Biomonitoring of Oxidative-Stress-Related Genotoxic Damage in Patients with End-Stage Renal Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Sample Preparation
2.3. Determination of Hemogram
2.4. Determination of Biochemical Parameters
2.5. Determination of Renal Function
2.6. Determination of Heavy-Metal Levels
2.7. Determination of Oxidative-Stress-Related Parameters
2.8. Determination of DNA Damage
2.9. Statistical Analysis
3. Results
3.1. Characteristics of the Study Groups
3.2. Hemogram and Biochemical Parameters
3.3. Renal Function Parameters
3.4. Heavy-Metal Levels
3.5. Oxidative-Stress-Releated Parameters
3.6. DNA Damage from the Alkaline Single-Cell Gel Electrophoresis Technique
3.7. Relationships between Duration of Renal Disease and Dialysis with Heavy-Metal Levels, Oxidative Stress, and DNA-Damage Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zocalcali, C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019, 96, 1048–1050. [Google Scholar] [CrossRef]
- KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. January 2013. Available online: https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf (accessed on 18 October 2023).
- Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Mamur, S.; Unal, F.; Altok, K.; Deger, S.M.; Yuzbasioglu, D. DNA damage in hemodialysis patients with chronic kidney disease; a test of the role of diabetes mellitus; a comet assay investigation. Mutat. Res. 2016, 800–801, 22–27. [Google Scholar] [CrossRef]
- Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; Lethias, C.; Zingraff, J.; Herbelin, A.; Naret, C.; Descamps-Latscha, B. Hemodialysis membrane-induced activation of phagocyte oxidative metabolism detected in vivo and in vitro within microamounts of whole blood. Kidney Int. 1985, 28, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Gyurászová, M.; Gurecká, R.; Bábíčková, J.; Tóthová, Ľ. Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers. Oxid. Med. Cell Longev. 2020, 2020, 5478708. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Canaud, B.; Eckardt, K.U.; Stenvinkel, P.; Wanner, C.; Zoccali, C. Oxidative stress in end-stage renal disease: An emerging threat to patient outcome. Nephrol. Dial. Transplant. 2003, 18, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: The effects of cadmium on the kidney. Biometals 2010, 23, 783–792. [Google Scholar] [CrossRef]
- Soderland, P.; Lovekar, S.; Weiner, D.E.; Brooks, D.R.; Kaufman, J.S. Chronic kidney disease associated with environmental toxins and exposures. Adv. Chronic Kidney Dis. 2010, 17, 254–264. [Google Scholar] [CrossRef]
- Edwards, J.R.; Prozialeck, W.C. Cadmium, diabetes and chronic kidney disease. Toxicol. Appl. Pharmacol. 2009, 238, 289–293. [Google Scholar] [CrossRef]
