Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Field Parameters, and Ethical Aspects
2.2. Sample Collection: Water, Sediment, and Fish Tissue
2.3. Determination of Potentially Toxic and Essential Elements in Water, Sediments, and Tissues
2.4. Bioconcentration Factor (BCF)
2.5. Risk Assessment: Estimated Daily Intake (EDI), Target Hazard Quotient (THQ), Hazardous Index (HI), and Carcinogenic Risk (CR)
2.6. Quality Assessment: National and International Standards
2.7. Data Analysis
3. Results
3.1. Water Physicochemical Parameters, Presence of Nitrogen Compounds, and Concentration of Potentially Toxic and Essential Elements in Water
3.2. Concentration of Potentially Toxic and Essential Elements in the Sediment
3.3. Concentration of Potentially Toxic and Essential Elements in Muscle and Liver Tissues
3.4. Bioconcentration Factor (BCF)
3.5. Risk Assessment: Estimated Daily Intake (EDI), Target Hazard Quotient (THQ), Hazardous Index (HI), and Carcinogenic Risk (CR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alvariño, L.; Saez, G.; Acioly, T.M.S.; Viana, D.C.; Iannacone, J. Biochemical indicators of contamination in the coastal area of Callao, Peru. Lat. Am. J. Aquat. Res. 2023, 51, 351–362. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef] [PubMed]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, Y.; Wang, J.; Li, J.Y.; He, W.; Craig, N.J. Assessing pathways of heavy metal accumulation in aquaculture shrimp and their introductions into the pond environment based on a dynamic model and mass balance principle. Sci. Total Environ. 2023, 881, 163164. [Google Scholar] [CrossRef]
- Chouvelon, T.; Strady, E.; Harmelin-Vivien, M.; Radakovitch, O.; Brach-Papa, C.; Crochet, S.; Chiffoleau, J.F. Patterns of trace metal bioaccumulation and trophic transfer in a phytoplankton-zooplankton-small pelagic fish marine food web. Mar. Pollut. Bull. 2019, 146, 1013–1030. [Google Scholar] [CrossRef] [PubMed]
- Simionov, I.-A.; Cristea, D.S.; Petrea, S.-M.; Mogodan, A.; Nicoara, M.; Plavan, G.; Baltag, E.S.; Jijie, R.; Strungaru, S.-A. Preliminary investigation of lower Danube pollution caused by potentially toxic metals. Chemosphere 2021, 264, 128496. [Google Scholar] [CrossRef]
- Filice, M.; Reinero, F.R.; Cerra, M.C.; Faggio, C.; Leonetti, F.L.; Micarelli, P.; Giglio, G.; Sperone, E.; Barca, D.; Imbrogno, S. Contamination by Trace Elements and Oxidative Stress in the Skeletal Muscle of Scyliorhinus canicula from the Central Tyrrhenian Sea. Antioxidants 2023, 12, 524. [Google Scholar] [CrossRef] [PubMed]
- Shahjahan, M.; Taslima, K.; Rahman, M.S.; Al-Emran, M.; Alam, S.I.; Faggio, C. Effects of heavy metals on fish physiology—A review. Chemosphere 2022, 300, 134519. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Vijayaraghavan, K.; Thilakavathi, M.; Iyer, P.V.R.; Velan, M. Application of seaweeds for the removal of lead from aqueous solution. Biochem. Eng. J. 2007, 33, 211–216. [Google Scholar] [CrossRef]
- Qiao Qiao, C.; Guangwei, Z.; Langdon, A. Bioaccumulation of heavy metals in fishes from Taihu Lake, China. J. Environ. Sci. 2007, 19, 1500–1504. [Google Scholar] [CrossRef]
- Strungaru, S.A.; Nicoara, M.; Teodosiu, C.; Baltag, E.; Ciobanu, C.; Plavan, G. Patterns of toxic metals bioaccumulation in a cross-border freshwater reservoir. Chemosphere 2018, 207, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Merola, C.; Bisegna, A.; Angelozzi, G.; Conte, A.; Abete, M.C.; Stella, C.; Pederiva, S.; Faggio, C.; Riganelli, N.; Perugini, M. Study of heavy metals pollution and vitellogenin levels in brown trout (Salmo trutta trutta) wild fish populations. Appl. Sci. 2021, 11, 4965. [Google Scholar] [CrossRef]
- Rajkumar, V.; Lee, V.R.; Gupta, V. Heavy Metal Toxicity; Updated 23 March 2023; Stat Pearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560920/ (accessed on 24 December 2023).
