Toxics. 2024; 12(1):17. https://doi.org/10.3390/toxics12010017
Chicago/Turabian StyleBian, Cunhao, Xin He, Qi Wang, Zhe Zheng, Yongtai Zhang, Hongli Xiong, Yongguo Li, Mingzhu Zhao, and Jianbo Li. 2024. "Biochemical Toxicological Study of Insulin Overdose in Rats: A Forensic Perspective" Toxics 12, no. 1: 17. https://doi.org/10.3390/toxics12010017
APA StyleBian, C., He, X., Wang, Q., Zheng, Z., Zhang, Y., Xiong, H., Li, Y., Zhao, M., & Li, J. (2024). Biochemical Toxicological Study of Insulin Overdose in Rats: A Forensic Perspective. Toxics, 12(1), 17. https://doi.org/10.3390/toxics12010017