- Li, S.J.; Zhang, S.H.; Chen, H.P.; Zeng, C.H.; Zheng, C.X.; Li, L.S.; Liu, Z.H. Mercury-induced membranous nephropathy: Clinical and pathological features. Clin. J. Am. Soc. Nephrol. 2010, 5, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wise, J.T.F.; Wang, L.; Schumann, K.; Zhang, Z.; Shi, X. Dual roles of oxidative stress in metal carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 2017, 36, 345–376. [Google Scholar] [CrossRef] [PubMed]
- Ercal, N.; Gurer-Orhan, H.; Aykin-Burns, N. Toxic metals and oxidative stress part i: Mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 2001, 6, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Coulliette, A.D.; Arduino, M.J. Hemodialysis and water quality. Semin. Dial. 2013, 26, 427–438. [Google Scholar] [CrossRef]
- Humudat, Y.R.; Al-Naseri, S.K. Heavy metals in dialysis fluid and blood samples from hemodialysis patients in dialysis centers in Baghdad, Iraq. J. Health Pollut. 2019, 10, 200901. [Google Scholar] [CrossRef]
- Muntner, P.; Menke, A.; Batuman, V.; Rabito, F.A.; He, J.; Todd, A.C. Association of tibia lead and blood lead with end-stage renal disease: A pilot study of African–Americans. Environ. Res. 2007, 104, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Colleoni, N.; Arrigo, G.; Gandini, E.; Corigliano, C.; D’Amico, G. Blood lead in hemodialysis patients. Am. J. Nephrol. 1993, 13, 198–202. [Google Scholar] [CrossRef]
- Hernández-Cruz, E.Y.; Amador-Martínez, I.; Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Pedraza Chaverri, J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem. Biol. Interact. 2022, 36, 109961. [Google Scholar] [CrossRef]
- Thévenod, F. Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol. 2003, 93, 87–93. [Google Scholar] [CrossRef]
- Azqueta, A.; Ladeira, C.; Giovannelli, L.; Boutet-Robinet, E.; Bonassi, S.; Neri, M.; Gajski, G.; Duthie, S.; Del Bo’, C.; Riso, P.; et al. Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutat. Res. 2020, 783, 108288. [Google Scholar] [CrossRef]
- Anderson, D.; Dhawan, A.; Laubenthal, J. The comet assay in human biomonitoring. Methods Mol. Biol. 2013, 1044, 347–362. [Google Scholar]
- Cemeli, E.; Baumgartner, A.; Anderson, D. Antioxidants and the Comet assay. Mutat. Res. 2009, 681, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Delaney, S.; Jarem, D.A.; Volle, C.B.; Yennie, C.J. Chemical and biological consequences of oxidatively damaged guanine in DNA. Free Radic. Res. 2012, 46, 420–441. [Google Scholar] [CrossRef] [PubMed]
- Delanghe, J.R.; Speeckaert, M.M. Creatinine determination according to Jaffe-what does it stand for? NDT Plus 2011, 4, 83–86. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am. J. Kidney Dis. 2010, 55, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef]
- Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Basaran, M.M.; Hazar, M.; Aydın, M.; Uzuğ, G.; Özdoğan, İ.; Pala, E.; Aydın Dilsiz, S.; Basaran, N. Effects of COVID-19 Disease on DNA Damage, Oxidative Stress and Immune Responses. Toxics 2023, 11, 386. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Vitamin and Mineral Nutrition Information System. World Health Organization: Geneva, Switzerland, 2011. (WHO/NMH/NHD/MNM/11.1). Available online: http://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed on 30 January 2023).
- Saraf, S.L.; Hsu, J.Y.; Ricardo, A.C.; Mehta, R.; Chen, J.; Chen, T.K.; Fischer, M.J.; Hamm, L.; Sondheimer, J.; Weir, M.R.; et al. Anemia and Incident End-Stage Kidney Disease. Kidney360 2020, 1, 623–630. [Google Scholar] [CrossRef]
- Hamza, E.; Metzinger, L.; Metzinger-Le Meuth, V. Uremic Toxins Affect Erythropoiesis during the Course of Chronic Kidney Disease: A Review. Cells 2020, 9, 2039. [Google Scholar] [CrossRef]
- Hrstic, I.; Ostojic, R. Chronic liver diseases in patients with chronic kidney disease. Acta Med. Croatica 2011, 65, 349–353. [Google Scholar] [PubMed]
- Reddy, G.A.; Dakshinamurthy, K.V.; Neelaprasad, P.; Gangadhar, T.; Lakshmi, V. Prevalence of HBV and HCV dual infection in patients on haemodialysis. Indian. J. Med. Microbiol. 2005, 23, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Ray, L.; Nanda, S.K.; Chatterjee, A.; Sarangi, R.; Ganguly, S. A comparative study of serum aminotransferases in chronic kidney disease with and without end-stage renal disease: Need for new reference ranges. Int. J. Appl. Basic Med. Res. 2015, 5, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.Y.; Lee, K.C.; Yen, C.J.; Wu, K.D.; Tsai, T.J.; Chen, W.Y. Revised cutoff values of serum aminotransferase in detecting viral hepatitis among CAPD patients: Experience from Taiwan, an endemic area for hepatitis B. Nephrol. Dial. Transplant. 1997, 12, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Al-Wakeel, J.; Malik, G.H.; al-Mohaya, S.; Mitwalli, A.; Baroudi, F.; el Gamal, H.; Kechrid, M. Liver disease in dialysis patients with antibodies to hepatitis C virus. Nephrol. Dial. Transplant. 1996, 11, 2265–2268. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.H.; Pu, Y.Q.; Liu, M.L.; Bao, W.W.; Zhang, Y.S.; Hu, L.X.; Huang, S.; Jiang, N.; Huang, S.Y.; Pu, X.Y.; et al. Synergistic impact of co-exposures to whole blood metals on chronic kidney disease in general US adults: A cross-sectional study of the National Health and Nutrition Examination Survey 2011–2020. Environ. Sci. Pollut. Res. Int. 2023, 30, 113948–113961. [Google Scholar] [CrossRef]
- Alfrey, A.C.; LeGendre, G.R.; Kaehny, W.D. The dialysis encephalopathy syndrome. Possible aluminum intoxication. N. Engl. J. Med. 1976, 294, 184–188. [Google Scholar] [CrossRef]
- National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42 (Suppl. 3), 1–201. [Google Scholar] [CrossRef]
- Orr, S.E.; Bridges, C.C. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Goyer, R.; Nordberg, M. Comparative toxicity of cadmium-metallothionein and cadmium chloride on mouse kidney. Arch. Pathol. 1975, 99, 192–197. [Google Scholar] [PubMed]