- Shiry, N.; Derakhshesh, N.; Gholamhosseini, A.; Pouladi, M.; Faggio, C. Heavy metal concentrations in Cynoglossus arel (bloch & schneider, 1801) and sediment in the Chabahar Bay, Iran. Int. J. Environ. Res. 2021, 15, 773–784. [Google Scholar]
- Pandey, G.; Madhuri, S. Heavy metals causing toxicity in animals and fishes. Res. J. Anim. Vet. Fish. Sci. 2014, 2, 17–23. [Google Scholar]
- Simionov, I.A.; Calmuc, V.; Petrea, S.M.; Antache, A.; Nica, A.; Iticescu, C.; Georgescu, P.L.; Cristea, V. Evaluation of heavy metals concentrations in the black sea turbot and elements correlation analysis. Sci. Pap. Ser. E. Land Reclam. Earth Obs. Surv. Environ. Eng. 2023, 12, 296–302. [Google Scholar]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and threats of contamination on aquatic ecosystems. Bioremediat. Biotechnol. Sustain. Approaches Pollut. Degrad. 2020, 1, 1–26. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Springer: Basel, Switzerland, 2012; pp. 133–164. [Google Scholar]
- Fazio, F.; D’Iglio, C.; Capillo, G.; Saoca, C.; Peycheva, K.; Piccione, G.; Makedonski, L. environmental investigations and tissue bioaccumulation of heavy metals in grey mullet from the Black sea (Bulgaria) and the Ionian Sea (Italy). Animals 2020, 10, 1739. [Google Scholar] [CrossRef]
- Fallahzadeh, R.A.; Ghaneian, M.T.; Miri, M.; Dashti, M.M. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environ. Sci. Pollut. Res. 2017, 24, 24790–24802. [Google Scholar] [CrossRef]
- Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning–A review. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2006, 41, 2399–2428. [Google Scholar] [CrossRef]
- Jeong, K.S.; Park, H.; Ha, E.; Hong, Y.-C.; Ha, M.; Park, H.; Kim, B.-N.; Lee, B.-E.; Lee, S.-J.; Lee, K.Y.; et al. Performance IQ in children is associated with blood cadmium concentration in early pregnancy. J. Trace Elem. Med. Biol. 2015, 30, 107–111. [Google Scholar] [CrossRef]
- Sanders, A.P.; Claus Henn, B.; Wright, R.O. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature. Curr. Environ. Health Rep. 2015, 2, 284–294. [Google Scholar] [CrossRef]
- Jeong, J.; Yun, S.M.; Kim, M.; Koh, Y.H. Association of blood cadmium with cardiovascular disease in Korea: From the Korea National Health and Nutrition Examination Survey 2008–2013 and 2016. Int. J. Environ. Res. Public Health 2020, 17, 6288. [Google Scholar] [CrossRef] [PubMed]
- WHO. Childhood Lead Poisoning. 2010. Available online: https://iris.who.int/bitstream/handle/10665/136571/9789995605025_alb.pdf (accessed on 24 December 2023).
- Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr. 2008, 20, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.T.; Hassi, U.; Huq, S.I. Assessment of concentration and toxicological (Cancer) risk of lead, cadmium and chromium in tobacco products commonly available in Bangladesh. Toxicol. Rep. 2018, 5, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, N.T.M.; Van Chuyen, N.; Thao, N.T.T.; Duc, N.Q.; Trang, N.T.T.; Binh, N.T.T.; Sa, H.C.; Tran, N.B.; Van Ba, N.; Van Khai, N.; et al. Chromium, cadmium, lead, and arsenic concentrations in water, vegetables, and seafood consumed in a coastal area in Northern Vietnam. Environ. Health Insights 2020, 14, 1178630220921410. [Google Scholar] [CrossRef]
- Bhupander, K.; Mukherjee, D.P.; Sanjay, K.; Meenu, M.; Dev, P.; Singh, S.K.; Sharma, C.S. Bioaccumulation of heavy metals in muscle tissue of fishes from selected aquaculture ponds in east Kolkata wetlands. Ann. Biol. Res. 2011, 2, 125–134. [Google Scholar]
- Huang, H.; Li, Y.; Zheng, X.; Wang, Z.; Wang, Z.; Cheng, X. Nutritional value and bioaccumulation of heavy metals in nine commercial fish species from Dachen Fishing Ground, East China Sea. Sci. Rep. 2022, 12, 6927. [Google Scholar] [CrossRef]
- Huseen, H.; Mohammed, A.J. Heavy metals causing toxicity in fishes. IOP J. Phys. Conf. Ser. 2019, 1294, 062028. [Google Scholar] [CrossRef]
- Amqam, H.; Thalib, D.; Anwar, D.; Sirajuddin, S.; Mallongi, A. Human health risk assessment of heavy metals via consumption of fish from Kao Bay. Rev. Environ. Health 2020, 35, 257–263. [Google Scholar] [CrossRef]
- Salam, M.A.; Dayal, S.R.; Siddiqua, S.A.; Muhib, M.I.; Bhowmik, S.; Kabir, M.M.; Srzednicki, G. Risk assessment of heavy metals in marine fish and seafood from Kedah and Selangor coastal regions of Malaysia: A high-risk health concern for consumers. Environ. Sci. Pollut. Res. 2021, 28, 55166–55175. [Google Scholar] [CrossRef]
- Iannacone, J.; Romero, S.; Rosas, J.; Guabloche, A.; Alvariño, L.; Castañeda, L.; Carrasco, L. Metals in Thaisella chocolata from the Callao Bay, Perú. Int. J. Mech. Eng. 2022, 7, 1356–1364. [Google Scholar]
- Rodriguez Vilchez, R. Cuantificación de las Concentraciones de Metales Pesados (Pb, Cd, Cu) por Espectrofotometría de Absorción Atómica de los Peces Pelágio de la Bahía del Callao. Ph.D. Thesis, Universidad Nacional del Callao, Bellavista, Peru, 2022. [Google Scholar]
- Rosas, J.; Alvariño, L.; Guabloche, A.; Romero, S.; Castañeda, L.; Iannacone, J. Contaminación por elementos trazas en sedimentos superficiales marinos de la bahía del Callao, Perú. Boletín Investig. Mar. Costeras 2023, 52, 27–44. [Google Scholar] [CrossRef]
- PNUMA; CONAM; Municipalidad de Lima Metropolitana; Municipalidad del Callao; GEA. Perspectivas del Medio Ambiente Urbano: GEO Lima y Callao; United Nations Environment Programme: Nairobi, Kenya, 2005.