- Madrigal, J.M.; Ricardo, A.C.; Persky, V.; Turyk, M. Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ. Res. 2018, 169, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Ho, W.C.; Caffrey, J.L.; Sonawane, B. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity. Environ. Res. 2014, 134, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lee, S.J. Association of Blood Heavy Metal Levels and Renal Function in Korean Adults. Int. J. Environ. Res. Public. Heal. 2022, 19, 6646. [Google Scholar] [CrossRef] [PubMed]
- Zalups, R.K. Autometallographic localization of inorganic mercury in the kidneys of rats: Effect of unilateral nephrectomy and compensatory renal growth. Exp. Mol. Pathol. 1991, 54, 10–21. [Google Scholar] [CrossRef]
- Blake, K.C.; Mann, M. Effect of calcium and phosphorus on the gastrointestinal absorption of 203Pb in man. Environ. Res. 1983, 30, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Podkowińska, A.; Formanowicz, D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef]
- Ye, X.B.; Fu, H.; Zhu, J.L.; Ni, W.M.; Lu, Y.W.; Kuang, X.Y.; Yang, S.L.; Shu, B.X. A study on oxidative stress in lead-exposed workers. J. Toxicol. Environ. Health A 1999, 57, 161–172. [Google Scholar] [CrossRef]
- Zalups, R.K. Enhanced renal outer medullary uptake of mercury associated with uninephrectomy: Implication of a luminal mechanism. J. Toxicol. Environ. Health 1997, 50, 173–194. [Google Scholar] [CrossRef]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Hsueh, Y.M.; Chung, C.J.; Shiue, H.S.; Chen, J.B.; Chiang, S.S.; Yang, M.H.; Tai, C.W.; Su, C.T. Urinary arsenic species and CKD in a Taiwanese population: A case-control study. Am. J. Kidney Dis. 2009, 54, 859–870. [Google Scholar] [CrossRef]
- Palaneeswari, M.S.; Rajan, P.M.; Silambanan, S. Blood Arsenic and Cadmium Concentrations in End-Stage Renal Disease Patients who were on Maintenance Haemodialysis. J. Clin. Diagn. Res. 2013, 7, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Batuman, V. Fifty years of Balkan endemic nephropathy: Daunting questions, elusive answers. Kidney Int. 2006, 69, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Russa, D.; Pellegrino, D.; Montesanto, A.; Gigliotti, P.; Perri, A.; Russa, A.; Bonofiglio, R. Oxidative Balance and Inflammation in Hemodialysis Patients: Biomarkers of Cardiovascular Risk? Oxid. Med. Cell Longev. 2019, 2019, 8567275. [Google Scholar] [CrossRef] [PubMed]
- Tepel, M.; Echelmeyer, M.; Orie, N.N.; Zidek, W. Increased intracellular reactive oxygen species in patients with end-stage renal failure: Effect of hemodialysis. Kidney Int. 2000, 58, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Boaz, M.; Matas, Z.; Biro, A.; Katzir, Z.; Green, M.; Fainaru, M.; Smetana, S. Serum malondialdehyde and prevalent cardiovascular disease in hemodialysis. Kidney Int. 1999, 56, 1078–1083. [Google Scholar] [CrossRef]
- Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Dounousi, E.; Mertens, P.R. Oxidative stress in hemodialysis patients: A review of the literature. Oxid. Med. Cell Longev. 2017, 2017, 3081856. [Google Scholar] [CrossRef]
- Valentini, J.; Grotto, D.; Paniz, C.; Roehrs, M.; Burg, G.; Garcia, S.C. The influence of the hemodialysis treatment time under oxidative stress biomarkers in chronic renal failure patients. Biomed. Pharmacother. 2008, 62, 378–382. [Google Scholar] [CrossRef]
- Schupp, N.; Stopper, H.; Heidland, A. DNA Damage in chronic kidney disease: Evaluation of clinical biomarkers. Oxid. Med. Cell Longev. 2016, 2016, 3592042. [Google Scholar] [CrossRef]
- Boaz, M.; Smetana, S.; Weinstein, T.; Matas, Z.; Gafter, U.; Iaina, A.; Knecht, A.; Weissgarten, Y.; Brunner, D.; Fainaru, M.; et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): Randomised placebo-controlled trial. Lancet 2000, 356, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, G.; Tung, G. Sensitivity and specificity prediction of the buccal micronucleus cytome assay in end-stage renal disease patients on dialysis: A case-control study. Mutat. Res. 2017, 822, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kan, E.; Undeğer, U.; Bali, M.; Başaran, N. Assessment of DNA strand breakage by the alkaline COMET assay in dialysis patients and the role of Vitamin E supplementation. Mutat. Res. 2002, 520, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Tarng, D.C.; Wen Chen, T.; Huang, T.P.; Chen, C.L.; Liu, T.Y.; Wei, Y.H. Increased oxidative damage to peripheral blood leukocyte DNA in chronic peritoneal dialysis patients. J. Am. Soc. Nephrol. 2002, 13, 1321–1330. [Google Scholar] [CrossRef]
- Stopper, H.; Boullay, F.; Heidland, A.; Vienken, J.; Bahner, U. Comet-assay analysis identifies genomic damage in lymphocytes of uremic patients. Am. J. Kidney Dis. 2001, 38, 296–301. [Google Scholar] [CrossRef]
- Gandhi, G.; Mehta, T.; Contractor, P.; Tung, G. Genotoxic damage in end-stage renal disease. Mutat. Res. 2018, 835, 1–10. [Google Scholar] [CrossRef]
- Tung, G.K.; Gandhi, G. Baseline and oxidatively damaged DNA in end-stage renal disease patients on varied hemodialysis regimens: A comet assay assessment. Mol. Cell Biochem, 2023; head of Print. [Google Scholar] [CrossRef]
- Drai, J.; Bannier, E.; Chazot, C.; Hurot, J.M.; Goedert, G.; Jean, G.; Charra, B.; Laurent, G.; Baltassat, P.; Revol, A. Oxidants and antioxidants in long-term haemodialysis patients. Farmaco 2001, 56, 463–465. [Google Scholar] [CrossRef]
ESRD Patients on Dialysis | ESRD Patients without Dialysis | Healthy Controls | |
---|---|---|---|
(n = 43) | (n = 31) | (n = 41) | |
Age (years) | 59.43 ± 16.88 | 67.55 ± 17.69 | 61.73 ± 18.06 |
(32–83) | (37–87) | (33–87) | |
Gender [n (%)] | |||