- Aprocallao. Calidad del Agua de mar en la Bahía del Callao. Informe Anual del Monitoreo de Efluentes y Cuerpo Marino Receptor; Aprocallao: Callao, Peru, 2006. [Google Scholar]
- Gammons, C.H.; Slotton, D.G.; Gerbrandt, B.; Weight, W.; Young, C.A.; McNearny, R.L.; Cámac, E.; Calderón, R.; Tapia, H. Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru. Sci. Total Environ. 2006, 368, 637–648. [Google Scholar] [CrossRef]
- Canham, R.; González-Prieto, A.M.; Elliott, J.E. Mercury exposure and toxicological consequences in fish and fish-eating wildlife from anthropogenic activity in Latin America. Integr. Environ. Assess. Manag. 2021, 17, 13–26. [Google Scholar] [CrossRef]
- Feingold, B.J.; Berky, A.; Hsu-Kim, H.; Jurado, E.R.; Pan, W.K. Population-based dietary exposure to mercury through fish consumption in the Southern Peruvian Amazon. Environ. Res. 2020, 183, 108720. [Google Scholar] [CrossRef]
- Loayza, E.; Barrientos, A.C.T.; Janssens, G.P. Evidence of microplastics in water and commercial fish from a high-altitude mountain lake (Lake Titicaca). PeerJ 2022, 10, e14112. [Google Scholar] [CrossRef]
- FAO, Food and Agriculture Organization. Perfíles de Pesca y Acuicultura por Países. Perú, 2018. Hojas de Datos de Perfiles de los Paises. División de Pesca y Acuicultura [en línea]. Roma. Actualizado 8 March 2019. Available online: https://www.fao.org/fishery/es/facp/per (accessed on 24 December 2023).
- Culquichicón, Z.; Tresierra, A.; Solano, A.; Atoche, D. Crecimiento, mortalidad y tasa de explotación de Sciaena deliciosa durante 2001 a 2003 y 2009 a 2012. REBIOL 2012, 32, 108–117. [Google Scholar]
- Oliveira, E.M.; Goldim, J.R. Legislação de proteção animal para fins científicos e a não inclusão dos invertebrados: Análise bioética. Rev. Bioética 2014, 22, 45–56. Available online: https://www.scielo.br/pdf/bioet/v22n1/a06v22n1.pdf (accessed on 24 December 2023). [CrossRef]
- INVEMAR. Informe del Estado de los Ambientes Marinos y Costeros en Colombia: 2003; Serie Documentos Generals; INVEMAR: Santa Marta, Colombia, 2003; 294p. [Google Scholar]
- US EPA. Methods for Chemical Analysis of Water and Wastes; Environmental Protection Agency: Cincinnati, OH, USA, 1994.
- Karadede, H.; Ünlü, E. Heavy Metal Concentrations in Water, Sediment, Fish and Some Benthic Organisms from Tirgis River, Turkey. Environ. Monit. Assess. 2007, 131, 323–337. [Google Scholar] [CrossRef]
- INECC. Potencial de Bioconcentración. Available online: http://www2.inecc.gob.mx/sistemas/plaguicidas/buscar/ayuda/bioacumulacion.html (accessed on 5 October 2023).
- US EPA. Method 200.3. Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues. In Methods for the Determination of Metals in Environmental Samples; EPA/600/4-91/010; US EPA: Cincinnati, OH, USA, 1991; pp. 23–30. [Google Scholar]
- US EPA. Method 7471B (SW-846): Mercury in Solid or Semisolid Wastes (Manual Cold-Vapor Technique); Revision 2; US EPA: Cincinnati, OH, USA, 2007.
- ISO 17025; Quality Management Systems—Requeriments. Norma Técnica. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66912.html (accessed on 30 December 2023).
- ISO 9001; Quality Management Systems—Requeriments. Norma Técnica. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/62085.html (accessed on 30 December 2023).
- ISO 14001; Quality Management Systems—Requeriments. Norma Técnica. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/60857.html (accessed on 30 December 2023).
- ISO 45001; Quality Management Systems—Requeriments. Norma Técnica. International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/63787.html (accessed on 30 December 2023).
- Naji, A.; Khan, F.R.; Hashemi, S.H. Potential human health risk assessment of trace metals via the consumption of marine fish in Persian Gulf. Mar. Pollut. Bull. 2016, 109, 667–671. [Google Scholar] [CrossRef] [PubMed]
- PRODUCE. Anuario Estadistico y Acuicola, Produce. 2022. Available online: https://ogeiee.produce.gob.pe/index.php/en/shortcode/oee-documentos-publicaciones/publicaciones-anuales/item/1116-anuario-estadistico-pesquero-y-acuicola-2022 (accessed on 24 December 2023).
- Luna-Pacompea, N.; Juárez-Laguna, F.; Jaén-Rodriguez, C.; Alvariño, L.; Iannacone, J. Metales pesados e imposex en Thaisella chocolate (Gasteropoda: Muricidae) en Matarani, Arequipa, Perú. Rev. Investig. Vet. Perú 2022, 33, e23793. [Google Scholar] [CrossRef]
- Kortei, N.K.; Heymann, M.E.; Essuman, E.K.; Kpodo, F.M.; Akonor, P.T.; Lokpo, S.Y.; Boadi, N.O.; Ayim-Akonor, M.; Tettey, C. Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from Ankobrah and Pra basins: Impact of illegal mining activities on food safety. Toxicol. Rep. 2020, 7, 360–369. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B.; Łuczyński, M.J. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol. Environ. Saf. 2018, 153, 60–67. [Google Scholar] [CrossRef]
- Ullah, A.K.M.A.; Maksud, M.A.; Khan, S.R.; Lutfa, L.N.; Quraishi, S.B. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicol. Rep. 2017, 4, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, Y.; Sarafraz, M. Refer to human exposure to trace metals and arsenic via consumption of fish from River Chenab, Pakistan and associated health risks by Alamdar et al. (2017). Chemosphere 2021, 267, 129002. [Google Scholar] [CrossRef]
- Töre, Y.; Ustaoğlu, F.; Tepe, Y.; Kalipci, E. Levels of toxic metals in edible fish species of the Tigris River (Turkey); Threat to public health. Ecol. Indic. 2021, 123, 107361. [Google Scholar] [CrossRef]
- USEPA. Reference Dose (RfD): Description and Use in Health Risk. 2018. Available online: https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments (accessed on 13 December 2023).
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Recommendations; World Health Organization: Geneva, Switzerland, 2011. Available online: https://www.epa.gov/sites/default/files/2014-03/documents/guidelines_for_drinking_water_quality_3v.pdf (accessed on 13 December 2023).
- World Health Organization (WHO). General Standard for Contaminants and Toxins in Food and Feed [Internet]. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 13 December 2023).
- FAO. LEGAL NOTICE No 66/2003. Heavy Metals Regulations [Internet]. Available online: https://faolex.fao.org/docs/pdf/eri42405.pdf (accessed on 13 December 2023).
- USEPA: United States Environmental Protection Agency. Guidelines for Sediments. Available online: https://www.epa.gov/caddis-vol2/sediments (accessed on 13 December 2023).
- USEPA, United States Environmental Protection Agency. Regional Screening Level (RSL) Sub-Chronic Toxicity Supporting Table November. 2019. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 20 December 2023).
- Custodio, M.; Fow, A.; Chanamé, F.; Orellana-Mendoza, E.; Peñaloza, R.; Alvarado, J.C.; Pizarro, S. Ecological risk due to heavy metal contamination in sediment and water of natural wetlands with tourist influence in the central region of Peru. Water 2021, 13, 2256. [Google Scholar] [CrossRef]
- Sáez, G.; Chero, J.; Cruces, C.; Minaya, D.; Rodriguez, C.; Suyo, B.; Iannacone, J. Parámetros hematológicos y de bioquímica sanguínea en diez especies de peces marinos capturados por pesquería artesanal en la Bahía del Callao, Perú. Rev. Investig. Vet. Perú 2018, 29, 1161–1177. [Google Scholar] [CrossRef]
- Akter, S.; Jahan, N.; Rohani, M.F.; Akter, Y.; Shahjahan, M. Chromium supplementation in diet enhances growth and feed utilization of striped catfish (Pangasianodon hypophthalmus). Biol. Trace Elem. Res. 2021, 199, 4811–4819. [Google Scholar] [CrossRef]
- Lakra, W.S.; Nagpure, N.S. Genotoxicological studies in fishes: A review. Indian J. Anim. Sci. 2009, 79, 93–98. [Google Scholar]
- Lall, S.P.; Kaushik, S.J. Nutrition and metabolism of minerals in fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef]