Male | 27 (62.79%) | 14(45.16%) | 21(51.22%) |
Female | 16 (37.21%) | 17 (54.83%) | 19 (48.78%) |
Body mass index (BMI) (kg/m2) | 2.46 ± 0.48 | 2.79 ± 0.52 | 2.74 ± 0.53 |
(0.53–3.29) | (1.85–4.30) | (1.76–4.10) | |
Smoking status [n (%)] | |||
Non-smoker | 38 (88.37%) | 26 (83.87%) | 37 (87.57%) |
Smoker | 5 (11.53%) | 5 (16.13%) | 4 (12.43%) |
Cigarettes/day * | 2.09 ± 6.00 | 3.33 ± 7.58 | 2.50 ± 8.09 |
(10–20) | (20–20) | (20–40) | |
Alcohol intake [n (%)] | |||
No | 43 (100%) | 31 (100%) | 41 (100%) |
Yes | 0 (0%) | 0 (0%) | 0 (0%) |
Diabetes Mellitus [n (%)] | |||
No | 20 (46.6%) | 16 (51.6%) | - |
Yes | 23 (53.4%) | 15 (48.4%) | |
Hypertension [n (%)] | |||
No | 11 (25.5%) | 11 (35.5%) | - |
Yes | 32(74.5%) | 20 (66.5%) | |
Cardiac failure [n (%)] | |||
No | 3 (6.97%) | 3 (9.67%) | - |
Yes | 40 (93.03%) | 28 (90.33%) | |
Duration of renal disease (years) | 8.16 ± 3.69 | 5.07 ± 1.70 | - |
(2–16) | (2–18) |
Parameters | ESRD Patients on Dialysis (n = 43) | ESRD Patients without Dialysis (n = 31) | Healthy Controls (n = 41) | p a | p b | p c |
---|---|---|---|---|---|---|
WBC (103/µL) | 9.56 ± 4.92 (3.40–28.50) | 8.75 ± 4.33 (3.80–26.20) | 8.65 ± 7.38 (1.30–49.50) | 0.486 | 0.763 | 0.726 |
RBC (106/µL) | 3.52 ± 0.63 (2.23–4.78) | 3.95 ± 0.57 (2.75–5.31) | 4.41 ± 0.80 (2.45–6.10) | <0.001 * | 0.004 * | 0.012 * |
Hb (g/dL) | 10.44 ± 1.84 (6.20–14.60) | 11.44 ± 1.56 (8.20–16.20) | 12.83 ± 2.86 (3.30–18.0) | <0.001 * | 0.007 * | 0.048 * |
PLT (103/µL) | 208.05 ± 76.38 (95–368) | 227.40 ± 65.80 (39–345) | 234.66 ± 70.52 (108–366) | 0.109 | 0.455 | 0.447 |
HCT (%) | 31.68 ± 5.58 (18.10–43.20) | 34.48 ± 4.97 (24.70–49.60) | 39.00 ± 6.29 (22.90–51.80) | <0.001 * | <0.001 * | 0.044 * |
MCV (fL) | 89.64 ± 14.65 (74.9–100.9) | 87.62 ± 4.99 (76.80–100.60) | 88.81 ± 4.97 (78.20–97.60) | 0.246 | 0.966 | 0.255 |
MCH (pg) | 29.56 ± 1.84 (23.40–33.80) | 29.00 ± 2.18 (24.40–32.60) | 29.07 ± 4.69 (3.80–33.70) | 0.491 | 0.945 | 0.562 |
MCHC (g/dL) | 33.00 ± 1.06 (31.10–36.50) | 32.51 ± 2.69 (23.20–35.10) | 33.52 ± 1.03 (31.00–35.70) | 0.166 | 0.013 * | 0.207 |
RDW-SD (fL) | 49.08 ± 15.33 (39.40–419) | 46.98 ± 6.60 (39.40–66.90) | 46.41 ± 11.93 (0.00–84.0) | 0.112 | 0.786 | 0.216 |
RDW-CV (%) | 10.90 ± 6.96 (12.08–18.80) | 15.23 ± 2.36 (12.70–22.10) | 14.82 ± 2.85 (11.70–25.40) | 0.683 | 0.438 | 0.685 |
MPV (fL) | 8.95 ± 1.13 (6.80–11.30) | 9.05 ± 0.92 (7.00–11.00) | 9.07 ± 1.27 (6.10–11.40) | 0.638 | 0.970 | 0.629 |
NEU (%) | 63.81 ± 24.46 (3.22–96.60) | 70.02 ± 11.47 (52.50–95.80) | 65.62 ± 17.78 (5.45–91.50) | 0.638 | 0.970 | 0.629 |
MO (%) | 6.65 ± 3.77 (0.32–14.00) | 7.68 ± 2.29 (2.90–12.20) | 6.76 ± 2.34 (0.50–13.00) | 0.858 | 0.226 | 0.160 |
LYM (%) | 15.06 ± 10.95 (0.80–43.50) | 19.35 ± 9.51 (0.80–36.20) | 23.12 ± 13.28 (2.23–53.20) | 0.002 * | 0.185 | 0.108 |
EOS (%) | 2.18 ± 2.08 (0.01–7.60) | 2.45 ± 2.01 (0.10–7.60) | 1.53 ± 1.42 (0.00–6.60) | 0.123 | 0.055 | 0.610 |