- Badeenezhad, A.; Soleimani, H.; Shahsavani, S.; Parseh, I.; Mohammadpour, A.; Azadbakht, O.; Javanmardi, P.; Faraji, H.; Nalosi, K.B. Comprehensive health risk analysis of heavy metal pollution using water quality indices and Monte Carlo simulation in R software. Sci. Rep. 2023, 13, 15817. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Gashkina, N.A. Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: Influence of the aquatic environment and climate. Environ. Res. Lett. 2020, 15, 115013. [Google Scholar] [CrossRef]
- Milačič, R.; Zuliani, T.; Vidmar, J.; Bergant, M.; Kalogianni, E.; Smeti, E.; Skoulikidis, N.; Ščančar, J. Potentially toxic elements in water, sediments and fish of the Evrotas River under variable water discharges. Sci. Total Environ. 2019, 648, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Met. 2018, 10, 115–132. [Google Scholar] [CrossRef]
- Watson, C.V.; Lewin, M.; Ragin-Wilson, A.; Jones, R.; Jarrett, J.M.; Wallon, K.; Ward, C.; Hilliard, N.; Irvin-Barnwell, E. Characterization of trace elements exposure in pregnant women in the United States, NHANES 1999–2016. Environ. Res. 2020, 183, 109208. [Google Scholar] [CrossRef]
- Rubalingeswari, N.; Thulasimala, D.; Giridharan, L.; Gopal, V.; Magesh, N.S.; Jayaprakash, M. Bioaccumulation of heavy metals in water, sediment, and tissues of major fisheries from Adyar estuary, southeast coast of India: An ecotoxicological impact of a metropolitan city. Mar. Pollut. Bull. 2021, 163, 111964. [Google Scholar] [CrossRef]
- Guerra-García, J.M.; García-Ggómez, J.C. Assessing pollution levels in sediments of a harbour with two opposing entrances. Environmental implications. J. Environ. Manag. 2005, 77, 1–11. [Google Scholar] [CrossRef]
- Carriquiriborde, P. Respuestas Biológicas a Contaminantes Ambientales en Peces. Estudio de la Bioconcentración, de los Efectos Letales y Subletales y la Evaluación de Biomarcadores en Odontesthes Bonariensis Expuesto a Diferentes Concentraciones de Cadmio y Cromo en el Agua. Doctor Thesis, Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, La Plata, Argentina, 2004. [Google Scholar] [CrossRef]
- Abdullah, M.I.C.; Shah, A.S.R.M.; Haris, H. Bioaccumulation and Health Risk Assessment of Trace Elements in Oreochromis niloticus in Bukit Merah Lake, Malaysia. Trop. Life Sci. Res. 2022, 33, 179. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Islam, M.M.; Sikder, A.H.F.; Parveen, Z. Bioaccumulation and heavy metal contamination in fish species of the Dhaleswari River of Bangladesh and related human health implications. Biol. Trace Elem. Res. 2021, 200, 3854–3866. [Google Scholar] [CrossRef]
- Amarh, F.A.; Agorku, E.S.; Voegborlo, R.B.; Ashong, G.W.; Atongo, G.A. Health risk assessment of some selected heavy metals in infant food sold in Wa, Ghana. Heliyon 2023, 9, e16225. [Google Scholar] [CrossRef] [PubMed]
Parameters | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|
TEMP (°C) | 16.90 | 24.60 | 20.26 | 1.76 |
PH | 7.90 | 9.06 | 8.23 | 0.31 |
COND (mS/cm) | 53.00 | 53.90 | 53.54 | 0.27 |
SAL (PPT) | 34.70 | 35.50 | 35.07 | 0.22 |
TDS (g/L) | 33,737.00 | 38,500.00 | 35,182.75 | 1852.58 |
LDO (mg/L) | 0.65 | 4.32 | 2.04 | 0.98 |
TRANS (m) | 0.75 | 7.50 | 3.18 | 1.68 |
TURB (NTU) | 0.73 | 243.10 | 23.09 | 66.37 |
PHYCO (g/mL) | −106.00 | 0.10 | −12.93 | 31.11 |
CHLORO (µG/L) | 0.00 | 2.00 | 0.63 | 0.63 |
ORP (mV) | 164.00 | 241.30 | 192.93 | 26.17 |
NH4+ (mg/L) | 33.57 | 64.52 | 52.65 | 7.09 |
NH3 (mg/L) | 0.29 | 4.42 | 1.91 | 1.48 |
NO3− (mg/L) | 73.98 | 2105.56 | 510.83 | 543.20 |
Elements | Peruvian Standard | USEEPA | WHO | Callao Bay | |||||