BASO (%) | 0.59 ± 0.40 (0.02–1.80) | 0.64 ± 0.33 (0.10–1.50) | 0.56 ± 0.34 (0.03–1.50) | 0.708 | 0.274 | 0.443 |
Parameters | ESRD Patients on Dialysis (n = 43) | ESRD Patients without Dialysis (n = 31) | Healthy Controls (n = 41) | p a | p b | p c |
---|---|---|---|---|---|---|
AST (U/L) | 22.85 ± 19.40 (7–107) | 25.52 ± 19.99 (6–287) | 25.38 ± 14.42 (4–74) | 0.719 | 0.245 | 0.127 |
ALT (U/L) | 15.71 ± 10.98 (4–64) | 19.97 ± 10.81 (5–57) | 28.76 ± 39.61 (5–192) | 0.022 * | 0.221 | 0.363 |
Glucose (mg/dL) | 127.59 ± 74.40 (52–392) | 136.11 ± 71.76 (53–321) | 129.00 ± 85.88 (71–477) | 0.768 | 0.941 | 0.867 |
Natrium (Na) (mmol/L) | 136.14 ± 5.08 (117–149) | 137.70 ± 5.24 (126–143) | 136.89 ± 37.58 (129–146) | 0.332 | 0.175 | 0.633 |
Potassium (K) (mmol/L) | 4.90 ± 1.03 (3.83–6.23) | 4.62 ± 0.69 (3.08–6.09) | 4.25 ± 0.89 (3.46–5.80) | 0.159 | 0.060 | 0.558 |
Parameters | ESRD Patients on Dialysis (n = 43) | ESRD Patients without Dialysis (n = 31) | Healthy Controls (n = 41) | p a | p b | p c |
---|---|---|---|---|---|---|
Creatinine (mg/dL) | 6.36 ± 3.60 (0.58–15.30) | 2.70 ± 1.60 (0.76–7.66) | 1.44 ± 1.46 (0.53–8.81) | <0.001 * | 0.049 * | <0.001 * |
Urea (mg/dL) | 120.62 ± 48.70 (32.0–225.0) | 98.00 ± 51.18 (31.0–215.0) | 50.82 ± 36.76 (21.0–205.0) | <0.001 * | <0.001 * | 0.023 * |
GFR (mL/min/1.73 m2) ** | 12.29 ± 10.90 (4.0–52.0) | 28.67 ± 13.86 (6.0–80.0) | 69.50 ± 31.07 (5.58–136.0) | <0.001 * | <0.001 * | 0.001 * |
Parameters | ESRD Patients on Dialysis | ESRD Patients without Dialysis | Healthy Controls | p a | p b | p c |
---|---|---|---|---|---|---|
Al (ppb) | n = 11/23 (47.8%) 3.58 ± 0.72 (2.94–5.50) | n = 1/28 (3.57%) 3.80 (3.80–3.80) | n = 0/32 (0.0%) 0 ND | - | - | 0.780 |
Cd (ppb) | n = 17/23 (73.9%) 8.07 ± 15.76 (0.05–49.36) | n = 21/28 (75.0%) 0.67 ± 0.98 (0.05–4.25) | n = 17/32 (53.1%) 0.16 ± 0.12 (0.05–0.45) | 0.007 * | 0.851 | 0.049 * |
Pb (ppb) | n = 10/23 (43.5%) 13.57 ± 9.03 (3.34–35.29) | n = 11/28 (39.3%) 20.41 ± 15.11 (5.67–52.25) | n = 1/32 (3.12%) 0.38 (0.38–0.38) | <0.001 * | <0.001 * | 0.225 |
As (ppb) | n = 23/23 (100%) 4.35 ± 0.93 (2.85–6.35) | n = 26/28 (92.9%) 3.86 ± 1.67 (2.19–10.45) | n = 32/32 (100%) 2.35 ± 0.78 (1.23–5.46) | <0.001 * | <0.001 * | 0.132 |
Hg (ppb) | ND | ND | ND | - | - | - |
Parameters | ESRD Patients on Dialysis (n = 43) | ESRD Patients without Dialysis (n = 31) | Healthy Controls (n = 41) | p a | p b | p c |
---|---|---|---|---|---|---|
SOD (ng/mL) | 36.12 ± 37.32 (2.57–128.5) | 20.59 ± 15.61 (6.89–68.27) | 12.44 ± 6.36 (4.20–28.93) | <0.001 * | 0.051 * | 0.011 * |
CAT (ng/mL) | 34.54 ± 20.15 (13.83–106.8) | 37.76 ± 26.91 (18.04–151.1) | 25.40 ± 7.88 (18.04–151.1) | 0.046 * | 0.021 * | 0.530 |
GPx (ng/mL) | 55.80 ± 33.31 (19.93–136.3) | 57.87 ± 21.14 (12.47–124.0) | 39.62 ± 12.40 (10.70–60.51) | 0.010 * | 0.007 * | 0.746 |