---|---|---|---|---|---|---|---|---|---|
II-C3 | IV-E3 | MCC | CCC | P1 | P2 | P3 | P4 | ||
Potentially toxic elements | |||||||||
Ag | 0.007 | 0.002 | 0.005 | 0.003 * ± 0.002 | 0.004 * ± 0.002 | 0.003 * ± 0.001 | 0.004 * ± 0.001 | ||
As | 0.05 | 0.036 | 0.069 | 0.036 | 0.01 | 0.009 ± 0 | 0.009 ± 0 | 0.009 ± 0 | 0.009 ± 0.011 |
Ba | 1.3 | 4.737 * ± 0.002 | 5.080 * ± 0.001 | 4.810 * ± 0.008 | 5.700 * ± 0.008 | ||||
Cd | 0.009 | 0.040 | 0.009 | 0.003 | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.002 ± 0 | 0.002 ± 0.001 | |
Cr | 0.05 | 0.05 | 0.05 | 0.003 ± 0.002 | 0.006 ± 0.002 | 0.005 ± 0.003 | 0.005 ± 0.002 | ||
Hg | 0.002 | 0.0001 | 0.002 | 0.001 | 0.006 | 0.001 * ± 0 | 0.001 * ± 0 | 0.001 * ± 0 | 0.001 * ± 0 |
Ni | 0.052 | 0.008 | 0.074 | 0.008 | 0.07 | 0.015 * ± 0.008 | 0.023 * ± 0.009 | 0.014 * ± 0.010 | 0.030 * ± 0.010 |
Pb | 0.03 | 0.008 | 0.01 | 0.032 * ± 0.007 | 0.055 * ± 0.031 | 0.068 * ± 0.025 | 0.043 * ± 0.011 | ||
Essential elements | |||||||||
Bi | 0.014 ± 0.012 | 0.020 ± 0.014 | 0.008 ± 0.005 | 0.008 ± 0.002 | |||||
Co | 0.003 ± 0.001 | 0.004 ± 0.002 | 0.006 ± 0.007 | 0.003 ± 0.003 | |||||
Cu | 0.05 | 0.05 | 0.005 | 0.008 | 2 | 0.007 ± 0.002 | 0.005 ± 0.005 | 0.007 ± 0.002 | 0.011 ± 0.004 |
Fe | 2 | 0.158 ± 0.072 | 0.107 ± 0.051 | 0.120 ± 0.051 | 0.017 ± 0.029 | ||||
P | 0.06 | 0.165 * ± 0.078 | 0.156 * ± 0.035 | 0.168 * ± 0.067 | 0.006 ± 0.023 | ||||
Mn | 0.4 | 0.006 ± 0.004 | 0.003 ± 0.002 | 0.004 ± 0.003 | 0.004 ± 0.004 | ||||
Se | 0.290 | 0.071 | 0.01 | 0.0250 * ± 0.020 | 0.025 * ± 0.024 | 0.020 * ± 0.014 | 0.025 * ± 0.035 | ||
Si * | 0.700 | 1.2259 * ± 0.250 | 1.462 * ± 0.490 | 1.364 * ± 0.261 | 1.010 * ± 0.193 | ||||
Sn | 0.01 | 0.015 * ± 0.003 | 0.016 * ± 0.007 | 0.014 * ± 0.009 | 0.014 * ± 0.003 | ||||
Zn | 0.12 | 0.081 | 0.090 | 0.081 | 1 | 0.0128 ± 0.003 | 0.035 ± 0.034 | 0.016 ± 0.006 | 0.010 ± 0.095 |
Elements | Minimum | Maximum | Mean | Standard Deviation | USEPA (Not Polluted) |
---|---|---|---|---|---|
Potentially toxic elements | |||||
Ag | 0.10 | 2.00 | 1.09 | 0.70 | |
Al | 7909.00 | 19,124.00 | 13,259.10 | 3481.15 | |
As | 14.45 | 170.80 | 45.55 | 48.40 | <3 |
Ba | 52.87 | 149.40 | 103.42 | 33.43 | |
Be | 0.25 | 0.49 | 0.36 | 0.08 | |
Cd | 1.45 | 9.53 | 5.24 * | 3.31 | 3.00 |
Cr | 11.61 | 29.02 | 19.98 | 7.59 | <25 |
Hg | 0.15 | 1.80 | 0.64 | 0.51 | |
Li | 13.20 | 28.60 | 20.94 | 5.55 | |
Ni | 4.88 | 14.38 | 9.02 | 3.50 | <20 |
Pb | 26.40 | 275.10 | 122.95 * | 99.41 | <40 |
Sb | 0.60 | 3.10 | 1.36 | 0.78 | |
Sr | 51.90 | 359.50 | 212.44 | 94.40 | |
Ti | 480.80 | 988.20 | 666.92 | 150.19 | |
Essential elements | |||||
B | 16.39 | 41.94 | 28.31 | 9.58 | |
Cu | 19.11 | 298.20 | 98.96 | 88.14 | <25 |
Co | 4.47 | 10.31 | 6.89 | 2.07 | |
Ca | 11,675.00 | 55,989.00 | 34,438.90 | 13,327.13 | |
Ce | 12.68 | 21.10 | 16.61 | 2.69 | |
Fe | 12,868.00 | 28,566.00 | 20,727.60 | 4889.61 | |
P | 1177.00 | 1632.00 | 1396.00 | 123.36 | |
K | 1376.00 | 3802.00 | 2559.70 | 871.75 | |
Mg | 4866.00 | 11,480.00 | 8536.70 | 2232.16 | |
Mn | 166.20 | 421.30 | 280.40 | 74.93 | <300 |
Mo | 0.66 | 7.29 | 3.26 | 2.65 | |
Na | 5098.00 | 26,150.00 | 14,156.40 | 7566.34 | |
Va | 35.45 | 70.17 | 54.57 | 11.29 | |
Zn | 87.96 | 1131.00 | 391.43 | 347.95 |
Elements | WHO/FAO (CODEX) | FAO (n° 66/2003) | Callao Bay | |||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | |||
Potentially toxic elements | ||||||
Ag | 0.13 ± 0.04 | <0.1 ± 0.01 | <0.1 ± 0.01 | <0.1 ± 0.01 | ||
As | 0.5 | 0.5 | 5.44 * ± 4.22 | 3.52 * ± 1.09 | 2.68 * ± 2.39 | 3.27 * ± 2.57 |
Al | 14.09 ± 6.97 | 26.05 ± 15.66 | 12.53 ± 4.45 | 12.71 ± 9.02 | ||
Ba | 0.55 ± 0.54 | 2.76 ± 2.32 | 0.75 ± 0.41 | 0.38 ± 0.22 | ||
Cd | 0.5 | 0.05 | <0.15 | <0.15 | <0.15 | <0.15 |
Cr | 1.0 | 0.39 ± 0.24 | 1.36 * ± 1.91 | 0.64 ± 0.17 | 0.20 ± 0.77 | |
Hg | 0.5 | 0.2 | 0.22 * ± 0.18 | 0.12 | 0.25 * ± 0.25 | 0.14 ± 0.03 |
Li | 0.80 ± 0.10 | 0.94 ± 0.21 | 0.95 | 1.13 ± 0.1 | ||
Pb | 0.3 | 0.2 | 5.81 * ± 8.39 | 1.56 * | 0.98 * | 0.72 * ± 0.79 |
Ni | 1.0 | 0.88 ± 0.45 | 0.46 | 0.51 | 0.46 ± 0.15 | |
Sb | <0.6 | 0.75 ± 0.1 | 0.71 ± 0.11 | 1.43 | ||
Sr | 10.28 ± 4.35 | 13.53 ± 6.54 | 17.77 ± 9.67 | 21.88 ± 6.85 | ||
Ti | 0.19 ± 0.10 | 0.97 ± 0.39 | 0.57 | 0.19 ± 0.16 | ||
Essential elements | ||||||
B | 2.28 ± 0.55 | 1.99 ± 0.60 | 1.99 ± 0.49 | 1.50 ± 0.55 | ||
Cu | 2.39 ± 1.55 | 1.52 ± 0.38 | 1.53 ± 0.49 | 1.94 ± 0.81 | ||
Ca | 2132 ± 1119.66 | 3148.33 ± 1447.73 | 3943.5 ± 1884.44 | 4239 ± 1483.94 | ||
Fe | 63.62 ± 16.52 | 117.42 ± 111.39 | 47.34 ± 1.77 | 60.96 ± 43.23 | ||
P | 10,212.75 ± 954.19 | 10,761.33 ± 898.76 | 11,785.5 ± 1236.73 | 11,442 ± 1029.89 | ||
K | 16,430.25 ± 1024.38 | 16,246 ± 761.27 | 17,164.5 ± 420.73 | 14,993 ± 735.46 | ||
Mg | 1378.25 ± 32.48 | 1377.33 ± 88.64 | 1429.5 ± 71.42 | 1310 ± 64.18 | ||
Mn | 0.93 ± 0.14 | 1.66 ± 0.90 | 1.05 ± 0.27 | 1.18 ± 0.43 | ||
Na | 3426.75 ± 1114.48 | 3654 ± 1015.99 | 2907 ± 1760.69 | 2622 ± 1297.05 | ||
Se | 3.14 ± 1.14 | 1.49 ± 0.04 | 2.85 ± 1.9 | 1 ± 1.03 | ||
Zn | 19.19± 3.74 | 16.44 ± 1.36 | 17.54 ± 2.36 | 18.86± 2.49 |
Elements | WHO/FAO (CODEX) | FAO (n° 66/2003) | Callao Bay | |||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | |||
Potentially toxic elements | ||||||
Ag | 0.50 ± 0.1 | <0.2 | 0.29 ± 0.03 | <0.2 | ||
As | 0.5 | 0.5 | 1.47 * | <0.92 * | 4.22 * ± 4 | <0.92 * |
Al | 9.31 ± 2.85 | 17.67 ± 11.00 | 3.31 ± 0.84 | 3.61 ± 0.85 | ||
Ba | 0.24 ± 0.12 | 0.59 ± 0.1 | 0.14 ± 0.1 | <0.13 ± 0.1 | ||
Cd | 0.5 | 0.05 | 0.92 * ± 0.09 ab | 0.47 * ± 0.30 b | 0.71 * ± 0.39 b | 1.67 * ± 0.26 a |
Cr | 1.0 | 0.20 ± 0.01 | <0.16 | 0.20 ± 0.1 | 0.29 ± 0.1 | |
Hg | 0.5 | 0.2 | 0.19 ± 0.13 | 0.26 * ± 0.16 | 0.13 ± 0.1 | 0.1 ± 0.1 |
Li | 0.30 ± 0.10 | 0.40 ± 0.10 | 0.20 ± 0.20 | 0.20 ± 0.13 | ||
Pb | 0.3 | 0.2 | 2.10 * ± 1.20 | <0.3 | 1.37 * ± 0.10 | <0.3 |
Ni | 1.0 | 1.40 * | <0.64 | <0.64 | <0.64 | |
Sb | <0.6 | <0.6 | <0.6 | <0.6 | ||
Sr | 2.53 ± 0.86 | 2.97 ± 0.29 | 2.77 ± 2.21 | 6.11 ± 1.12 | ||
Ti | 0.20 ± 0.05 | 0.76 ± 0.5 | 0.1 ± 0.1 | <0.12 | ||
Essential elements | ||||||
B | 1.93 ± 0.23 | 1.48 ± 0.17 | 1.50 ± 0.51 | 1.67 ± 0.30 | ||
Cu | 0.6 | 13.43 * ± 5.46 | 5.66 * ± 2.92 | 12.92 * ± 9.38 | 14.61 * ± 5.92 | |
Ca | 303.15 ± 80.26 | 483.55 ± 53.81 | 358.18 ± 262.22 | 896.10 ± 132.10 | ||
Fe | 236.25 ± 2.33 | 215.90 ± 42.57 | 290.11 ± 37.32 | 250.80 ± 27.41 | ||
P | 4585 ± 524.67 | 4068.5 ± 522.55 | 4741.5 ± 252.44 | 6259 ± 433.22 | ||
K | 4586.5 ± 508.41 | 4218.50 ± 828.02 | 4889.5 ± 293.45 | 5954 ± 543.29 | ||
Mg | 451.70 ± 30.41 | 448.25 ± 49.99 | 514.87 ± 227.6 | 547.40 ± 102.66 | ||
Mn | 2.37 ± 0.47 | 2.19 ± 1.05 | 1.94 ± 0.77 | 2.31 ± 0.76 | ||
Na | 2953.5 ± 218.5 | 2642 ± 830.14 | 2837.5 ± 1590.28 | 2961 ± 879.64 | ||
Se | 3.50 ± 2.12 | 3 ± 1 | 3.42 ± 1.1 | 1.4 ± 1.12 | ||
Zn | 45.53 ± 2.76 | 36.92 ± 5.05 | 49.15 ± 7.45 | 53.63 ± 5.09 |
Elements | Muscle (Times) | Liver (Times) |
---|---|---|
Phosphorus | 87,056 | 42,493 |
Iron | 1.35 | 3219 |
Zinc | 1.33 | 3149 |
Manganese | 566 | - |
Arsenic | 442 | - |
Mercury | 362 | 1509 |
Adults | EDI P1 | EDI P2 | EDI P3 | EDI P4 | Oral Reference Dose (RfD) (mg/kg/day) | THQ P1 | THQ P2 | THQ P3 | THQ P4 | CR P1 | CR P2 | CR P3 | CR P4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Potentially toxic metals | |||||||||||||