GSH (nmol/L) | 1.54 ± 0.86 (0.14–3.52) | 2.07 ± 0.77 (1.01–3.84) | 4.83 ± 3.60 (1.60–15.51) | <0.001 * | 0.011 * | 0.355 |
MDA (nmol/L) | 32.97 ± 25.97 (9.15–90.80) | 21.11 ± 10.57 (9.15–58.04) | 11.49 ± 6.05 (1.17–21.09) | <0.001 * | 0.041 * | 0.010 * |
8-OHdG (ng/mL) | 30.45 ± 27.64 (8.41–98.20) | 15.36 ± 12.60 (6.99–71.29) | 7.43 ± 3.01 (0.75–14.94) | <0.001 * | 0.048 * | 0.002 * |
Parameters | Short Duration 2–5 Years (n = 29) | Medium Duration 6–9 Years (n = 28) | Long Duration ≥10 Years (n = 17) |
---|---|---|---|
Heavy-metal levels | |||
Al (ppb) | 3.13 ± 1.81 (2.94–3.31) a | 3.60 ± 0.30 (3.17–3.81) | 3.76 ± 0.93 (2.94–5.50) |
Cd (ppb) | 0.75 ± 1.03 (0.05–4.25) a | 3.14 ± 9.29 (0.05–35.31) | 13.42 ± 20.66 (0.12–49.36) |
Pb (ppb) | 18.22 ± 15.38 (5.67–52.25) | 20.22 ± 14.68 (4.22–44.74) | 12.15 ± 5.42 (3.34–18.32) |
As (ppb) | 3.84 ± 1.03 (2.41–6.27) | 4.12 ± 1.83 (2.19–10.45) | 4.76 ± 0.84 (3.82–6.35) |
Oxidative-stress markers | |||
SOD (ng/mL) | 24.32 ± 22.81 (6.89–158.6) | 25.81 ± 27.20 (6.34–127.3) | 37.27 ± 36.89 (2.57–112.1) |
CAT (ng/mL) | 34.13 ± 15.00 (21.28–89.17) | 36.87 ± 28.55 (18.04–151.1) | 39.30 ± 28.14 (13.83–106.8) |
GPx(ng/mL) | 57.34 ± 28.88 (12.47–124) | 50.86 ± 22.93 (27.09–115.1) | 66.30 ± 37.81 (27.59–136.3) |
GSH (nmol/L) | 1.72 ± 0.83 (0.55–3.84) | 1.85 ± 0.84 (0.14–3.52) | 1.63 ± 1.01 (0.23–3.46) |
MDA (nmol/L) | 23.49 ± 15.13 (12.57–83.83) a | 23.43 ± 18.65 (9.15–90.8) b | 36.74 ± 26.49 (12.75–87.52) |
8-OHdG (ng/mL) | 17.92 ± 16.54 (6.98–98.2) a | 20.11 ± 19.95 (9.001–88.3) b | 32.94 ± 25.66 (8.50–81.63) |
DNA damage | |||
Tail intensity | 5.61 ± 3.35 (1.45–13.29) a | 5.44 ± 3.43 (1.19–16.61) b | 8.28 ± 3.45 (2.68–12.45) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yüzbaşıoğlu, Y.; Hazar, M.; Aydın Dilsiz, S.; Yücel, C.; Bulut, M.; Cetinkaya, S.; Erdem, O.; Basaran, N. Biomonitoring of Oxidative-Stress-Related Genotoxic Damage in Patients with End-Stage Renal Disease. Toxics 2024, 12, 69. https://doi.org/10.3390/toxics12010069
Yüzbaşıoğlu Y, Hazar M, Aydın Dilsiz S, Yücel C, Bulut M, Cetinkaya S, Erdem O, Basaran N. Biomonitoring of Oxidative-Stress-Related Genotoxic Damage in Patients with End-Stage Renal Disease. Toxics. 2024; 12(1):69. https://doi.org/10.3390/toxics12010069
Chicago/Turabian StyleYüzbaşıoğlu, Yücel, Merve Hazar, Sevtap Aydın Dilsiz, Ciğdem Yücel, Mesudiye Bulut, Serdar Cetinkaya, Onur Erdem, and Nursen Basaran. 2024. "Biomonitoring of Oxidative-Stress-Related Genotoxic Damage in Patients with End-Stage Renal Disease" Toxics 12, no. 1: 69. https://doi.org/10.3390/toxics12010069
APA StyleYüzbaşıoğlu, Y., Hazar, M., Aydın Dilsiz, S., Yücel, C., Bulut, M., Cetinkaya, S., Erdem, O., & Basaran, N. (2024). Biomonitoring of Oxidative-Stress-Related Genotoxic Damage in Patients with End-Stage Renal Disease. Toxics, 12(1), 69. https://doi.org/10.3390/toxics12010069