Ag | 0.0020 | 0.0028 | 0.0021 | 0.0028 | 0.005 | 0.2968 | 0.4240 | 0.3180 | 0.4240 | ||||
As | 0.0065 | 0.0064 | 0.0064 | 0.0064 | 0.0003 | 16.2533 | 15.9000 | 15.9000 | 15.9000 | 0.000979 | 0.000958 | 0.000958 | 0.000958 |
Cd | 0.0014 | 0.0014 | 0.0014 | 0.0014 | 0.001 | 1.0600 | 1.0600 | 1.0600 | 1.0600 | ||||
Cr | 0.0025 | 0.0043 | 0.0036 | 0.0036 | 0.0015 | 1.2367 | 2.1200 | 1.7667 | 1.7667 | ||||
Hg | 0.0002 | 0.0007 | 0.0007 | 0.0007 | 0.0005 | 0.3180 | 1.0600 | 1.0600 | 1.0600 | ||||
Pb | 0.0226 | 0.0391 | 0.0483 | 0.0305 | 0.004 | 4.2135 | 7.2875 | 9.0100 | 5.6975 | 0.000191 | 0.000331 | 0.000410 | 0.000259 |
Ni | 0.0109 | 0.0163 | 0.0099 | 0.0213 | 0.020 | 0.4055 | 0.6095 | 0.3710 | 0.7950 | ||||
Essential elements | |||||||||||||
Cu | 0.0053 | 0.0036 | 0.0050 | 0.0078 | 0.40 | 0.0098 | 0.0066 | 0.0093 | 0.0146 | ||||
Fe | 0.1120 | 0.0760 | 0.0852 | 0.0121 | 0.80 | 0.1045 | 0.0709 | 0.0795 | 0.0113 | ||||
Mn | 0.0046 | 0.0021 | 0.0028 | 0.0028 | 0.14 | 0.0246 | 0.0114 | 0.0151 | 0.0151 | ||||
Se | 0.0178 | 0.0178 | 0.0142 | 0.0178 | 0.005 | 2.6500 | 2.6500 | 2.1200 | 2.6500 | ||||
Zn | 0.0091 | 0.0249 | 0.0114 | 0.0071 | 0.3 | 0.0226 | 0.0618 | 0.0283 | 0.0177 | ||||
HI | 26.5953 | 31.2617 | 31.7379 | 29.4118 |
Children | EDI P1 | EDI P2 | EDI P3 | EDI P4 | Oral Reference Dose (RfD) (mg/kg/day) | THQ P1 | THQ P2 | THQ P3 | THQ P4 | CR P1 | CR P2 | CR P3 | CR P4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Potentially toxic elements | |||||||||||||
Ag | 0.009324 | 0.01332 | 0.00999 | 0.01332 | 0.005 | 0.1120 | 0.1600 | 0.1200 | 0.1600 | ||||
As | 0.030636 | 0.02997 | 0.02997 | 0.02997 | 0.0003 | 6.1333 | 6.0000 | 6.0000 | 6.0000 | 0.004595 | 0.004495 | 0.004495 | 0.004495 |
Cd | 0.00666 | 0.00666 | 0.00666 | 0.00666 | 0.001 | 0.4000 | 0.4000 | 0.4000 | 0.4000 | ||||
Cr | 0.011655 | 0.01998 | 0.01665 | 0.01665 | 0.0015 | 0.4667 | 0.8000 | 0.6667 | 0.6667 | ||||
Hg | 0.000999 | 0.00333 | 0.00333 | 0.00333 | 0.0005 | 0.1200 | 0.4000 | 0.4000 | 0.4000 | ||||
Pb | 0.105894 | 0.18315 | 0.22644 | 0.14319 | 0.004 | 1.5900 | 2.7500 | 3.4000 | 2.1500 | 0.000900 | 0.001557 | 0.001925 | 0.001217 |
Ni | 0.050949 | 0.07659 | 0.04662 | 0.0999 | 0.020 | 0.1530 | 0.2300 | 0.1400 | 0.3000 | ||||
Essential elements | |||||||||||||
Cu | 0.024642 | 0.01665 | 0.02331 | 0.03663 | 0.40 | 0.0037 | 0.0025 | 0.0035 | 0.0055 | ||||
Fe | 0.525474 | 0.35631 | 0.3996 | 0.05661 | 0.80 | 0.0395 | 0.0268 | 0.0300 | 0.0043 | ||||
Se | 0.08325 | 0.08325 | 0.0666 | 0.08325 | 0.005 | 1.0000 | 1.0000 | 0.8000 | 1.0000 | ||||
Mn | 0.021645 | 0.00999 | 0.01332 | 0.01332 | 0.14 | 0.0093 | 0.0043 | 0.0057 | 0.0057 | ||||
Zn | 0.042624 | 0.11655 | 0.05328 | 0.0333 | 0.3 | 0.0085 | 0.0233 | 0.0107 | 0.0067 | ||||
HI | 10.0360 | 11.7969 | 11.9765 | 11.0988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guabloche, A.; Alvariño, L.; Acioly, T.M.d.S.; Viana, D.C.; Iannacone, J. Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru. Toxics 2024, 12, 68. https://doi.org/10.3390/toxics12010068
Guabloche A, Alvariño L, Acioly TMdS, Viana DC, Iannacone J. Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru. Toxics. 2024; 12(1):68. https://doi.org/10.3390/toxics12010068
Chicago/Turabian StyleGuabloche, Angélica, Lorena Alvariño, Thiago Machado da Silva Acioly, Diego Carvalho Viana, and José Iannacone. 2024. "Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru" Toxics 12, no. 1: 68. https://doi.org/10.3390/toxics12010068
APA StyleGuabloche, A., Alvariño, L., Acioly, T. M. d. S., Viana, D. C., & Iannacone, J. (2024). Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru. Toxics, 12(1), 68. https://doi.org/10.3390/toxics12010068